Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 13;69(Pt 4):m205–m206. doi: 10.1107/S1600536813006442

cis-Chlorido(methyl­amine)­bis­(propane-1,3-diamine)­cobalt(III) dichloride monohydrate

Velusamy Maheshwaran a, Munisamy Manjunathan b, Krishnamoorthy Anbalagan b, Viswanathan Thiruselvam a, Mondikalipudur Nanjappagounder Ponnuswamy a,*
PMCID: PMC3629484  PMID: 23634002

Abstract

In the title compound, [CoCl(CH5N)(C3H10N2)2]Cl2·H2O, the CoIII ion has an octa­hedral coordination environment and is surrounded by four N atoms of two propane-1,3-diamine ligands in the equatorial plane, with another N atom of the methylamine ligand and a Cl atom occupying the axial positions. The crystal packing is stabilized by inter­molecular N—H⋯O, N—H⋯Cl, and O—H⋯Cl inter­actions, generating a three-dimensional network.

Related literature  

For the linear solvation energy relationship (LSER) method, see: Anbalagan (2011); Anbalagan et al. (2003, 2011). For the biological properties of cobalt(III) complexes, see: Chang et al. (2010). For related structures, see: Anbalagan et al. (2009); Lee et al. (2007); Ramesh et al. (2008); Ravichandran et al. (2009). For the preparation of (1,3-diamino­propane)­cobalt(III), see: Bailar & Work (1946).graphic file with name e-69-0m205-scheme1.jpg

Experimental  

Crystal data  

  • [CoCl(CH5N)(C3H10N2)2]Cl2·H2O

  • M r = 362.62

  • Triclinic, Inline graphic

  • a = 7.4752 (6) Å

  • b = 7.9065 (6) Å

  • c = 14.4663 (13) Å

  • α = 76.022 (6)°

  • β = 76.907 (7)°

  • γ = 73.779 (4)°

  • V = 784.96 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 292 K

  • 0.35 × 0.35 × 0.35 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.798, T max = 1.000

  • 5020 measured reflections

  • 2764 independent reflections

  • 2071 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.055

  • S = 0.92

  • 2764 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813006442/bt6894sup1.cif

e-69-0m205-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006442/bt6894Isup2.hkl

e-69-0m205-Isup2.hkl (135.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.90 2.12 2.960 (3) 155
N1—H1D⋯Cl2 0.90 2.43 3.317 (2) 170
N2—H2C⋯Cl3i 0.90 2.57 3.462 (2) 172
N2—H2D⋯Cl3 0.90 2.44 3.3196 (19) 164
N3—H3C⋯O1 0.90 2.04 2.880 (3) 155
N3—H3D⋯Cl3 0.90 2.50 3.3041 (18) 149
N4—H4C⋯Cl3ii 0.90 2.65 3.486 (2) 155
N4—H4D⋯Cl2 0.90 2.45 3.348 (2) 177
N5—H5C⋯Cl3i 0.90 2.49 3.359 (2) 162
N5—H5D⋯Cl3ii 0.90 2.37 3.2649 (19) 172
O1—H1E⋯Cl2iii 0.82 (4) 2.29 (4) 3.093 (3) 168 (4)
O1—H1F⋯Cl2iv 0.87 (4) 2.25 (4) 3.112 (3) 174 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

KA is thankful to the CSIR, New Delhi (Lr. No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors are thankful to Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

supplementary crystallographic information

Comment

The interest in understanding the outer-sphere electron-transfer (OSET) reactions of transition metal complexes in mixed solvents has increased significantly in recent years. It was established that the method of linear solvation energy relationship (LSER) is a generalized treatment of solvation effects and can very well be used to understand the influence of solvent on reaction rates (Anbalagan et al., 2003). The present research is the design and synthesis of cobalt(III) complexes with an objective to understand the structure-reactivity correlation. Substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron transfer rate (Anbalagan, 2011; Anbalagan et al., 2011).

Such complexes can offer a clear correlation between structure and spectral characteristics, reactions in particular. The optical properties and mechanism of electron transfer reaction can be understood through the structure of these complexes.

In addition cobalt(III) complexes have received a sustained high level of attention due to their relevance in various redox processes in biological systems and act as promising agents for antitumor, anthelmintic, antiparasitic, antibiotics and antimicrobial activities, as well as their multiple applications in fields such as medicine and drug delivery (Chang et al.,2010). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The molecular structure is symmetric with respect to cobalt, the CoIII ion has an octahedral coordination environment and is surrounded by four N atoms in an equatorial plane, with the other N and Cl atoms occupying the axial positions. The bond lengths [Co—N] and [Co—Cl] are comparable with the values reported in the literature (Lee et al., 2007; Ramesh et al., 2008; Anbalagan et al., 2009; Ravichandran et al., 2009).

The packing of the molecules viewed down a axis is shown in Fig. 2. The molecules are stabilized by N—H···Cl, N—H···O and O—H···Cl intermolecular interactions generating a three-dimensional network.

Experimental

Two grams of trans-[CoIII(tn)2Cl2]Cl solid was made in to paste using 3–4 drops of water. To the solid mass, about 0.12M methyl amine (MeNH2) was added in drops for 20 min and mixed by grinding (Bailar & Work 1946). The grinding of the resulting dull green paste was continued to obtain red mass. The reaction mixture was set aside until no further change occurred and the product was allowed to stand overnight. Finally, the solid was washed and recrystallized using acidified water pre-heated to 70°C. The pure crystals were filtered, washed with ethanol and dried over vacuum. The microcrystalline solid obtained was pink colored and the yield was estimated to be 0.85 g (85%). X-ray quality crystals were grown after repeated recrystallization and using hot acidified water.

Refinement

N and C-bound H atoms were positioned geometrically (N–H =0.90 Å, C–H =0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for all other H atoms. The water H atoms were freely refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The packing of the molecules viewed down a axis.

Crystal data

[CoCl(CH5N)(C3H10N2)2]Cl2·H2O Z = 2
Mr = 362.62 F(000) = 380
Triclinic, P1 Dx = 1.534 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4752 (6) Å Cell parameters from 2764 reflections
b = 7.9065 (6) Å θ = 2.8–25.0°
c = 14.4663 (13) Å µ = 1.60 mm1
α = 76.022 (6)° T = 292 K
β = 76.907 (7)° Block, violet
γ = 73.779 (4)° 0.35 × 0.35 × 0.35 mm
V = 784.96 (11) Å3

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2764 independent reflections
Radiation source: Enhance(Mo)X-ray Source 2071 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω scans θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −8→8
Tmin = 0.798, Tmax = 1.000 k = −6→9
5020 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0217P)2] where P = (Fo2 + 2Fc2)/3
2764 reflections (Δ/σ)max = 0.001
162 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3821 (4) 0.4046 (4) 0.7738 (2) 0.0358 (7)
H1A 0.4513 0.4943 0.7385 0.043*
H1B 0.3086 0.4444 0.8324 0.043*
C2 0.2490 (4) 0.3907 (4) 0.7126 (2) 0.0367 (7)
H2A 0.1912 0.2912 0.7441 0.044*
H2B 0.1490 0.4997 0.7074 0.044*
C3 0.3492 (4) 0.3631 (4) 0.61316 (19) 0.0346 (7)
H3A 0.2561 0.3784 0.5729 0.042*
H3B 0.4205 0.4540 0.5850 0.042*
C4 0.8945 (4) −0.1858 (4) 0.8474 (2) 0.0381 (7)
H4A 0.9755 −0.1910 0.8922 0.046*
H4B 0.9572 −0.2780 0.8092 0.046*
C5 0.7081 (4) −0.2246 (4) 0.90423 (19) 0.0368 (7)
H5A 0.7331 −0.3273 0.9561 0.044*
H5B 0.6347 −0.1223 0.9331 0.044*
C6 0.5945 (4) −0.2629 (4) 0.84015 (19) 0.0328 (7)
H6A 0.6729 −0.3573 0.8064 0.039*
H6B 0.4873 −0.3057 0.8804 0.039*
C7 0.8086 (4) −0.2353 (4) 0.5976 (2) 0.0394 (8)
H7A 0.9010 −0.2769 0.5449 0.059*
H7B 0.6842 −0.2259 0.5863 0.059*
H7C 0.8299 −0.3188 0.6567 0.059*
N1 0.5177 (3) 0.2334 (3) 0.80003 (14) 0.0256 (5)
H1C 0.4534 0.1636 0.8464 0.031*
H1D 0.6020 0.2573 0.8277 0.031*
N2 0.4793 (3) 0.1835 (3) 0.61329 (15) 0.0243 (5)
H2C 0.5452 0.1837 0.5529 0.029*
H2D 0.4070 0.1045 0.6240 0.029*
N3 0.5246 (3) −0.1013 (3) 0.76779 (14) 0.0226 (5)
H3C 0.4124 −0.0437 0.7971 0.027*
H3D 0.4999 −0.1426 0.7204 0.027*
N4 0.8692 (3) −0.0082 (3) 0.78236 (15) 0.0273 (5)
H4C 0.9792 −0.0075 0.7412 0.033*
H4D 0.8549 0.0732 0.8191 0.033*
N5 0.8253 (3) −0.0572 (3) 0.60532 (14) 0.0251 (5)
H5C 0.8120 0.0139 0.5473 0.030*
H5D 0.9456 −0.0715 0.6121 0.030*
O1 0.2225 (3) 0.0443 (4) 0.91094 (19) 0.0487 (6)
Cl1 0.81500 (9) 0.30498 (10) 0.62727 (5) 0.03471 (19)
Cl2 0.81288 (10) 0.28479 (10) 0.92550 (5) 0.0405 (2)
Cl3 0.27376 (8) −0.14018 (9) 0.61638 (5) 0.02962 (18)
Co1 0.66519 (4) 0.08437 (5) 0.70286 (3) 0.01944 (10)
H1E 0.208 (5) −0.031 (5) 0.960 (3) 0.085 (16)*
H1F 0.112 (5) 0.118 (5) 0.915 (2) 0.074 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0395 (17) 0.0269 (19) 0.038 (2) 0.0020 (14) −0.0084 (14) −0.0098 (15)
C2 0.0274 (15) 0.035 (2) 0.0400 (19) 0.0078 (13) −0.0095 (13) −0.0063 (15)
C3 0.0406 (17) 0.0266 (19) 0.0338 (19) −0.0012 (14) −0.0166 (14) 0.0013 (15)
C4 0.0400 (17) 0.036 (2) 0.039 (2) −0.0008 (14) −0.0218 (14) −0.0033 (16)
C5 0.0546 (19) 0.030 (2) 0.0233 (17) −0.0063 (15) −0.0166 (14) 0.0051 (14)
C6 0.0447 (17) 0.0234 (18) 0.0310 (18) −0.0128 (14) −0.0097 (13) 0.0023 (14)
C7 0.0360 (16) 0.039 (2) 0.047 (2) −0.0105 (15) 0.0020 (14) −0.0226 (16)
N1 0.0262 (12) 0.0290 (15) 0.0244 (13) −0.0090 (11) −0.0051 (10) −0.0071 (11)
N2 0.0257 (11) 0.0249 (15) 0.0224 (13) −0.0057 (10) −0.0058 (9) −0.0036 (11)
N3 0.0265 (11) 0.0235 (14) 0.0193 (13) −0.0077 (10) −0.0049 (9) −0.0040 (11)
N4 0.0233 (11) 0.0304 (16) 0.0291 (14) −0.0042 (10) −0.0070 (10) −0.0077 (12)
N5 0.0210 (11) 0.0279 (15) 0.0254 (13) −0.0042 (10) −0.0043 (9) −0.0047 (11)
O1 0.0358 (14) 0.0492 (18) 0.0457 (16) −0.0074 (12) 0.0087 (11) 0.0023 (13)
Cl1 0.0364 (4) 0.0318 (5) 0.0377 (5) −0.0194 (3) −0.0022 (3) −0.0007 (4)
Cl2 0.0464 (4) 0.0318 (5) 0.0444 (5) −0.0038 (4) −0.0175 (4) −0.0069 (4)
Cl3 0.0260 (4) 0.0332 (5) 0.0315 (4) −0.0087 (3) −0.0089 (3) −0.0039 (3)
Co1 0.01893 (18) 0.0188 (2) 0.0209 (2) −0.00540 (15) −0.00410 (14) −0.00248 (16)

Geometric parameters (Å, º)

C1—N1 1.471 (3) C7—H7A 0.9600
C1—C2 1.514 (3) C7—H7B 0.9600
C1—H1A 0.9700 C7—H7C 0.9600
C1—H1B 0.9700 N1—Co1 1.988 (2)
C2—C3 1.500 (4) N1—H1C 0.9000
C2—H2A 0.9700 N1—H1D 0.9000
C2—H2B 0.9700 N2—Co1 1.9854 (19)
C3—N2 1.480 (3) N2—H2C 0.9000
C3—H3A 0.9700 N2—H2D 0.9000
C3—H3B 0.9700 N3—Co1 1.9722 (18)
C4—N4 1.478 (3) N3—H3C 0.9000
C4—C5 1.520 (4) N3—H3D 0.9000
C4—H4A 0.9700 N4—Co1 1.987 (2)
C4—H4B 0.9700 N4—H4C 0.9000
C5—C6 1.519 (3) N4—H4D 0.9000
C5—H5A 0.9700 N5—Co1 1.9815 (19)
C5—H5B 0.9700 N5—H5C 0.9000
C6—N3 1.493 (3) N5—H5D 0.9000
C6—H6A 0.9700 O1—H1E 0.82 (4)
C6—H6B 0.9700 O1—H1F 0.87 (4)
C7—N5 1.480 (3) Cl1—Co1 2.2599 (7)
N1—C1—C2 112.7 (2) Co1—N1—H1C 106.8
N1—C1—H1A 109.0 C1—N1—H1D 106.8
C2—C1—H1A 109.0 Co1—N1—H1D 106.8
N1—C1—H1B 109.0 H1C—N1—H1D 106.7
C2—C1—H1B 109.0 C3—N2—Co1 121.69 (15)
H1A—C1—H1B 107.8 C3—N2—H2C 106.9
C3—C2—C1 111.9 (2) Co1—N2—H2C 106.9
C3—C2—H2A 109.2 C3—N2—H2D 106.9
C1—C2—H2A 109.2 Co1—N2—H2D 106.9
C3—C2—H2B 109.2 H2C—N2—H2D 106.7
C1—C2—H2B 109.2 C6—N3—Co1 124.59 (14)
H2A—C2—H2B 107.9 C6—N3—H3C 106.2
N2—C3—C2 112.7 (2) Co1—N3—H3C 106.2
N2—C3—H3A 109.1 C6—N3—H3D 106.2
C2—C3—H3A 109.1 Co1—N3—H3D 106.2
N2—C3—H3B 109.1 H3C—N3—H3D 106.4
C2—C3—H3B 109.1 C4—N4—Co1 122.49 (15)
H3A—C3—H3B 107.8 C4—N4—H4C 106.7
N4—C4—C5 112.6 (2) Co1—N4—H4C 106.7
N4—C4—H4A 109.1 C4—N4—H4D 106.7
C5—C4—H4A 109.1 Co1—N4—H4D 106.7
N4—C4—H4B 109.1 H4C—N4—H4D 106.6
C5—C4—H4B 109.1 C7—N5—Co1 124.77 (16)
H4A—C4—H4B 107.8 C7—N5—H5C 106.1
C6—C5—C4 111.5 (2) Co1—N5—H5C 106.1
C6—C5—H5A 109.3 C7—N5—H5D 106.1
C4—C5—H5A 109.3 Co1—N5—H5D 106.1
C6—C5—H5B 109.3 H5C—N5—H5D 106.3
C4—C5—H5B 109.3 H1E—O1—H1F 102 (3)
H5A—C5—H5B 108.0 N3—Co1—N5 93.88 (8)
N3—C6—C5 112.6 (2) N3—Co1—N2 88.79 (8)
N3—C6—H6A 109.1 N5—Co1—N2 87.65 (8)
C5—C6—H6A 109.1 N3—Co1—N4 95.58 (8)
N3—C6—H6B 109.1 N5—Co1—N4 89.08 (9)
C5—C6—H6B 109.1 N2—Co1—N4 174.72 (8)
H6A—C6—H6B 107.8 N3—Co1—N1 89.21 (8)
N5—C7—H7A 109.5 N5—Co1—N1 176.46 (7)
N5—C7—H7B 109.5 N2—Co1—N1 94.16 (8)
H7A—C7—H7B 109.5 N4—Co1—N1 88.88 (8)
N5—C7—H7C 109.5 N3—Co1—Cl1 177.67 (7)
H7A—C7—H7C 109.5 N5—Co1—Cl1 87.31 (6)
H7B—C7—H7C 109.5 N2—Co1—Cl1 89.26 (6)
C1—N1—Co1 122.04 (16) N4—Co1—Cl1 86.43 (6)
C1—N1—H1C 106.8 N1—Co1—Cl1 89.67 (6)
N1—C1—C2—C3 −69.3 (3) C7—N5—Co1—N4 97.9 (2)
C1—C2—C3—N2 69.8 (3) C7—N5—Co1—Cl1 −175.7 (2)
N4—C4—C5—C6 72.5 (3) C3—N2—Co1—N3 113.74 (19)
C4—C5—C6—N3 −67.9 (3) C3—N2—Co1—N5 −152.33 (19)
C2—C1—N1—Co1 48.1 (3) C3—N2—Co1—N1 24.62 (19)
C2—C3—N2—Co1 −49.0 (3) C3—N2—Co1—Cl1 −64.99 (18)
C5—C6—N3—Co1 35.5 (3) C4—N4—Co1—N3 11.6 (2)
C5—C4—N4—Co1 −42.6 (3) C4—N4—Co1—N5 −82.2 (2)
C6—N3—Co1—N5 81.2 (2) C4—N4—Co1—N1 100.7 (2)
C6—N3—Co1—N2 168.8 (2) C4—N4—Co1—Cl1 −169.5 (2)
C6—N3—Co1—N4 −8.2 (2) C1—N1—Co1—N3 −113.12 (18)
C6—N3—Co1—N1 −97.0 (2) C1—N1—Co1—N2 −24.39 (19)
C7—N5—Co1—N3 2.3 (2) C1—N1—Co1—N4 151.28 (19)
C7—N5—Co1—N2 −86.3 (2) C1—N1—Co1—Cl1 64.84 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O1 0.90 2.12 2.960 (3) 155
N1—H1D···Cl2 0.90 2.43 3.317 (2) 170
N2—H2C···Cl3i 0.90 2.57 3.462 (2) 172
N2—H2D···Cl3 0.90 2.44 3.3196 (19) 164
N3—H3C···O1 0.90 2.04 2.880 (3) 155
N3—H3D···Cl3 0.90 2.50 3.3041 (18) 149
N4—H4C···Cl3ii 0.90 2.65 3.486 (2) 155
N4—H4D···Cl2 0.90 2.45 3.348 (2) 177
N5—H5C···Cl3i 0.90 2.49 3.359 (2) 162
N5—H5D···Cl3ii 0.90 2.37 3.2649 (19) 172
O1—H1E···Cl2iii 0.82 (4) 2.29 (4) 3.093 (3) 168 (4)
O1—H1F···Cl2iv 0.87 (4) 2.25 (4) 3.112 (3) 174 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y, z; (iii) −x+1, −y, −z+2; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6894).

References

  1. Anbalagan, K. (2011). J. Phys. Chem. C115, 3821–3832.
  2. Anbalagan, K., Geethalakshmi, T. & Poonkodi, S. P. R. (2003). J. Phys. Chem. A, 107, 1918–1927.
  3. Anbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52.
  4. Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837. [DOI] [PMC free article] [PubMed]
  5. Bailar, J. C. & Work, J. B. (1946). J. Am. Chem. Soc. 68, 232–235.
  6. Chang, E. L., Simmers, C. & Andrew Knight, D. (2010). Pharmaceuticals, 3, 1711–1728. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.
  9. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  10. Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301. [DOI] [PMC free article] [PubMed]
  11. Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813006442/bt6894sup1.cif

e-69-0m205-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006442/bt6894Isup2.hkl

e-69-0m205-Isup2.hkl (135.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES