Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 16;69(Pt 4):m215. doi: 10.1107/S160053681300682X

Tetra­aqua­bis­(3,5-dinitro­benzoato-κO 1)magnesium tetra­hydrate

Graham Smith a,*
PMCID: PMC3629491  PMID: 23634009

Abstract

In the structure of the title compound, [Mg(C7H3N2O6)2(H2O)4]·4H2O, the slightly distorted octa­hedral MgO6 coord­in­ation polyhedron comprises two trans-related carboxyl­ate O-atom donors from mononodentate 3,5-dinitro­benzoate ligands, and four water mol­ecules. The coordinating water mol­ecules and the four water mol­ecules of solvation give both intra- and inter-unit O—H⋯O hydrogen-bonding inter­actions with carboxyl­ate, water and nitro O-atom acceptors, forming a three-dimensional structure.

Related literature  

For the structures of some magnesium complexes with nitro-substituted benzoic acids, see: Morgant et al. (2006); Srinivasan et al. (2007, 2011); Arlin et al. (2011).graphic file with name e-69-0m215-scheme1.jpg

Experimental  

Crystal data  

  • [Mg(C7H3N2O6)2(H2O)4]·4H2O

  • M r = 590.67

  • Triclinic, Inline graphic

  • a = 7.1748 (3) Å

  • b = 11.7299 (6) Å

  • c = 15.0103 (7) Å

  • α = 103.224 (4)°

  • β = 98.569 (4)°

  • γ = 92.181 (4)°

  • V = 1212.62 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 200 K

  • 0.32 × 0.22 × 0.10 mm

Data collection  

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.970, T max = 0.980

  • 15059 measured reflections

  • 4764 independent reflections

  • 3969 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.095

  • S = 0.94

  • 4764 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300682X/sj5305sup1.cif

e-69-0m215-sup1.cif (40.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300682X/sj5305Isup2.hkl

e-69-0m215-Isup2.hkl (228.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mg1—O1W 2.0929 (14)
Mg1—O2W 2.0732 (13)
Mg1—O3W 2.1024 (14)
Mg1—O4W 2.0804 (13)
Mg1—O11A 2.0304 (13)
Mg1—O11B 2.0237 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O8W 0.91 1.79 2.700 (2) 179
O1W—H12W⋯O6W i 0.88 1.93 2.7934 (19) 170
O2W—H21W⋯O12A 0.76 2.11 2.8001 (18) 152
O2W—H22W⋯O6W 0.87 1.87 2.7375 (18) 178
O3W—H31W⋯O7W 0.80 2.02 2.8213 (19) 170
O3W—H32W⋯O5W ii 0.90 1.89 2.7722 (18) 170
O4W—H41W⋯O12B 0.80 2.00 2.7310 (18) 151
O4W—H42W⋯O5W iii 0.83 1.97 2.7986 (18) 174
O5W—H51W⋯O7W iii 0.86 2.11 2.9449 (19) 164
O5W—H52W⋯O1W 0.86 2.17 2.9702 (19) 155
O6W—H61W⋯O12A i 0.86 2.00 2.8404 (19) 163
O6W—H62W⋯O3W iv 0.86 2.14 2.9522 (19) 159
O7W—H71W⋯O12B v 0.89 1.87 2.708 (2) 158
O7W—H72W⋯O32B vi 0.86 2.50 3.236 (2) 145
O8W—H81W⋯O12A i 0.90 1.99 2.7737 (19) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The author acknowledges financial support from the Australian Research Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

Magnesium complexes involving monoanionic nitro-substituted benzoate ligands (L) show both the common [Mg(H2O)6]2+ 2(L) form, e.g. a dihydrate: L = 4-nitrobenzoate (Srinivasan et al., 2007; Arlin et al., 2011), as well as examples in which the ligand is coordinated, e.g. [MgL(H2O)5] (L). HL. H2O (a complex acid adduct: L = 4-nitro-3-hydroxybenzoate) (Morgant et al., 2006) and [MgL2(H2O)4]: (L = 2-nitrobenzoate) (Srinivasan et al., 2011; Arlin et al., 2011). All known examples are monomeric and have essentially octahedral metal stereochemistry.

The title complex, [Mg(C7H3N2O6)2(H2O)4]. 4H2O was obtained from the reaction of 3,5-dinitrobenzoic acid acid with MgCO3 in aqueous ethanol and the structure is reported here. In this structure (Fig. 1), the slightly distorted octahedral MgO6 coordination polyhedron comprises two trans-related carboxyl O-atom donors from mononodentate 3,5-dinitrobenzoate ligands, and four water molecules [bond range Mg—O, 2.0237 (13)–2.1024 (14) Å (Table 1)]. The coordinated water molecules and the four water molecules of solvation give both intra- and inter-unit O—H···O hydrogen-bonding interactions with carboxyl, water and nitro O-atom acceptors (Table 2), giving a three-dimensional structure (Fig. 2).

In the present complex, the two 3,5-dinitrobenzoate ligands are conformationally similar, with the carboxyl groups lying essentially in the plane of the benzene ring [torsion angles C2—C1—C11—O11 = 178.01 (14)° (A) and 178.90 (14)° (B)]. The C5 nitro groups are variously rotated out of the benzene plane [torsion angles C2—C3—N3—O32 = 154.31 (17)° (A) and 159.03 (15)° (B): C4—C5—N5—O52 = 167.74 (15)° (A) and 163.06 (15)° (B)].

Experimental

The title compound was synthesized by the addition of excess MgCO3 to 15 ml of a hot aqueous ethanolic solution (10:1) of 3,5-dinitrobenzoic acid (0.1 g). After completion of the reaction, the excess MgCO3 was removed by filtration and the solution was allowed to evaporate to partial dryness at room temperature, giving colourless plates of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms on all water molecules were located by difference methods and both positional and isotropic displacement parameters were initially refined but these were then allowed to ride, with Uiso(H) = 1.5Ueq(O). Other H-atoms were included in the refinement at calculated positions [C—H = 0.93 Å] with Uiso(H) = 1.2Ueq(C) also using a riding-model approximation.

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom naming scheme for the title complex, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

A perspective view of the title complex showing hydrogen-bonding interactions as dashed lines and with non-associative H-atoms omitted. For symmetry code (i), see Table 2.

Crystal data

[Mg(C7H3N2O6)2(H2O)4]·4H2O Z = 2
Mr = 590.67 F(000) = 612
Triclinic, P1 Dx = 1.618 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1748 (3) Å Cell parameters from 4480 reflections
b = 11.7299 (6) Å θ = 3.3–28.8°
c = 15.0103 (7) Å µ = 0.18 mm1
α = 103.224 (4)° T = 200 K
β = 98.569 (4)° Plate, colourless
γ = 92.181 (4)° 0.32 × 0.22 × 0.10 mm
V = 1212.62 (10) Å3

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 4764 independent reflections
Radiation source: Enhance(Mo) X-ray source 3969 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.3°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −14→14
Tmin = 0.970, Tmax = 0.980 l = −18→18
15059 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5437P] where P = (Fo2 + 2Fc2)/3
4764 reflections (Δ/σ)max < 0.001
352 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mg1 0.72688 (8) 0.24686 (5) 0.49442 (4) 0.0206 (2)
O1W 0.45776 (18) 0.27809 (11) 0.43347 (9) 0.0315 (4)
O2W 0.80173 (18) 0.42361 (10) 0.55275 (8) 0.0287 (4)
O3W 0.99516 (17) 0.20820 (11) 0.55261 (9) 0.0289 (4)
O4W 0.65142 (18) 0.06937 (10) 0.43663 (8) 0.0283 (4)
O11A 0.62746 (18) 0.23370 (10) 0.61171 (8) 0.0255 (4)
O11B 0.83217 (18) 0.26394 (10) 0.37996 (8) 0.0278 (4)
O12A 0.5701 (2) 0.41362 (10) 0.68573 (9) 0.0318 (4)
O12B 0.8071 (2) 0.08551 (11) 0.28425 (9) 0.0325 (4)
O31A 0.31477 (19) 0.44416 (11) 0.97944 (9) 0.0340 (4)
O31B 0.8787 (2) 0.06471 (11) −0.04095 (9) 0.0351 (4)
O32A 0.4359 (3) 0.33267 (14) 1.06560 (10) 0.0526 (6)
O32B 1.0519 (2) 0.20264 (14) −0.06886 (10) 0.0476 (5)
O51A 0.5101 (2) −0.07040 (12) 0.88966 (10) 0.0432 (5)
O51B 1.0734 (2) 0.59134 (12) 0.13968 (10) 0.0420 (5)
O52A 0.6406 (2) −0.08279 (12) 0.76731 (10) 0.0429 (5)
O52B 0.9300 (2) 0.60972 (12) 0.25868 (10) 0.0447 (5)
N3A 0.3977 (2) 0.35844 (14) 0.99081 (10) 0.0303 (5)
N3B 0.9615 (2) 0.16217 (13) −0.01841 (10) 0.0273 (5)
N5A 0.5629 (2) −0.02866 (13) 0.82933 (11) 0.0300 (5)
N5B 0.9901 (2) 0.55022 (13) 0.19201 (11) 0.0288 (5)
C1A 0.5416 (2) 0.25645 (14) 0.75959 (11) 0.0191 (5)
C1B 0.8897 (2) 0.25074 (15) 0.22763 (11) 0.0221 (5)
C2A 0.4858 (2) 0.32878 (14) 0.83639 (11) 0.0215 (5)
C2B 0.9050 (2) 0.18121 (15) 0.14109 (11) 0.0229 (5)
C3A 0.4564 (2) 0.28082 (15) 0.90967 (11) 0.0235 (5)
C3B 0.9496 (2) 0.23575 (15) 0.07369 (11) 0.0227 (5)
C4A 0.4796 (2) 0.16471 (15) 0.91068 (12) 0.0255 (5)
C4B 0.9805 (2) 0.35601 (15) 0.08781 (12) 0.0245 (5)
C5A 0.5332 (2) 0.09582 (14) 0.83218 (12) 0.0226 (5)
C5B 0.9603 (2) 0.42181 (15) 0.17419 (12) 0.0228 (5)
C6A 0.5640 (2) 0.13877 (14) 0.75691 (11) 0.0211 (5)
C6B 0.9152 (2) 0.37241 (15) 0.24432 (11) 0.0227 (5)
C11A 0.5832 (2) 0.30567 (14) 0.67950 (11) 0.0211 (5)
C11B 0.8402 (2) 0.19519 (15) 0.30354 (12) 0.0234 (5)
O5W 0.21801 (18) 0.07011 (11) 0.44221 (9) 0.0295 (4)
O6W 0.75569 (18) 0.58555 (11) 0.44724 (9) 0.0298 (4)
O7W 1.0086 (2) 0.11013 (12) 0.70823 (9) 0.0413 (5)
O8W 0.4051 (3) 0.34282 (12) 0.27062 (10) 0.0526 (6)
H2A 0.46860 0.40750 0.83860 0.0260*
H2B 0.88570 0.09990 0.12880 0.0270*
H4A 0.46040 0.13470 0.96110 0.0310*
H4B 1.01310 0.39060 0.04180 0.0290*
H6A 0.59920 0.08960 0.70520 0.0250*
H6B 0.90230 0.41970 0.30160 0.0270*
H11W 0.43930 0.30080 0.37910 0.0470*
H12W 0.37960 0.31880 0.46530 0.0470*
H21W 0.73890 0.44440 0.58890 0.0430*
H22W 0.79040 0.47460 0.51890 0.0430*
H31W 1.01100 0.18470 0.59930 0.0430*
H32W 1.05640 0.16380 0.51110 0.0430*
H41W 0.69830 0.04970 0.39120 0.0420*
H42W 0.68820 0.02370 0.46960 0.0420*
H51W 0.16520 0.02280 0.39150 0.0440*
H52W 0.30810 0.11320 0.43140 0.0440*
H61W 0.66770 0.57420 0.39940 0.0450*
H62W 0.84670 0.63140 0.44130 0.0450*
H71W 1.07840 0.05610 0.72630 0.0620*
H72W 1.00000 0.16100 0.75820 0.0620*
H81W 0.42210 0.41470 0.26020 0.0790*
H82W 0.40670 0.28650 0.22020 0.0790*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mg1 0.0281 (3) 0.0207 (3) 0.0153 (3) 0.0025 (2) 0.0077 (2) 0.0060 (2)
O1W 0.0356 (7) 0.0391 (8) 0.0244 (7) 0.0139 (6) 0.0088 (5) 0.0129 (6)
O2W 0.0430 (8) 0.0220 (6) 0.0251 (7) 0.0031 (5) 0.0129 (6) 0.0089 (5)
O3W 0.0328 (7) 0.0321 (7) 0.0250 (7) 0.0092 (5) 0.0088 (5) 0.0097 (6)
O4W 0.0399 (7) 0.0237 (6) 0.0228 (6) 0.0013 (5) 0.0099 (5) 0.0059 (5)
O11A 0.0404 (7) 0.0216 (6) 0.0179 (6) 0.0038 (5) 0.0136 (5) 0.0056 (5)
O11B 0.0415 (7) 0.0256 (6) 0.0190 (6) 0.0001 (5) 0.0136 (5) 0.0055 (5)
O12A 0.0574 (9) 0.0193 (6) 0.0236 (7) 0.0065 (6) 0.0152 (6) 0.0088 (5)
O12B 0.0526 (8) 0.0236 (7) 0.0247 (7) 0.0023 (6) 0.0136 (6) 0.0078 (5)
O31A 0.0372 (7) 0.0306 (7) 0.0344 (8) 0.0046 (6) 0.0177 (6) 0.0003 (6)
O31B 0.0460 (8) 0.0303 (7) 0.0251 (7) 0.0022 (6) 0.0021 (6) 0.0010 (6)
O32A 0.0864 (12) 0.0571 (10) 0.0185 (7) 0.0109 (9) 0.0189 (7) 0.0099 (7)
O32B 0.0645 (10) 0.0541 (10) 0.0262 (8) −0.0070 (8) 0.0260 (7) 0.0035 (7)
O51A 0.0639 (10) 0.0333 (8) 0.0357 (8) −0.0119 (7) 0.0008 (7) 0.0221 (7)
O51B 0.0491 (9) 0.0371 (8) 0.0434 (9) −0.0119 (7) 0.0087 (7) 0.0187 (7)
O52A 0.0676 (10) 0.0223 (7) 0.0389 (8) 0.0090 (7) 0.0113 (7) 0.0047 (6)
O52B 0.0724 (11) 0.0252 (7) 0.0356 (8) 0.0060 (7) 0.0147 (7) 0.0014 (6)
N3A 0.0367 (9) 0.0340 (9) 0.0208 (8) −0.0016 (7) 0.0129 (7) 0.0034 (7)
N3B 0.0321 (8) 0.0322 (9) 0.0179 (7) 0.0062 (7) 0.0059 (6) 0.0048 (7)
N5A 0.0414 (9) 0.0209 (8) 0.0271 (8) −0.0037 (7) −0.0023 (7) 0.0104 (7)
N5B 0.0337 (8) 0.0254 (8) 0.0264 (8) −0.0017 (6) −0.0012 (7) 0.0090 (7)
C1A 0.0215 (8) 0.0205 (8) 0.0159 (8) 0.0001 (6) 0.0035 (6) 0.0054 (7)
C1B 0.0234 (8) 0.0258 (9) 0.0193 (8) 0.0033 (7) 0.0076 (7) 0.0067 (7)
C2A 0.0260 (9) 0.0204 (8) 0.0188 (8) 0.0029 (7) 0.0053 (7) 0.0051 (7)
C2B 0.0267 (9) 0.0227 (9) 0.0203 (9) 0.0021 (7) 0.0073 (7) 0.0048 (7)
C3A 0.0269 (9) 0.0278 (9) 0.0160 (8) 0.0013 (7) 0.0077 (7) 0.0033 (7)
C3B 0.0242 (9) 0.0284 (9) 0.0160 (8) 0.0041 (7) 0.0064 (7) 0.0042 (7)
C4A 0.0298 (9) 0.0313 (10) 0.0178 (8) −0.0032 (7) 0.0047 (7) 0.0114 (7)
C4B 0.0254 (9) 0.0307 (9) 0.0204 (9) 0.0003 (7) 0.0069 (7) 0.0102 (8)
C5A 0.0278 (9) 0.0187 (8) 0.0214 (9) −0.0011 (7) 0.0017 (7) 0.0067 (7)
C5B 0.0237 (8) 0.0226 (9) 0.0225 (9) 0.0005 (7) 0.0031 (7) 0.0071 (7)
C6A 0.0242 (8) 0.0216 (8) 0.0173 (8) 0.0006 (7) 0.0051 (7) 0.0034 (7)
C6B 0.0247 (9) 0.0265 (9) 0.0167 (8) 0.0024 (7) 0.0055 (7) 0.0034 (7)
C11A 0.0265 (9) 0.0220 (9) 0.0160 (8) 0.0018 (7) 0.0054 (7) 0.0057 (7)
C11B 0.0266 (9) 0.0254 (9) 0.0198 (9) 0.0039 (7) 0.0072 (7) 0.0061 (7)
O5W 0.0327 (7) 0.0281 (7) 0.0284 (7) −0.0004 (5) 0.0101 (5) 0.0053 (6)
O6W 0.0316 (7) 0.0293 (7) 0.0319 (7) 0.0014 (5) 0.0073 (6) 0.0130 (6)
O7W 0.0530 (9) 0.0423 (8) 0.0308 (8) 0.0173 (7) 0.0087 (7) 0.0097 (7)
O8W 0.1022 (14) 0.0273 (8) 0.0264 (8) 0.0089 (8) 0.0032 (8) 0.0064 (6)

Geometric parameters (Å, º)

Mg1—O1W 2.0929 (14) O6W—H62W 0.8600
Mg1—O2W 2.0732 (13) O7W—H72W 0.8600
Mg1—O3W 2.1024 (14) O7W—H71W 0.8900
Mg1—O4W 2.0804 (13) O8W—H81W 0.9000
Mg1—O11A 2.0304 (13) O8W—H82W 0.8900
Mg1—O11B 2.0237 (13) N3A—C3A 1.471 (2)
O11A—C11A 1.254 (2) N3B—C3B 1.469 (2)
O11B—C11B 1.253 (2) N5A—C5A 1.476 (2)
O12A—C11A 1.256 (2) N5B—C5B 1.470 (2)
O12B—C11B 1.258 (2) C1A—C2A 1.387 (2)
O31A—N3A 1.220 (2) C1A—C6A 1.388 (2)
O31B—N3B 1.219 (2) C1A—C11A 1.510 (2)
O32A—N3A 1.223 (2) C1B—C6B 1.391 (3)
O32B—N3B 1.228 (2) C1B—C11B 1.514 (2)
O51A—N5A 1.222 (2) C1B—C2B 1.389 (2)
O51B—N5B 1.224 (2) C2A—C3A 1.384 (2)
O52A—N5A 1.221 (2) C2B—C3B 1.383 (2)
O52B—N5B 1.227 (2) C3A—C4A 1.382 (3)
O1W—H11W 0.9100 C3B—C4B 1.382 (3)
O1W—H12W 0.8800 C4A—C5A 1.383 (2)
O2W—H21W 0.7600 C4B—C5B 1.380 (2)
O2W—H22W 0.8700 C5A—C6A 1.380 (2)
O3W—H32W 0.9000 C5B—C6B 1.384 (2)
O3W—H31W 0.8000 C2A—H2A 0.9300
O4W—H41W 0.8000 C2B—H2B 0.9300
O4W—H42W 0.8300 C4A—H4A 0.9300
O5W—H51W 0.8600 C4B—H4B 0.9300
O5W—H52W 0.8600 C6A—H6A 0.9300
O6W—H61W 0.8600 C6B—H6B 0.9300
Mg1···H52W 3.2400 O12B···H2B 2.5200
Mg1···H62Wi 3.2400 O12B···H41W 2.0000
O1W···O2W 3.0289 (18) O12B···H71Wvi 1.8700
O1W···O4W 2.8669 (18) O31A···H4Bx 2.5900
O1W···O5W 2.9702 (19) O31A···H2A 2.4900
O1W···O8W 2.700 (2) O31B···H2B 2.4800
O1W···O11A 2.9371 (18) O31B···H2Bxi 2.8400
O1W···O11B 2.9163 (18) O32A···H81Wvii 2.8800
O1W···O6Wii 2.7934 (19) O32A···H4A 2.5200
O2W···O12A 2.8001 (18) O32A···H82Wvii 2.5400
O2W···O1W 3.0289 (18) O32B···H4B 2.4900
O2W···O3W 2.9285 (18) O32B···H72Wviii 2.5000
O2W···O6W 2.7375 (18) O51A···H82Wiv 2.8300
O2W···O11A 2.8859 (17) O51A···H4Axiv 2.5100
O2W···O11B 2.8740 (17) O51A···H2Biv 2.8100
O2W···C11A 3.150 (2) O51A···H4A 2.4600
O2W···O6Wi 3.1813 (19) O51B···H4B 2.4600
O3W···O11A 2.9108 (18) O51B···H4Bxii 2.7600
O3W···O6Wi 2.9522 (19) O52A···H82Wiv 2.4500
O3W···O2W 2.9285 (18) O52A···H6A 2.4200
O3W···O4W 2.9804 (18) O52B···H62W 2.8500
O3W···O5Wiii 2.7722 (18) O52B···H6B 2.4700
O3W···O7W 2.8213 (19) O52B···H31Wi 2.8000
O3W···O52Bi 3.093 (2) O52B···H72Wi 2.7900
O3W···O11B 2.9054 (18) N3A···O31Aix 2.951 (2)
O4W···O12B 2.7310 (18) N3A···O32Bx 2.923 (2)
O4W···O5W 3.1235 (19) N3B···O31Bxi 3.194 (2)
O4W···C11B 3.163 (2) N5A···O12Biv 2.897 (2)
O4W···O1W 2.8669 (18) N5A···O31Bvii 2.765 (2)
O4W···O3W 2.9804 (18) N5B···O31Aii 3.134 (2)
O4W···O5Wiv 2.7986 (18) C1A···O51Bi 3.201 (2)
O4W···O11A 2.9144 (17) C2A···O52Bii 3.290 (2)
O4W···O11B 2.9336 (17) C2A···O51Bi 3.208 (2)
O5W···O1W 2.9702 (19) C2B···O51Aiv 3.130 (2)
O5W···O4W 3.1235 (19) C3A···O32Bx 3.095 (2)
O5W···O7Wiv 2.9449 (19) C4A···O32Bx 3.167 (2)
O5W···O4Wiv 2.7986 (18) C4A···O51Axiv 3.416 (2)
O5W···O3Wv 2.7722 (18) C4A···O31Bvii 3.183 (2)
O6W···O12Aii 2.8404 (19) C4B···O32Axiii 3.349 (3)
O6W···O2Wi 3.1813 (19) C4B···O31Axiii 3.348 (2)
O6W···O3Wi 2.9522 (19) C5A···O12Biv 3.189 (2)
O6W···O2W 2.7375 (18) C5A···O31Bvii 2.981 (2)
O6W···C11Aii 3.336 (2) C6A···O7W 3.389 (2)
O6W···O1Wii 2.7934 (19) C11A···O6Wii 3.336 (2)
O7W···O52Bi 3.212 (2) C11A···O51Bi 3.343 (2)
O7W···C6A 3.389 (2) C6A···H41Wiv 3.0900
O7W···O5Wiv 2.9449 (19) C11A···H61Wii 2.6400
O7W···O3W 2.8213 (19) C11A···H21W 2.6600
O7W···O12Bvi 2.708 (2) C11B···H41W 2.6400
O7W···O32Bvii 3.236 (2) C11B···H71Wvi 2.9700
O8W···O12Aii 2.7737 (19) H2A···O31A 2.4900
O8W···O52Aiv 2.968 (2) H2A···O12A 2.5200
O8W···O32Aviii 3.094 (2) H2B···O51Aiv 2.8100
O8W···O1W 2.700 (2) H2B···O12B 2.5200
O11A···O1W 2.9371 (18) H2B···O31B 2.4800
O11A···O3W 2.9108 (18) H2B···O31Bxi 2.8400
O11A···O4W 2.9144 (17) H4A···O51Axiv 2.5100
O11A···O2W 2.8859 (17) H4A···O32A 2.5200
O11B···O3W 2.9054 (18) H4A···O51A 2.4600
O11B···O2W 2.8740 (17) H4B···O31Axiii 2.5900
O11B···O4W 2.9336 (17) H4B···O51Bxii 2.7600
O11B···O1W 2.9163 (18) H4B···O32B 2.4900
O12A···O6Wii 2.8404 (19) H4B···O51B 2.4600
O12A···O2W 2.8001 (18) H6A···O52A 2.4200
O12A···O8Wii 2.7737 (19) H6A···H51Wiv 2.5900
O12B···N5Aiv 2.897 (2) H6A···O11A 2.4500
O12B···O51Aiv 3.164 (2) H6A···O4Wiv 2.8300
O12B···C5Aiv 3.189 (2) H6B···O52B 2.4700
O12B···O7Wvi 2.708 (2) H6B···O11B 2.4600
O12B···O52Aiv 3.187 (2) H11W···O8W 1.7900
O12B···O4W 2.7310 (18) H11W···H82W 2.3300
O31A···N3Aix 2.951 (2) H11W···H81W 2.4500
O31A···O32Bx 3.218 (2) H12W···H52W 2.3700
O31A···C4Bx 3.348 (2) H12W···H62Wii 2.3100
O31A···O31Aix 2.8352 (19) H12W···O6Wii 1.9300
O31A···N5Bii 3.134 (2) H12W···H61Wii 2.2100
O31A···O51Bii 3.036 (2) H21W···O12A 2.1100
O31B···O31Bxi 2.6950 (19) H21W···C11A 2.6600
O31B···C5Aviii 2.981 (2) H22W···H61W 2.4300
O31B···O51Aviii 2.949 (2) H22W···H62W 2.4400
O31B···N5Aviii 2.765 (2) H22W···O6W 1.8700
O31B···O52Aviii 3.198 (2) H31W···O52Bi 2.8000
O31B···N3Bxi 3.194 (2) H31W···H72W 2.4800
O31B···C4Aviii 3.183 (2) H31W···O7W 2.0200
O32A···C4Bx 3.349 (3) H31W···H62Wi 2.5900
O32A···O8Wvii 3.094 (2) H32W···H52Wiii 2.3300
O32B···O51Bxii 2.972 (2) H32W···H51Wiii 2.3900
O32B···N3Axiii 2.923 (2) H32W···H62Wi 2.3900
O32B···O7Wviii 3.236 (2) H32W···O5Wiii 1.8900
O32B···O31Axiii 3.218 (2) H41W···O12B 2.0000
O32B···C4Axiii 3.167 (2) H41W···C11B 2.6400
O32B···C3Axiii 3.095 (2) H41W···C6Aiv 3.0900
O51A···O12Biv 3.164 (2) H42W···H52Wiv 2.4200
O51A···C2Biv 3.130 (2) H42W···O5Wiv 1.9700
O51A···C4Axiv 3.416 (2) H42W···H51Wiv 2.3800
O51A···O31Bvii 2.949 (2) H51W···H42Wiv 2.3800
O51B···O31Aii 3.036 (2) H51W···O7Wiv 2.1100
O51B···O32Bxii 2.972 (2) H51W···H71Wiv 2.2900
O51B···C11Ai 3.343 (2) H51W···H6Aiv 2.5900
O51B···C2Ai 3.208 (2) H51W···H32Wv 2.3900
O51B···C1Ai 3.201 (2) H52W···H12W 2.3700
O52A···O8Wiv 2.968 (2) H52W···Mg1 3.2400
O52A···O12Biv 3.187 (2) H52W···O1W 2.1700
O52A···O31Bvii 3.198 (2) H52W···H32Wv 2.3300
O52B···C2Aii 3.290 (2) H52W···H42Wiv 2.4200
O52B···O3Wi 3.093 (2) H52W···O4W 2.5300
O52B···O7Wi 3.212 (2) H61W···O12Aii 2.0000
O1W···H52W 2.1700 H61W···C11Aii 2.6400
O2W···H62Wi 2.6200 H61W···H12Wii 2.2100
O3W···H62Wi 2.1400 H61W···H22W 2.4300
O4W···H6Aiv 2.8300 H62W···H31Wi 2.5900
O4W···H52W 2.5300 H62W···H22W 2.4400
O5W···H42Wiv 1.9700 H62W···O52B 2.8500
O5W···H32Wv 1.8900 H62W···Mg1i 3.2400
O6W···H12Wii 1.9300 H62W···O2Wi 2.6200
O6W···H22W 1.8700 H62W···O3Wi 2.1400
O7W···H31W 2.0200 H62W···H12Wii 2.3100
O7W···H51Wiv 2.1100 H62W···H32Wi 2.3900
O8W···H11W 1.7900 H71W···O12Bvi 1.8700
O11A···H21W 2.6800 H71W···C11Bvi 2.9700
O11A···H31W 2.8600 H71W···H51Wiv 2.2900
O11A···H6A 2.4500 H72W···H31W 2.4800
O11B···H41W 2.7100 H72W···O52Bi 2.7900
O11B···H22W 2.9000 H72W···O32Bvii 2.5000
O11B···H32W 2.8500 H81W···O32Aviii 2.8800
O11B···H6B 2.4600 H81W···H11W 2.4500
O11B···H11W 2.8700 H81W···O12Aii 1.9900
O12A···H21W 2.1100 H82W···O32Aviii 2.5400
O12A···H61Wii 2.0000 H82W···H11W 2.3300
O12A···H2A 2.5200 H82W···O51Aiv 2.8300
O12A···H81Wii 1.9900 H82W···O52Aiv 2.4500
O1W—Mg1—O2W 93.28 (6) O51B—N5B—O52B 123.98 (16)
O1W—Mg1—O3W 177.64 (6) C6A—C1A—C11A 119.51 (14)
O1W—Mg1—O4W 86.78 (6) C2A—C1A—C6A 120.12 (15)
O1W—Mg1—O11A 90.83 (6) C2A—C1A—C11A 120.35 (15)
O1W—Mg1—O11B 90.20 (6) C2B—C1B—C11B 120.41 (16)
O2W—Mg1—O3W 89.06 (6) C6B—C1B—C11B 119.53 (14)
O2W—Mg1—O4W 179.66 (6) C2B—C1B—C6B 120.04 (15)
O2W—Mg1—O11A 89.38 (5) C1A—C2A—C3A 118.30 (15)
O2W—Mg1—O11B 89.09 (5) C1B—C2B—C3B 118.44 (16)
O3W—Mg1—O4W 90.88 (6) N3A—C3A—C4A 118.58 (15)
O3W—Mg1—O11A 89.53 (6) N3A—C3A—C2A 117.81 (15)
O3W—Mg1—O11B 89.50 (6) C2A—C3A—C4A 123.62 (15)
O4W—Mg1—O11A 90.29 (5) N3B—C3B—C2B 118.31 (15)
O4W—Mg1—O11B 91.24 (5) N3B—C3B—C4B 118.16 (15)
O11A—Mg1—O11B 178.20 (6) C2B—C3B—C4B 123.52 (15)
Mg1—O11A—C11A 134.86 (11) C3A—C4A—C5A 115.94 (16)
Mg1—O11B—C11B 133.81 (12) C3B—C4B—C5B 116.09 (16)
H11W—O1W—H12W 103.00 C4A—C5A—C6A 122.98 (16)
Mg1—O1W—H11W 121.00 N5A—C5A—C4A 118.66 (15)
Mg1—O1W—H12W 122.00 N5A—C5A—C6A 118.35 (15)
Mg1—O2W—H22W 121.00 N5B—C5B—C6B 118.97 (15)
H21W—O2W—H22W 104.00 C4B—C5B—C6B 123.07 (17)
Mg1—O2W—H21W 108.00 N5B—C5B—C4B 117.96 (15)
Mg1—O3W—H31W 122.00 C1A—C6A—C5A 119.03 (15)
Mg1—O3W—H32W 113.00 C1B—C6B—C5B 118.81 (15)
H31W—O3W—H32W 108.00 O11A—C11A—O12A 125.65 (15)
Mg1—O4W—H41W 109.00 O11A—C11A—C1A 116.26 (15)
Mg1—O4W—H42W 116.00 O12A—C11A—C1A 118.09 (14)
H41W—O4W—H42W 105.00 O12B—C11B—C1B 117.76 (15)
H51W—O5W—H52W 110.00 O11B—C11B—O12B 125.84 (16)
H61W—O6W—H62W 110.00 O11B—C11B—C1B 116.38 (15)
H71W—O7W—H72W 105.00 C3A—C2A—H2A 121.00
H81W—O8W—H82W 112.00 C1A—C2A—H2A 121.00
O32A—N3A—C3A 117.58 (16) C3B—C2B—H2B 121.00
O31A—N3A—O32A 124.23 (16) C1B—C2B—H2B 121.00
O31A—N3A—C3A 118.19 (14) C3A—C4A—H4A 122.00
O31B—N3B—C3B 118.03 (14) C5A—C4A—H4A 122.00
O32B—N3B—C3B 118.34 (15) C3B—C4B—H4B 122.00
O31B—N3B—O32B 123.62 (15) C5B—C4B—H4B 122.00
O51A—N5A—C5A 117.93 (15) C5A—C6A—H6A 120.00
O52A—N5A—C5A 117.70 (15) C1A—C6A—H6A 120.00
O51A—N5A—O52A 124.36 (16) C1B—C6B—H6B 121.00
O52B—N5B—C5B 117.88 (15) C5B—C6B—H6B 121.00
O51B—N5B—C5B 118.14 (15)
O1W—Mg1—O11A—C11A −76.77 (16) C11A—C1A—C6A—C5A 177.32 (14)
O2W—Mg1—O11A—C11A 16.50 (16) C6A—C1A—C11A—O11A 3.6 (2)
O3W—Mg1—O11A—C11A 105.57 (16) C2A—C1A—C11A—O12A 1.7 (2)
O4W—Mg1—O11A—C11A −163.55 (16) C2A—C1A—C6A—C5A −1.1 (2)
O1W—Mg1—O11B—C11B −84.11 (16) C11A—C1A—C2A—C3A −177.50 (14)
O2W—Mg1—O11B—C11B −177.38 (16) C6A—C1A—C2A—C3A 0.9 (2)
O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B −1.6 (2)
O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2)
Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14)
Mg1—O11A—C11A—C1A −171.22 (11) C6B—C1B—C11B—O11B −2.7 (2)
Mg1—O11B—C11B—O12B −12.6 (3) C2B—C1B—C11B—O12B −2.6 (2)
Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B −179.97 (13)
O31A—N3A—C3A—C4A −154.62 (15) C6B—C1B—C11B—O12B 175.83 (15)
O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14)
O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14)
O32A—N3A—C3A—C2A −154.31 (17) C1A—C2A—C3A—C4A 0.0 (2)
O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B −178.65 (13)
O32B—N3B—C3B—C2B −159.03 (15) C1B—C2B—C3B—C4B 0.2 (2)
O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A −0.7 (2)
O31B—N3B—C3B—C4B −156.99 (15) N3A—C3A—C4A—C5A 179.43 (14)
O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13)
O51A—N5A—C5A—C6A −169.81 (15) C2B—C3B—C4B—C5B −1.4 (2)
O52A—N5A—C5A—C4A −167.74 (15) C3A—C4A—C5A—C6A 0.5 (2)
O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14)
O52B—N5B—C5B—C6B −17.5 (2) C3B—C4B—C5B—N5B −179.44 (13)
O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2)
O51B—N5B—C5B—C4B −17.0 (2) N5A—C5A—C6A—C1A −178.28 (14)
O52B—N5B—C5B—C4B 163.06 (15) C4A—C5A—C6A—C1A 0.4 (2)
C6A—C1A—C11A—O12A −176.77 (15) N5B—C5B—C6B—C1B −179.11 (14)
C2A—C1A—C11A—O11A −178.01 (14) C4B—C5B—C6B—C1B 0.3 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (v) x−1, y, z; (vi) −x+2, −y, −z+1; (vii) x, y, z+1; (viii) x, y, z−1; (ix) −x+1, −y+1, −z+2; (x) x−1, y, z+1; (xi) −x+2, −y, −z; (xii) −x+2, −y+1, −z; (xiii) x+1, y, z−1; (xiv) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H11W···O8W 0.91 1.79 2.700 (2) 179
O1W—H12W···O6Wii 0.88 1.93 2.7934 (19) 170
O2W—H21W···O12A 0.76 2.11 2.8001 (18) 152
O2W—H22W···O6W 0.87 1.87 2.7375 (18) 178
O3W—H31W···O7W 0.80 2.02 2.8213 (19) 170
O3W—H32W···O5Wiii 0.90 1.89 2.7722 (18) 170
O4W—H41W···O12B 0.80 2.00 2.7310 (18) 151
O4W—H42W···O5Wiv 0.83 1.97 2.7986 (18) 174
O5W—H51W···O7Wiv 0.86 2.11 2.9449 (19) 164
O5W—H52W···O1W 0.86 2.17 2.9702 (19) 155
O5W—H52W···O4W 0.86 2.53 3.1235 (19) 127
O6W—H61W···O12Aii 0.86 2.00 2.8404 (19) 163
O6W—H62W···O3Wi 0.86 2.14 2.9522 (19) 159
O7W—H71W···O12Bvi 0.89 1.87 2.708 (2) 158
O7W—H72W···O32Bvii 0.86 2.50 3.236 (2) 145
O8W—H81W···O12Aii 0.90 1.99 2.7737 (19) 145
O8W—H82W···O32Aviii 0.89 2.54 3.094 (2) 122
O8W—H82W···O52Aiv 0.89 2.45 2.968 (2) 117
C4A—H4A···O51Axiv 0.93 2.51 3.416 (2) 166
C4B—H4B···O31Axiii 0.93 2.59 3.348 (2) 139

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (vi) −x+2, −y, −z+1; (vii) x, y, z+1; (viii) x, y, z−1; (xiii) x+1, y, z−1; (xiv) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5305).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318–1327.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Morgant, G., Bouhmaida, N., Balde, L., Ghemani, N. E. & d’Angelo, J. (2006). Polyhedron, 25, 2229–2235.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Srinivasan, B. R., Sawant, J. V., Näther, C. & Bensch, W. (2007). J. Chem. Sci. (Bangalore, India), 119, 243–252.
  8. Srinivasan, B. R., Shetgaonker, S. Y. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 130–136.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300682X/sj5305sup1.cif

e-69-0m215-sup1.cif (40.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300682X/sj5305Isup2.hkl

e-69-0m215-Isup2.hkl (228.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES