Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 16;69(Pt 4):m212–m213. doi: 10.1107/S1600536813006867

Tris(2,2′-bipyridine)­copper(II) penta­cyanido­nitro­soferrate(II) methanol disolvate monohydrate

Julia A Rusanova a, Oksana V Nesterova a, Roman I Zubatyuk b, Olesia V Kozachuk a,*
PMCID: PMC3629489  PMID: 23634007

Abstract

The title complex [Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH3OH·H2O, consists of discrete [Cu(bpy)3]2+ cations (bpy is 2,2′-bipyridine), [Fe(CN)5NO]2− anions and solvent mol­ecules of crystallization (two methanol mol­ecules and one water mol­ecules per asymmetric unit). The CuII ion adopts a distorted octa­hedral environment, coordinated by six N atoms from three bpy ligands. The cation charge is balanced by a nitro­prusside counter-anion, which has a slightly distorted octa­hedral coordination geometry. In the crystal, anions and solvent mol­ecules are involved in O—H⋯N and O—H⋯O hydrogen bonds, which form chains along [100]. The cations are located between these chains.

Related literature  

For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005); Babich et al. (1996); Kovbasyuk et al. (1998); Makhankova et al. (2002); Nesterov et al. (2006); Pryma et al. (2003); Vinogradova et al. (2002). For the structures of related complexes, see: Nikitina et al. (2008); Vreshch et al. (2009a ,b ); Shyu et al. (1997); Shyu & Wei (1999); Dong et al. (2003); Wang et al. (2007); Zhang et al. (2004).graphic file with name e-69-0m212-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH4O·H2O

  • M r = 830.15

  • Monoclinic, Inline graphic

  • a = 11.1308 (8) Å

  • b = 14.7928 (9) Å

  • c = 23.1448 (17) Å

  • β = 90.916 (8)°

  • V = 3810.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.74, T max = 0.91

  • 22593 measured reflections

  • 7368 independent reflections

  • 3799 reflections with I > 2σ(I)

  • R int = 0.053

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.110

  • S = 1.01

  • 7368 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006867/lh5592sup1.cif

e-69-0m212-sup1.cif (35.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006867/lh5592Isup2.hkl

e-69-0m212-Isup2.hkl (360.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3S—H3SB⋯N9 0.85 2.04 2.870 (5) 165
O3S—H3SA⋯N7i 0.85 2.25 3.058 (5) 158
O1S—H1S⋯N8ii 0.82 2.08 2.831 (5) 151
O2S—H2S⋯O3S iii 0.82 1.96 2.746 (7) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

This work is a continuation of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Babich et al., 1996; Kovbasyuk et al., 1998; Makhankova et al., 2002; Nesterov et al., 2006; Pryma et al., 2003; Vinogradova et al., 2002). We have shown recently the possibility of using anionic complexes as a source of metalloligands in direct synthesis of heterometallic compounds (Nikitina et al., 2008; Vreshch et al., 2009a,b).

In this paper we present a novel Cu/Fe heterometallic ionic complex [Cu(bpy)3][Fe(CN)5NO].2CH3OH.H2O which consists of discrete [Cu(bpy)3]2+ and [Fe(CN)5NO]2- ions (Fig. 1). The CuII ion adopts a distorted octahedral environment by coordinating with six nitrogen atoms from three bpy ligands. The range of Cu—N bond distances of 1.999 (3) - 2.035 (3)Å is in good agreement with the previously reported values for analagous complexes (Shyu et al., 1999; Wang et al., 2007). The anion geometry is unremarkable and in good agreement with reported values for other nitroprussides (Shyu et al. 1997; 1999; Dong et al. 2003; Zhang et al., 2004). In the crystal, anions are involved in the formation of O—H···O hydrogen bonds with solvent molecules to form one-dimensional chains along [100] (Fig. 2). The complex cations are located between these chains.

Experimental

Copper powder (0.04 g, 0.63 mmol), NH4HSO4 (0.145 g, 1.26 mmol), Na2[Fe(CN)5(NO)].2H2O (0.188 g, 0.63 mmol) and bpy (0.296 g, 1.89 mmol) in methanol (30 ml) were heated to 323-333K and stirred magnetically until total dissolution of copper was observed (30 min). Dark-red crystals suitable for X-ray crystallography was isolated from the resulting dark-red solution with addition of 2-propanol in six days. The crystals (0.1 g, yield 30%) were filtered off, washed with dry methanol, and finally dried in vacuo at room temperature.

Refinement

H atoms were included in calculated positions with C—H = 0.93 - 0.96Å and O—H = 0.82 - 0.85Å. They were included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O,Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with cations omitted for clarity to show the one-dimensional hydrogen-bonded (dashed lines) chains formed by the anions and solvent molecules.

Crystal data

[Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH4O·H2O F(000) = 1708
Mr = 830.15 Dx = 1.447 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5205 reflections
a = 11.1308 (8) Å θ = 2.6–32.2°
b = 14.7928 (9) Å µ = 1.00 mm1
c = 23.1448 (17) Å T = 293 K
β = 90.916 (8)° Block, dark red
V = 3810.4 (5) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 7368 independent reflections
Radiation source: fine-focus sealed tube 3799 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
ω scans θmax = 26.4°, θmin = 2.8°
Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010) h = −13→11
Tmin = 0.74, Tmax = 0.91 k = −18→18
22593 measured reflections l = −28→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.042P)2] where P = (Fo2 + 2Fc2)/3
7368 reflections (Δ/σ)max = 0.001
496 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.54777 (5) 0.85655 (4) 0.08468 (3) 0.03893 (16)
Cu1 0.91414 (4) 0.80913 (3) 0.32784 (2) 0.04640 (16)
N1 1.0220 (3) 0.7802 (2) 0.26108 (16) 0.0497 (9)
N2 1.0506 (3) 0.8936 (2) 0.34517 (16) 0.0495 (9)
N3 0.7880 (3) 0.7182 (2) 0.30682 (14) 0.0382 (8)
N4 0.9782 (3) 0.7012 (2) 0.37086 (13) 0.0378 (8)
N5 0.8102 (3) 0.8510 (2) 0.39425 (14) 0.0416 (8)
N6 0.8275 (3) 0.9133 (2) 0.29055 (14) 0.0372 (8)
N7 0.2746 (3) 0.8839 (2) 0.06854 (17) 0.0620 (11)
N8 0.5926 (3) 1.0615 (2) 0.09581 (18) 0.0622 (11)
N9 0.8113 (4) 0.8198 (3) 0.11772 (19) 0.0731 (12)
N10 0.5011 (3) 0.6536 (3) 0.10134 (18) 0.0637 (11)
N11 0.4997 (3) 0.8746 (2) 0.21488 (17) 0.0534 (10)
N12 0.5814 (3) 0.8554 (2) 0.01612 (17) 0.0492 (9)
C1 1.0021 (4) 0.7186 (3) 0.2195 (2) 0.0605 (12)
H1A 0.9292 0.6879 0.2192 0.073*
C2 1.0812 (5) 0.6988 (3) 0.1786 (2) 0.0694 (14)
H2A 1.0634 0.6554 0.1507 0.083*
C3 1.1885 (5) 0.7432 (4) 0.1783 (2) 0.0765 (16)
H3A 1.2449 0.7309 0.1501 0.092*
C4 1.2113 (4) 0.8055 (4) 0.2197 (2) 0.0739 (15)
H4A 1.2843 0.8361 0.2203 0.089*
C5 1.1273 (4) 0.8241 (3) 0.2611 (2) 0.0502 (11)
C6 1.1399 (4) 0.8914 (3) 0.3066 (2) 0.0551 (12)
C7A 0.3757 (4) 0.8748 (3) 0.07377 (18) 0.0445 (10)
C7 1.2363 (5) 0.9509 (4) 0.3111 (3) 0.0795 (16)
H7A 1.3002 0.9470 0.2858 0.095*
C8A 0.5745 (3) 0.9855 (3) 0.09130 (19) 0.0474 (11)
C8 1.2348 (5) 1.0162 (4) 0.3542 (3) 0.0928 (19)
H8A 1.2970 1.0580 0.3572 0.111*
C9A 0.7126 (4) 0.8341 (3) 0.10677 (19) 0.0474 (11)
C9 1.1436 (5) 1.0192 (4) 0.3915 (3) 0.0841 (17)
H9A 1.1416 1.0631 0.4203 0.101*
C10A 0.5162 (3) 0.7285 (3) 0.09489 (19) 0.0456 (11)
C10 1.0541 (4) 0.9564 (3) 0.3865 (2) 0.0634 (13)
H10A 0.9925 0.9576 0.4131 0.076*
C11A 0.5175 (3) 0.8666 (3) 0.1664 (2) 0.0415 (10)
C11 0.6953 (4) 0.7304 (3) 0.2706 (2) 0.0497 (11)
H11A 0.6908 0.7842 0.2499 0.060*
C12 0.6073 (4) 0.6684 (3) 0.2625 (2) 0.0546 (12)
H12A 0.5442 0.6794 0.2367 0.066*
C13 0.6126 (4) 0.5887 (3) 0.2931 (2) 0.0586 (13)
H13A 0.5521 0.5457 0.2891 0.070*
C14 0.7075 (4) 0.5742 (3) 0.32919 (19) 0.0499 (11)
H14A 0.7130 0.5207 0.3501 0.060*
C15 0.7955 (3) 0.6383 (3) 0.33483 (17) 0.0409 (10)
C16 0.9060 (4) 0.6278 (3) 0.37029 (17) 0.0413 (10)
C17 0.9377 (4) 0.5503 (3) 0.39901 (19) 0.0548 (12)
H17A 0.8866 0.5005 0.3985 0.066*
C18 1.0445 (4) 0.5465 (3) 0.4283 (2) 0.0587 (13)
H18A 1.0673 0.4940 0.4477 0.070*
C19 1.1185 (4) 0.6208 (3) 0.42895 (19) 0.0575 (12)
H19A 1.1918 0.6197 0.4487 0.069*
C20 1.0814 (4) 0.6969 (3) 0.39965 (18) 0.0476 (11)
H20A 1.1311 0.7475 0.4001 0.057*
C21 0.8078 (4) 0.8163 (3) 0.44769 (18) 0.0479 (11)
H21A 0.8631 0.7716 0.4577 0.058*
C22 0.7276 (4) 0.8438 (3) 0.48790 (19) 0.0544 (12)
H22A 0.7277 0.8176 0.5244 0.065*
C23 0.6471 (4) 0.9102 (3) 0.4740 (2) 0.0600 (12)
H23A 0.5912 0.9294 0.5008 0.072*
C24 0.6497 (4) 0.9482 (3) 0.41990 (19) 0.0535 (12)
H24A 0.5957 0.9937 0.4097 0.064*
C25 0.7321 (3) 0.9188 (2) 0.38118 (18) 0.0399 (10)
C26 0.7462 (3) 0.9554 (2) 0.32274 (18) 0.0383 (9)
C27 0.6835 (3) 1.0305 (3) 0.30261 (19) 0.0479 (11)
H27A 0.6281 1.0595 0.3259 0.058*
C28 0.7047 (4) 1.0611 (3) 0.2478 (2) 0.0556 (12)
H28A 0.6630 1.1108 0.2333 0.067*
C29 0.7865 (4) 1.0186 (3) 0.21512 (19) 0.0535 (11)
H29A 0.8024 1.0394 0.1781 0.064*
C30 0.8463 (4) 0.9441 (3) 0.23692 (18) 0.0472 (11)
H30A 0.9012 0.9143 0.2138 0.057*
O1 0.6132 (3) 0.8586 (3) −0.03055 (15) 0.0856 (11)
O1S 0.3532 (3) 0.7337 (3) 0.3573 (2) 0.1165 (16)
H1S 0.3516 0.6904 0.3794 0.175*
C1S 0.4416 (5) 0.7904 (4) 0.3736 (3) 0.105 (2)
H1SA 0.4424 0.8416 0.3482 0.158*
H1SB 0.5173 0.7595 0.3720 0.158*
H1SC 0.4282 0.8104 0.4125 0.158*
O2S 0.0815 (7) 0.8683 (4) 0.5202 (3) 0.178 (2)
H2S 0.0561 0.8220 0.5353 0.267*
C2S 0.2053 (8) 0.8635 (5) 0.5160 (4) 0.156 (4)
H2SA 0.2349 0.9175 0.4982 0.234*
H2SB 0.2262 0.8121 0.4930 0.234*
H2SC 0.2405 0.8573 0.5540 0.234*
O3S 1.0227 (3) 0.8062 (2) 0.04880 (15) 0.0899 (11)
H3SA 1.0827 0.8365 0.0613 0.135*
H3SB 0.9690 0.8129 0.0742 0.135*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0380 (3) 0.0344 (3) 0.0444 (3) 0.0019 (3) 0.0002 (3) 0.0001 (3)
Cu1 0.0481 (3) 0.0407 (3) 0.0504 (3) −0.0027 (2) 0.0019 (3) 0.0039 (3)
N1 0.045 (2) 0.045 (2) 0.059 (2) 0.0040 (17) −0.006 (2) 0.008 (2)
N2 0.049 (2) 0.046 (2) 0.054 (2) −0.0050 (18) −0.011 (2) 0.014 (2)
N3 0.0303 (18) 0.0397 (18) 0.045 (2) 0.0001 (15) −0.0026 (17) 0.0103 (17)
N4 0.0359 (19) 0.0405 (18) 0.0371 (18) 0.0027 (15) −0.0009 (17) 0.0014 (17)
N5 0.044 (2) 0.0390 (18) 0.041 (2) −0.0027 (16) −0.0012 (17) 0.0017 (18)
N6 0.0386 (19) 0.0361 (17) 0.0368 (19) −0.0056 (15) −0.0055 (17) 0.0013 (17)
N7 0.047 (2) 0.065 (2) 0.073 (3) 0.006 (2) −0.008 (2) −0.007 (2)
N8 0.064 (2) 0.041 (2) 0.081 (3) −0.0053 (19) −0.002 (2) 0.005 (2)
N9 0.048 (2) 0.091 (3) 0.081 (3) 0.015 (2) −0.003 (2) −0.016 (3)
N10 0.070 (3) 0.041 (2) 0.080 (3) −0.004 (2) 0.009 (2) −0.004 (2)
N11 0.061 (2) 0.051 (2) 0.049 (2) 0.0053 (18) 0.004 (2) 0.005 (2)
N12 0.055 (2) 0.0411 (19) 0.051 (2) 0.0139 (18) −0.0027 (19) 0.004 (2)
C1 0.062 (3) 0.060 (3) 0.060 (3) 0.009 (3) 0.000 (3) 0.002 (3)
C2 0.086 (4) 0.063 (3) 0.060 (3) 0.010 (3) 0.002 (3) 0.000 (3)
C3 0.089 (4) 0.077 (4) 0.065 (4) 0.017 (3) 0.023 (3) 0.013 (3)
C4 0.053 (3) 0.084 (4) 0.085 (4) −0.006 (3) 0.009 (3) 0.028 (4)
C5 0.035 (2) 0.059 (3) 0.057 (3) 0.001 (2) −0.001 (2) 0.021 (3)
C6 0.044 (3) 0.052 (3) 0.069 (3) −0.011 (2) −0.010 (3) 0.019 (3)
C7A 0.051 (3) 0.040 (2) 0.042 (2) 0.000 (2) 0.000 (2) −0.003 (2)
C7 0.062 (3) 0.087 (4) 0.089 (4) −0.029 (3) −0.011 (3) 0.020 (4)
C8A 0.042 (2) 0.046 (3) 0.054 (3) 0.000 (2) −0.001 (2) 0.009 (2)
C8 0.084 (4) 0.078 (4) 0.116 (5) −0.043 (4) −0.024 (4) 0.016 (4)
C9A 0.051 (3) 0.042 (2) 0.049 (3) 0.000 (2) 0.009 (2) −0.006 (2)
C9 0.092 (4) 0.068 (3) 0.092 (4) −0.022 (3) −0.020 (4) −0.003 (3)
C10A 0.039 (2) 0.045 (2) 0.053 (3) 0.006 (2) 0.001 (2) −0.007 (2)
C10 0.065 (3) 0.054 (3) 0.071 (3) −0.014 (3) −0.009 (3) 0.001 (3)
C11A 0.031 (2) 0.030 (2) 0.063 (3) 0.0012 (17) −0.001 (2) 0.004 (2)
C11 0.043 (3) 0.041 (2) 0.065 (3) −0.004 (2) 0.002 (3) 0.009 (2)
C12 0.039 (2) 0.054 (3) 0.070 (3) −0.006 (2) −0.012 (2) 0.005 (3)
C13 0.051 (3) 0.044 (3) 0.080 (4) −0.014 (2) −0.006 (3) −0.005 (3)
C14 0.051 (3) 0.038 (2) 0.060 (3) −0.004 (2) 0.001 (3) 0.008 (2)
C15 0.041 (2) 0.037 (2) 0.046 (2) −0.002 (2) 0.008 (2) 0.002 (2)
C16 0.043 (2) 0.040 (2) 0.041 (2) 0.0016 (19) 0.006 (2) 0.005 (2)
C17 0.058 (3) 0.041 (2) 0.065 (3) −0.002 (2) −0.001 (3) 0.012 (2)
C18 0.066 (3) 0.054 (3) 0.057 (3) 0.019 (3) 0.001 (3) 0.014 (3)
C19 0.045 (3) 0.080 (3) 0.047 (3) 0.018 (3) −0.001 (2) 0.000 (3)
C20 0.042 (3) 0.050 (3) 0.050 (3) 0.002 (2) −0.006 (2) 0.001 (2)
C21 0.055 (3) 0.043 (2) 0.045 (3) −0.005 (2) −0.003 (2) 0.006 (2)
C22 0.075 (3) 0.045 (3) 0.043 (3) −0.015 (2) −0.002 (3) 0.003 (2)
C23 0.077 (3) 0.052 (3) 0.052 (3) −0.002 (3) 0.021 (3) −0.006 (3)
C24 0.059 (3) 0.043 (2) 0.059 (3) 0.004 (2) 0.009 (3) 0.004 (2)
C25 0.044 (2) 0.033 (2) 0.044 (2) −0.0062 (19) 0.003 (2) −0.002 (2)
C26 0.033 (2) 0.035 (2) 0.046 (2) −0.0043 (18) −0.008 (2) −0.002 (2)
C27 0.044 (2) 0.043 (2) 0.057 (3) 0.007 (2) 0.003 (2) 0.002 (2)
C28 0.054 (3) 0.046 (3) 0.066 (3) 0.005 (2) −0.010 (3) 0.013 (3)
C29 0.060 (3) 0.053 (3) 0.047 (3) −0.004 (2) −0.005 (2) 0.017 (2)
C30 0.047 (3) 0.050 (3) 0.044 (3) −0.005 (2) 0.003 (2) 0.002 (2)
O1 0.110 (3) 0.098 (3) 0.050 (2) 0.035 (2) 0.013 (2) 0.014 (2)
O1S 0.088 (3) 0.082 (3) 0.179 (5) −0.010 (2) −0.029 (3) 0.043 (3)
C1S 0.088 (4) 0.071 (4) 0.156 (6) −0.005 (3) −0.022 (4) 0.000 (4)
O2S 0.218 (6) 0.121 (4) 0.195 (6) 0.030 (5) 0.014 (6) 0.055 (4)
C2S 0.176 (8) 0.128 (6) 0.161 (8) −0.077 (7) −0.073 (7) 0.047 (6)
O3S 0.079 (2) 0.111 (3) 0.081 (3) −0.002 (2) 0.013 (2) −0.002 (2)

Geometric parameters (Å, º)

Fe1—N12 1.636 (4) C11—C12 1.353 (5)
Fe1—C9A 1.926 (5) C11—H11A 0.9300
Fe1—C11A 1.932 (5) C12—C13 1.376 (6)
Fe1—C8A 1.936 (4) C12—H12A 0.9300
Fe1—C10A 1.942 (5) C13—C14 1.353 (6)
Fe1—C7A 1.947 (5) C13—H13A 0.9300
Cu1—N3 1.999 (3) C14—C15 1.368 (5)
Cu1—N2 2.002 (3) C14—H14A 0.9300
Cu1—N6 2.006 (3) C15—C16 1.476 (5)
Cu1—N4 2.006 (3) C16—C17 1.370 (5)
Cu1—N1 2.018 (4) C17—C18 1.360 (6)
Cu1—N5 2.035 (3) C17—H17A 0.9300
N1—C5 1.340 (5) C18—C19 1.374 (6)
N1—C1 1.341 (5) C18—H18A 0.9300
N2—C10 1.333 (5) C19—C20 1.374 (6)
N2—C6 1.347 (5) C19—H19A 0.9300
N3—C11 1.331 (5) C20—H20A 0.9300
N3—C15 1.349 (5) C21—C22 1.362 (6)
N4—C20 1.321 (5) C21—H21A 0.9300
N4—C16 1.350 (5) C22—C23 1.364 (6)
N5—C21 1.340 (5) C22—H22A 0.9300
N5—C25 1.359 (5) C23—C24 1.374 (6)
N6—C26 1.336 (5) C23—H23A 0.9300
N6—C30 1.342 (5) C24—C25 1.364 (5)
N7—C7A 1.138 (5) C24—H24A 0.9300
N8—C8A 1.147 (5) C25—C26 1.467 (5)
N9—C9A 1.144 (5) C26—C27 1.389 (5)
N10—C10A 1.130 (5) C27—C28 1.371 (6)
N11—C11A 1.149 (5) C27—H27A 0.9300
N12—O1 1.143 (4) C28—C29 1.349 (6)
C1—C2 1.337 (6) C28—H28A 0.9300
C1—H1A 0.9300 C29—C30 1.379 (5)
C2—C3 1.363 (7) C29—H29A 0.9300
C2—H2A 0.9300 C30—H30A 0.9300
C3—C4 1.351 (7) O1S—C1S 1.342 (6)
C3—H3A 0.9300 O1S—H1S 0.8200
C4—C5 1.377 (6) C1S—H1SA 0.9600
C4—H4A 0.9300 C1S—H1SB 0.9600
C5—C6 1.455 (6) C1S—H1SC 0.9602
C6—C7 1.390 (6) O2S—C2S 1.384 (8)
C7—C8 1.389 (8) O2S—H2S 0.8201
C7—H7A 0.9300 C2S—H2SA 0.9599
C8—C9 1.345 (8) C2S—H2SB 0.9601
C8—H8A 0.9300 C2S—H2SC 0.9601
C9—C10 1.365 (6) O3S—H3SA 0.8500
C9—H9A 0.9300 O3S—H3SB 0.8499
C10—H10A 0.9300
N12—Fe1—C9A 91.36 (17) N2—C10—C9 123.3 (5)
N12—Fe1—C11A 175.03 (17) N2—C10—H10A 118.4
C9A—Fe1—C11A 86.19 (17) C9—C10—H10A 118.4
N12—Fe1—C8A 92.83 (18) N11—C11A—Fe1 178.5 (4)
C9A—Fe1—C8A 90.23 (16) N3—C11—C12 123.1 (4)
C11A—Fe1—C8A 82.87 (17) N3—C11—H11A 118.4
N12—Fe1—C10A 98.79 (18) C12—C11—H11A 118.4
C9A—Fe1—C10A 88.45 (16) C11—C12—C13 119.0 (4)
C11A—Fe1—C10A 85.48 (17) C11—C12—H12A 120.5
C8A—Fe1—C10A 168.33 (19) C13—C12—H12A 120.5
N12—Fe1—C7A 96.65 (17) C14—C13—C12 118.6 (4)
C9A—Fe1—C7A 171.75 (17) C14—C13—H13A 120.7
C11A—Fe1—C7A 85.97 (16) C12—C13—H13A 120.7
C8A—Fe1—C7A 91.33 (16) C13—C14—C15 120.0 (4)
C10A—Fe1—C7A 88.39 (16) C13—C14—H14A 120.0
N3—Cu1—N2 175.02 (14) C15—C14—H14A 120.0
N3—Cu1—N6 94.69 (12) N3—C15—C14 121.5 (4)
N2—Cu1—N6 87.97 (12) N3—C15—C16 113.8 (3)
N3—Cu1—N4 80.07 (13) C14—C15—C16 124.7 (4)
N2—Cu1—N4 97.75 (13) N4—C16—C17 121.4 (4)
N6—Cu1—N4 171.67 (13) N4—C16—C15 114.3 (3)
N3—Cu1—N1 95.46 (13) C17—C16—C15 124.3 (4)
N2—Cu1—N1 80.02 (15) C18—C17—C16 119.5 (4)
N6—Cu1—N1 96.94 (13) C18—C17—H17A 120.2
N4—Cu1—N1 90.04 (12) C16—C17—H17A 120.2
N3—Cu1—N5 89.03 (13) C17—C18—C19 119.4 (4)
N2—Cu1—N5 95.60 (14) C17—C18—H18A 120.3
N6—Cu1—N5 79.41 (13) C19—C18—H18A 120.3
N4—Cu1—N5 93.94 (13) C18—C19—C20 118.4 (4)
N1—Cu1—N5 174.46 (13) C18—C19—H19A 120.8
C5—N1—C1 117.7 (4) C20—C19—H19A 120.8
C5—N1—Cu1 115.4 (3) N4—C20—C19 122.7 (4)
C1—N1—Cu1 126.8 (3) N4—C20—H20A 118.6
C10—N2—C6 118.6 (4) C19—C20—H20A 118.6
C10—N2—Cu1 126.3 (3) N5—C21—C22 122.6 (4)
C6—N2—Cu1 114.7 (3) N5—C21—H21A 118.7
C11—N3—C15 117.6 (3) C22—C21—H21A 118.7
C11—N3—Cu1 126.6 (3) C21—C22—C23 119.3 (4)
C15—N3—Cu1 115.8 (3) C21—C22—H22A 120.4
C20—N4—C16 118.6 (3) C23—C22—H22A 120.4
C20—N4—Cu1 126.0 (3) C22—C23—C24 119.1 (4)
C16—N4—Cu1 115.4 (3) C22—C23—H23A 120.5
C21—N5—C25 117.8 (3) C24—C23—H23A 120.5
C21—N5—Cu1 126.9 (3) C25—C24—C23 119.5 (4)
C25—N5—Cu1 115.2 (3) C25—C24—H24A 120.2
C26—N6—C30 118.3 (3) C23—C24—H24A 120.2
C26—N6—Cu1 116.3 (3) N5—C25—C24 121.6 (4)
C30—N6—Cu1 125.3 (3) N5—C25—C26 113.6 (3)
O1—N12—Fe1 174.4 (4) C24—C25—C26 124.8 (4)
C2—C1—N1 123.6 (5) N6—C26—C27 121.8 (4)
C2—C1—H1A 118.2 N6—C26—C25 115.2 (3)
N1—C1—H1A 118.2 C27—C26—C25 123.0 (4)
C1—C2—C3 119.1 (5) C28—C27—C26 118.8 (4)
C1—C2—H2A 120.5 C28—C27—H27A 120.6
C3—C2—H2A 120.5 C26—C27—H27A 120.6
C4—C3—C2 118.7 (5) C29—C28—C27 119.5 (4)
C4—C3—H3A 120.7 C29—C28—H28A 120.2
C2—C3—H3A 120.7 C27—C28—H28A 120.2
C3—C4—C5 120.5 (5) C28—C29—C30 119.6 (4)
C3—C4—H4A 119.7 C28—C29—H29A 120.2
C5—C4—H4A 119.7 C30—C29—H29A 120.2
N1—C5—C4 120.5 (5) N6—C30—C29 121.9 (4)
N1—C5—C6 113.9 (4) N6—C30—H30A 119.0
C4—C5—C6 125.6 (5) C29—C30—H30A 119.0
N2—C6—C7 120.9 (5) C1S—O1S—H1S 109.6
N2—C6—C5 115.6 (4) O1S—C1S—H1SA 109.6
C7—C6—C5 123.5 (5) O1S—C1S—H1SB 109.4
N7—C7A—Fe1 178.1 (4) H1SA—C1S—H1SB 109.5
C8—C7—C6 118.4 (5) O1S—C1S—H1SC 109.4
C8—C7—H7A 120.8 H1SA—C1S—H1SC 109.5
C6—C7—H7A 120.8 H1SB—C1S—H1SC 109.5
N8—C8A—Fe1 178.6 (4) C2S—O2S—H2S 109.7
C9—C8—C7 120.2 (5) O2S—C2S—H2SA 109.7
C9—C8—H8A 119.9 O2S—C2S—H2SB 109.3
C7—C8—H8A 119.9 H2SA—C2S—H2SB 109.5
N9—C9A—Fe1 177.3 (4) O2S—C2S—H2SC 109.4
C8—C9—C10 118.7 (6) H2SA—C2S—H2SC 109.5
C8—C9—H9A 120.7 H2SB—C2S—H2SC 109.5
C10—C9—H9A 120.7 H3SA—O3S—H3SB 105.2
N10—C10A—Fe1 178.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3S—H3SB···N9 0.85 2.04 2.870 (5) 165
O3S—H3SA···N7i 0.85 2.25 3.058 (5) 158
O1S—H1S···N8ii 0.82 2.08 2.831 (5) 151
O2S—H2S···O3Siii 0.82 1.96 2.746 (7) 161

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x−1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5592).

References

  1. Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731.
  2. Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. [DOI] [PubMed]
  3. Dong, W., Si, S.-F., Liao, D.-Z., Jiang, Z.-H. & Yan, A.-P. (2003). J. Coord. Chem. 56, 531–538.
  4. Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J Chem Soc Dalton Trans pp. 2735–2738.
  5. Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.
  6. Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, A., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607. [DOI] [PubMed]
  7. Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.
  8. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  9. Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shyu, H. L. & Wei, H. H. (1999). J. Coord. Chem. 47, 319–330.
  12. Shyu, H. L., Wei, H. H. & Wang, Y. (1997). Inorg. Chim. Acta, 258, 81–86.
  13. Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252.
  14. Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Cormary, B., Malfant, I. & Jezierska, J. (2009a). Z. Anorg. Allg. Chem. 635, 2316–2323.
  15. Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Skelton, B. W., Garcia, C. J. G. & Jezierska, J. (2009b). Inorg. Chem. Commun. 12, 890–894.
  16. Wang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835–m836.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Zhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2004). Acta Cryst. E60, m1293–m1295. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006867/lh5592sup1.cif

e-69-0m212-sup1.cif (35.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006867/lh5592Isup2.hkl

e-69-0m212-Isup2.hkl (360.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES