Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 16;69(Pt 4):m210. doi: 10.1107/S1600536813006752

Aqua­bis­(4-chloro­benzoato)-κ2 O,O′;κO-bis­(pyridine-κN)cobalt(II)

Ya-Li Chen a, Chun-E Zhang a, Peng Fei a, Chao Deng a, Bi-Tao Su a,*
PMCID: PMC3629487  PMID: 23634005

Abstract

In the title compound, [Co(C7H4ClO2)2(C5H5N)2(H2O)], the CoII atom is six-coordinated by three O atoms from a bidentate and a monodentate 4-chloro­benzoate ligand, two N atoms from two pyridine ligands and a water O atom, giving a distorted octa­hedral geometry. In the crystal, the complex mol­ecules are connected by O—H⋯O hydrogen bonds and π–π interactions between the benzene rings [centroid–centroid distance = 3.8924 (17) Å] into a chain along [010]. Between adjacent chains, π–π inter­actions occur between the pyridine rings [centroid–centroid distance = 3.898 (2) Å], giving an overall two-dimensional architecture.

Related literature  

For structures and applications of related compounds, see: Macgillivray et al. (1998); Masaoka et al. (2001); Qiu et al. (2008); Wang & Sun (2012).graphic file with name e-69-0m210-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C7H4ClO2)2(C5H5N)2(H2O)]

  • M r = 546.25

  • Monoclinic, Inline graphic

  • a = 15.1157 (8) Å

  • b = 5.8696 (3) Å

  • c = 28.5419 (9) Å

  • β = 109.682 (3)°

  • V = 2384.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.695, T max = 0.828

  • 15626 measured reflections

  • 4175 independent reflections

  • 3590 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.082

  • S = 1.10

  • 4175 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006752/hy2620sup1.cif

e-69-0m210-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006752/hy2620Isup2.hkl

e-69-0m210-Isup2.hkl (200.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯O4i 0.84 1.81 2.648 (3) 178
O5—H2W⋯O2i 0.81 1.99 2.737 (3) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 21174114), the Plan for the Yangtze River Scholar and Innovation Team Development of the Ministry of Education (No. IRT1177), the Scientific and Technical Plan Project of Gansu Province (No. 1204 GKCA006), the Natural Science Foundation of Gansu Province (No. 1010RJZA024) and the Scientific and Technical Innovation Project of Northwest Normal University (nwnu-kjcxgc-03–63).

supplementary crystallographic information

Comment

Metal-organic frameworks (MOFs) of aromatic acid are of great interest not only owing to their various structural motifs, but also due to their potential applications in the areas of material chemistry, medical chemistry, biological chemistry, molecular recognition and molecular device (Macgillivray et al., 1998; Masaoka et al., 2001). Sometimes hydrogen bonds play important roles in MOFs (Qiu et al., 2008; Wang & Sun, 2012). In order to achieve MOFs by self-assembly and to explore their hydrogen bonds, herein we report the synthesis and crystal structure of a cobalt complex with 4-chlorobenzoic acid.

As shown in Fig. 1, the CoII atom is six-coordinated by three O atoms from two 4-chlorobenzoate ligands, two N atoms from two pyridine molecules and a water molecule. The CoII atom adopts a distorted octahedral geometry, in which two N atoms occupy the axial sites. The axial Co—N bond distances are 2.158 (2) and 2.168 (2) Å. The Co1—O3 bond distance [1.9931 (19) Å] for the monodentate 4-chlorobenzoate ligand is slightly shorter than Co1—O1 and Co1—O2 [2.1674 (18) and 2.2196 (18) Å] for the bidentate ligand. The crystal packing shows that the molecules are linked by O—H···O hydrogen bonds and π–π interactions between the benzene rings [centroid–centroid distances = 3.8924 (17) Å] into a polymeric chain along [010], as shown in Fig. 2. Between the adjacent chains, π–π interactions exist between the pyridine rings [centroid–centroid distance is 3.898 (2) Å] to give an overall 2D architecture.

Experimental

A pyridine solution (5 ml) of Co(NO3)2.4H2O (0.1 mmol) was added dropwise to an ethyl acetate solution (15 ml) of 4-chlorobenzoic acid (0.2 mmol). The mixture was sealed in a Teflon-lined autoclave and heated under autogenous pressure to 120°C for 3 days and then allowed to cool to room temperature at a rate of 1°C per minute. Block-shaped purple crystals of the title complex were collected in 43% yield.

Refinement

H atoms on C atoms were place at calculated positions and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located from a difference Fourier map and refined as riding with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The chain structure of the title complex, constructed by hydrogen bonds (dashed lines).

Crystal data

[Co(C7H4ClO2)2(C5H5N)2(H2O)] F(000) = 1116
Mr = 546.25 Dx = 1.522 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6935 reflections
a = 15.1157 (8) Å θ = 2.4–28.2°
b = 5.8696 (3) Å µ = 0.98 mm1
c = 28.5419 (9) Å T = 298 K
β = 109.682 (3)° Block, purple
V = 2384.4 (2) Å3 0.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4175 independent reflections
Radiation source: fine-focus sealed tube 3590 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
φ and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −17→17
Tmin = 0.695, Tmax = 0.828 k = −6→6
15626 measured reflections l = −33→33

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0201P)2 + 2.9673P] where P = (Fo2 + 2Fc2)/3
4175 reflections (Δ/σ)max = 0.001
307 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.23784 (2) 0.86593 (6) 0.875872 (13) 0.02636 (11)
Cl1 −0.21542 (8) 0.3351 (2) 0.95560 (5) 0.0979 (4)
Cl2 0.71492 (7) 0.92030 (19) 0.78128 (5) 0.0839 (4)
O1 0.10651 (13) 0.9072 (3) 0.88994 (7) 0.0379 (5)
O2 0.17142 (13) 0.5694 (3) 0.89912 (7) 0.0359 (5)
O3 0.35454 (13) 0.7911 (4) 0.86129 (7) 0.0451 (5)
O4 0.40222 (15) 0.4307 (4) 0.86863 (9) 0.0556 (6)
O5 0.24608 (13) 1.2116 (3) 0.86343 (7) 0.0366 (5)
H1W 0.2964 1.2776 0.8651 0.055*
H2W 0.2166 1.2839 0.8774 0.055*
N1 0.16311 (15) 0.8021 (4) 0.79767 (8) 0.0326 (5)
N2 0.31910 (15) 0.9057 (4) 0.95367 (8) 0.0325 (5)
C2 0.0318 (2) 0.3927 (5) 0.93584 (10) 0.0412 (7)
H2 0.0852 0.3037 0.9411 0.049*
C3 −0.0535 (2) 0.7357 (6) 0.90731 (11) 0.0420 (7)
H3 −0.0569 0.8806 0.8936 0.050*
C6 0.02714 (19) 0.6065 (5) 0.91523 (9) 0.0319 (6)
C7 0.10590 (18) 0.7004 (5) 0.90078 (9) 0.0301 (6)
C8 −0.1215 (2) 0.4410 (6) 0.94008 (12) 0.0524 (9)
C9 −0.0427 (2) 0.3096 (6) 0.94881 (12) 0.0496 (8)
H9 −0.0391 0.1663 0.9633 0.060*
C10 −0.1284 (2) 0.6540 (6) 0.91935 (12) 0.0526 (9)
H10 −0.1824 0.7411 0.9136 0.063*
C12 0.55779 (19) 0.5577 (5) 0.84130 (11) 0.0374 (7)
H12 0.5598 0.4156 0.8560 0.045*
C13 0.5506 (2) 0.9779 (5) 0.79653 (11) 0.0420 (7)
H13 0.5482 1.1187 0.7812 0.050*
C14 0.48302 (18) 0.7019 (4) 0.83676 (9) 0.0288 (6)
C15 0.6245 (2) 0.8322 (5) 0.80206 (12) 0.0436 (7)
C16 0.4800 (2) 0.9117 (5) 0.81416 (10) 0.0356 (7)
H16 0.4298 1.0094 0.8108 0.043*
C17 0.6296 (2) 0.6223 (5) 0.82424 (12) 0.0471 (8)
H17 0.6802 0.5258 0.8277 0.056*
C18 0.40645 (18) 0.6316 (5) 0.85674 (10) 0.0343 (6)
C22 0.1111 (2) 0.6170 (5) 0.78027 (11) 0.0402 (7)
H22 0.1064 0.5078 0.8029 0.048*
C23 0.0641 (2) 0.5797 (5) 0.73044 (11) 0.0466 (8)
H23 0.0285 0.4483 0.7200 0.056*
C24 0.0700 (2) 0.7357 (6) 0.69669 (11) 0.0487 (8)
H24 0.0374 0.7157 0.6629 0.058*
C25 0.1706 (2) 0.9504 (6) 0.76401 (11) 0.0468 (8)
H25 0.2081 1.0784 0.7750 0.056*
C27 0.3169 (2) 1.0861 (5) 0.98112 (11) 0.0455 (8)
H27 0.2752 1.2033 0.9667 0.055*
C28 0.3784 (2) 0.7390 (5) 0.97579 (11) 0.0425 (7)
H28 0.3801 0.6097 0.9573 0.051*
C29 0.3737 (3) 1.1083 (6) 1.03022 (12) 0.0572 (9)
H29 0.3704 1.2379 1.0483 0.069*
C30 0.4374 (2) 0.7476 (6) 1.02459 (11) 0.0497 (8)
H30 0.4778 0.6275 1.0386 0.060*
C31 0.4349 (2) 0.9365 (6) 1.05170 (12) 0.0545 (9)
H31 0.4745 0.9486 1.0846 0.065*
C34 0.1252 (2) 0.9234 (6) 0.71350 (11) 0.0541 (9)
H34 0.1321 1.0317 0.6912 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02674 (19) 0.02380 (19) 0.02987 (19) −0.00091 (15) 0.01127 (14) 0.00061 (15)
Cl1 0.0735 (7) 0.1326 (11) 0.1053 (9) −0.0426 (7) 0.0536 (7) 0.0101 (8)
Cl2 0.0694 (6) 0.0799 (7) 0.1319 (10) −0.0037 (5) 0.0727 (7) 0.0154 (7)
O1 0.0372 (11) 0.0302 (11) 0.0534 (12) 0.0000 (9) 0.0246 (10) 0.0037 (9)
O2 0.0396 (11) 0.0296 (10) 0.0458 (11) −0.0011 (9) 0.0240 (9) −0.0020 (9)
O3 0.0355 (11) 0.0561 (14) 0.0504 (13) 0.0067 (10) 0.0233 (10) 0.0017 (11)
O4 0.0485 (13) 0.0444 (14) 0.0834 (17) −0.0051 (11) 0.0348 (12) 0.0148 (12)
O5 0.0400 (11) 0.0224 (10) 0.0523 (13) −0.0030 (8) 0.0220 (10) −0.0017 (9)
N1 0.0320 (12) 0.0334 (13) 0.0325 (13) −0.0028 (10) 0.0111 (10) −0.0001 (10)
N2 0.0337 (12) 0.0308 (13) 0.0336 (12) −0.0027 (10) 0.0120 (10) −0.0015 (10)
C2 0.0516 (18) 0.0354 (16) 0.0411 (17) −0.0053 (14) 0.0215 (14) −0.0031 (14)
C3 0.0391 (17) 0.0479 (18) 0.0434 (18) −0.0028 (14) 0.0195 (14) 0.0011 (15)
C6 0.0359 (15) 0.0320 (15) 0.0290 (14) −0.0078 (12) 0.0127 (12) −0.0058 (12)
C7 0.0316 (15) 0.0320 (16) 0.0268 (14) −0.0024 (12) 0.0101 (12) −0.0047 (12)
C8 0.051 (2) 0.069 (2) 0.0457 (19) −0.0261 (18) 0.0284 (16) −0.0083 (17)
C9 0.068 (2) 0.0407 (18) 0.0465 (19) −0.0185 (17) 0.0278 (17) −0.0013 (15)
C10 0.0381 (18) 0.069 (2) 0.057 (2) −0.0014 (17) 0.0235 (16) −0.0030 (18)
C12 0.0384 (16) 0.0290 (15) 0.0486 (18) 0.0013 (12) 0.0196 (14) 0.0022 (13)
C13 0.0524 (19) 0.0335 (16) 0.0463 (18) −0.0039 (14) 0.0249 (15) 0.0013 (14)
C14 0.0287 (14) 0.0283 (14) 0.0296 (14) −0.0035 (11) 0.0102 (11) −0.0050 (11)
C15 0.0393 (17) 0.0460 (19) 0.0549 (19) −0.0064 (14) 0.0283 (15) −0.0045 (15)
C16 0.0383 (16) 0.0343 (16) 0.0375 (15) 0.0082 (13) 0.0169 (13) 0.0028 (13)
C17 0.0364 (17) 0.0445 (18) 0.068 (2) 0.0080 (14) 0.0280 (16) 0.0014 (17)
C18 0.0287 (14) 0.0429 (17) 0.0294 (14) −0.0012 (13) 0.0075 (12) −0.0009 (13)
C22 0.0436 (17) 0.0338 (16) 0.0405 (16) −0.0031 (14) 0.0106 (13) 0.0024 (14)
C23 0.0450 (18) 0.0433 (19) 0.0443 (18) −0.0075 (15) 0.0055 (15) −0.0102 (15)
C24 0.054 (2) 0.056 (2) 0.0304 (17) 0.0062 (17) 0.0064 (15) −0.0060 (15)
C25 0.059 (2) 0.0460 (18) 0.0364 (17) −0.0149 (16) 0.0173 (15) 0.0008 (14)
C27 0.0542 (19) 0.0370 (18) 0.0449 (18) −0.0008 (14) 0.0161 (15) −0.0032 (14)
C28 0.0462 (18) 0.0401 (17) 0.0403 (18) 0.0021 (15) 0.0135 (14) −0.0021 (14)
C29 0.080 (3) 0.050 (2) 0.0416 (19) −0.018 (2) 0.0209 (18) −0.0157 (17)
C30 0.0466 (19) 0.060 (2) 0.0375 (18) 0.0030 (16) 0.0071 (15) 0.0085 (16)
C31 0.056 (2) 0.069 (2) 0.0323 (17) −0.0182 (19) 0.0068 (15) 0.0001 (17)
C34 0.075 (2) 0.054 (2) 0.0351 (17) −0.0041 (18) 0.0209 (17) 0.0077 (15)

Geometric parameters (Å, º)

Co1—O3 1.9931 (19) C12—C14 1.382 (4)
Co1—O5 2.0710 (18) C12—C17 1.384 (4)
Co1—N2 2.158 (2) C12—H12 0.9300
Co1—O1 2.1674 (18) C13—C15 1.373 (4)
Co1—N1 2.168 (2) C13—C16 1.381 (4)
Co1—O2 2.2196 (18) C13—H13 0.9300
Cl1—C8 1.738 (3) C14—C16 1.384 (4)
Cl2—C15 1.741 (3) C14—C18 1.510 (4)
O1—C7 1.253 (3) C15—C17 1.376 (4)
O2—C7 1.268 (3) C16—H16 0.9300
O3—C18 1.256 (3) C17—H17 0.9300
O4—C18 1.235 (4) C22—C23 1.377 (4)
O5—H1W 0.8405 C22—H22 0.9300
O5—H2W 0.8101 C23—C24 1.354 (4)
N1—C25 1.329 (4) C23—H23 0.9300
N1—C22 1.335 (4) C24—C34 1.368 (5)
N2—C27 1.324 (4) C24—H24 0.9300
N2—C28 1.334 (4) C25—C34 1.381 (4)
C2—C6 1.378 (4) C25—H25 0.9300
C2—C9 1.387 (4) C27—C29 1.381 (4)
C2—H2 0.9300 C27—H27 0.9300
C3—C10 1.375 (4) C28—C30 1.379 (4)
C3—C6 1.388 (4) C28—H28 0.9300
C3—H3 0.9300 C29—C31 1.366 (5)
C6—C7 1.491 (4) C29—H29 0.9300
C8—C9 1.370 (5) C30—C31 1.359 (5)
C8—C10 1.372 (5) C30—H30 0.9300
C9—H9 0.9300 C31—H31 0.9300
C10—H10 0.9300 C34—H34 0.9300
O3—Co1—O5 94.10 (8) C17—C12—H12 119.6
O3—Co1—N2 90.09 (8) C15—C13—C16 118.8 (3)
O5—Co1—N2 91.37 (8) C15—C13—H13 120.6
O3—Co1—O1 173.52 (9) C16—C13—H13 120.6
O5—Co1—O1 91.95 (7) C12—C14—C16 119.1 (2)
N2—Co1—O1 92.10 (8) C12—C14—C18 120.3 (2)
O3—Co1—N1 86.43 (8) C16—C14—C18 120.7 (2)
O5—Co1—N1 91.91 (8) C13—C15—C17 121.9 (3)
N2—Co1—N1 175.38 (9) C13—C15—Cl2 118.5 (2)
O1—Co1—N1 91.03 (8) C17—C15—Cl2 119.6 (2)
O3—Co1—O2 114.26 (8) C13—C16—C14 120.8 (3)
O5—Co1—O2 151.53 (7) C13—C16—H16 119.6
N2—Co1—O2 86.29 (8) C14—C16—H16 119.6
O1—Co1—O2 59.84 (7) C15—C17—C12 118.6 (3)
N1—Co1—O2 92.35 (8) C15—C17—H17 120.7
C7—O1—Co1 91.20 (16) C12—C17—H17 120.7
C7—O2—Co1 88.45 (16) O4—C18—O3 126.3 (3)
C18—O3—Co1 144.4 (2) O4—C18—C14 118.8 (3)
Co1—O5—H1W 123.2 O3—C18—C14 114.9 (3)
Co1—O5—H2W 110.7 N1—C22—C23 123.2 (3)
H1W—O5—H2W 111.6 N1—C22—H22 118.4
C25—N1—C22 116.5 (2) C23—C22—H22 118.4
C25—N1—Co1 119.32 (19) C24—C23—C22 119.5 (3)
C22—N1—Co1 124.12 (19) C24—C23—H23 120.2
C27—N2—C28 117.0 (3) C22—C23—H23 120.2
C27—N2—Co1 125.2 (2) C23—C24—C34 118.3 (3)
C28—N2—Co1 117.81 (19) C23—C24—H24 120.9
C6—C2—C9 120.3 (3) C34—C24—H24 120.9
C6—C2—H2 119.8 N1—C25—C34 123.1 (3)
C9—C2—H2 119.8 N1—C25—H25 118.4
C10—C3—C6 121.3 (3) C34—C25—H25 118.4
C10—C3—H3 119.3 N2—C27—C29 123.0 (3)
C6—C3—H3 119.3 N2—C27—H27 118.5
C2—C6—C3 118.9 (3) C29—C27—H27 118.5
C2—C6—C7 121.6 (3) N2—C28—C30 123.7 (3)
C3—C6—C7 119.5 (3) N2—C28—H28 118.2
O1—C7—O2 120.5 (2) C30—C28—H28 118.2
O1—C7—C6 120.0 (2) C31—C29—C27 118.8 (3)
O2—C7—C6 119.5 (2) C31—C29—H29 120.6
C9—C8—C10 121.8 (3) C27—C29—H29 120.6
C9—C8—Cl1 119.2 (3) C31—C30—C28 118.2 (3)
C10—C8—Cl1 119.1 (3) C31—C30—H30 120.9
C8—C9—C2 119.2 (3) C28—C30—H30 120.9
C8—C9—H9 120.4 C30—C31—C29 119.4 (3)
C2—C9—H9 120.4 C30—C31—H31 120.3
C8—C10—C3 118.4 (3) C29—C31—H31 120.3
C8—C10—H10 120.8 C24—C34—C25 119.2 (3)
C3—C10—H10 120.8 C24—C34—H34 120.4
C14—C12—C17 120.9 (3) C25—C34—H34 120.4
C14—C12—H12 119.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H1W···O4i 0.84 1.81 2.648 (3) 178
O5—H2W···O2i 0.81 1.99 2.737 (3) 154

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2620).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Macgillivray, L. R., Groeneman, R. H. & Atwood, J. L. (1998). J. Am. Chem. Soc. 120, 2676–2677.
  3. Masaoka, S., Furukawa, S., Chang, H. C., Mizutani, T. & Kitagawa, S. (2001). Angew. Chem. Int. Ed. 40, 3817–3819. [PubMed]
  4. Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2008). Anal. Sci. 24, x7–x8.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, X.-H. & Sun, L.-M. (2012). Acta Cryst. E68, m16. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006752/hy2620sup1.cif

e-69-0m210-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006752/hy2620Isup2.hkl

e-69-0m210-Isup2.hkl (200.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES