Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 20;69(Pt 4):m223. doi: 10.1107/S1600536813007150

catena-Poly[[[bis­(methanol-κO)bis­(seleno­cyanato-κN)manganese(II)]-μ-1,2-bis­(pyridin-4-yl)ethane-κ2 N:N′] 1,2-bis­(pyridin-4-yl)ethane monosolvate]

Susanne Wöhlert a,*, Inke Jess a, Christian Näther a
PMCID: PMC3629498  PMID: 23634016

Abstract

The reaction of manganese seleno­cyanate with 1,2-bis­(pyridin-4-yl)ethane (bpa) leads to the title compound, {[Mn(NCSe)2(C12H12N2)(CH3OH)2]·C12H12N2}n. The MnII cation is coordinated by two N-bonded seleno­cyanate anions, two bpa ligands and two O-bonded methanol mol­ecules, within a slightly distorted octa­hedral geometry. The MnII cations and the non-coordinating N-donor ligands are located on centers of inversion while the coordinating N-donor co-ligands are located on a twofold rotation axis. In the crystal, the MnII cations are linked into chains along the c-axis direction by the bpa ligands. The chains are further connected via a non-coordinating bpa ligand into layers parallel to (3-10) via O—H⋯N hydrogen-bonding inter­actions.

Related literature  

For background to this work and the structures of related compounds, see: Boeckmann & Näther (2010, 2012), Wöhlert et al. (2012), Wöhlert & Näther (2012a ,b ).graphic file with name e-69-0m223-scheme1.jpg

Experimental  

Crystal data  

  • [Mn(NCSe)2(C12H12N2)(CH4O)2]·C12H12N2

  • M r = 697.46

  • Monoclinic, Inline graphic

  • a = 19.184 (1) Å

  • b = 9.7854 (4) Å

  • c = 17.3468 (9) Å

  • β = 108.624 (4)°

  • V = 3085.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 293 K

  • 0.14 × 0.11 × 0.06 mm

Data collection  

  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) T min = 0.493, T max = 0.748

  • 10827 measured reflections

  • 2998 independent reflections

  • 2556 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.094

  • S = 1.06

  • 2998 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007150/bt6898sup1.cif

e-69-0m223-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007150/bt6898Isup2.hkl

e-69-0m223-Isup2.hkl (147.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—N1 2.180 (3)
Mn1—O1 2.211 (2)
Mn1—N10 2.322 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N20 0.82 1.92 2.731 (3) 173

Acknowledgments

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

supplementary crystallographic information

Comment

Recently, we have reported on the synthesis and characterization of thiocyanate coordination polymers with monodentate and bidentate neutral co-ligands like e.g. pyridine, pyridazine or 1,2-bis(pyridin-4-yl)ethylene (Boeckmann & Näther, 2010, 2012; Wöhlert & Näther, 2012a; Wöhlert & Näther, 2012b). Within this project we investigated the influence of the neutral co-ligand on the structural, thermal and magnetic properties of such compounds. In further work we also investigated the influence of the anionic ligand. In this context we have reported a new coordination polymer based on cobalt(II) selenocyanate and 1,2-bis(pyridin-4-yl)ethylene, in which the cobalt(II) cations are connected by the selenocyanato anions into chains that are further linked into layers by the neutral N-donor co-ligand (Wöhlert et al., 2012). In the present investigation we tried to prepare similar compounds with manganese(II) selenocyanate and 1,2-bis(pyridin-4-yl)ethane (bpa), which results in the formation of single-crystals of the title compound.

The asymmetric unit of the title compound [Mn(NCSe)2(C12H12N2)(CH3OH)2]n.nC12H12N2 solvate consists of a manganese(II) cation and one non-coordinating bpa ligand which are located on a center of inversion, one coordinating bpa ligand on a 2-fold rotation axis and one selenocyanate anion and one methanol molecule in general positions (Fig. 1). In the crystal structure each manganese(II) cation is coordinated by two terminal N-bonded selenocyanate anions, two O-bonded methanol molecules and two N-bonded bpa ligands within slightly distorted octahedra. The MnN4O2 distances ranges from 2.180 (3) Å to 2.322 (2) Å with angles around the manganese(II) cation between 88.87 (9) ° to 91.13 (9) ° and of 180 ° (Tab. 1). The manganese(II) cations are linked by the bpa ligands into chains which elongate in the direction of the crystallographic c-axis (Fig. 2). These chains are further linked into layers parallel to the (3 -1 0) plane by non-coordinated bpa molecules via O–H–N hydrogen bonding (Fig. 3).

Experimental

MnCl2x2H2O, KNCSe and 1,2-bis(pyridin-4-yl)ethane were obtained from Alfa Aesar. All chemicals were used without further purification. 0.15 mmol (24 mg) MnCl2x2H2O and 0.2 mmol (28 mg) KNCSe were reacted with 0.6 mmol (109 mg) 1,2-bis(pyridin-4-yl)ethane in 1 ml methanol. Light-red single crystals of the title compound were obtained after one week.

Refinement

The C—H H atoms were positions with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.93 Å, C—H2 = 0.97 Å and C—H3 = 0.96 Å. The O—H H atom of the methanol molecule was located in difference map, its bond length was set to 0.82 Å and finally it was refined with Uiso(H) = 1.2 Ueq(O) using a riding model.

Figures

Fig. 1.

Fig. 1.

The crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x,+1, -y+2, -z+1; (ii) -x+1, y, -z + 3/2; (iii) -x+1/2, -y+1/2, -z+1.]

Fig. 2.

Fig. 2.

The crystal structure of the title compound with view along the b-axis (black = manganese, blue = nitrogen, orange = selenium, red = oxygen, grey = carbon, white = hydrogen).

Fig. 3.

Fig. 3.

The crystal structure of the title compound with O—H···N hydrogen bonds shown as dashed lines (black = manganese, blue = nitrogen, orange = selenium, red = oxygen, grey = carbon, white = hydrogen).

Crystal data

[Mn(NCSe)2(C12H12N2)(CH4O)2]·C12H12N2 F(000) = 1404
Mr = 697.46 Dx = 1.501 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 10827 reflections
a = 19.184 (1) Å θ = 2.2–26.0°
b = 9.7854 (4) Å µ = 2.82 mm1
c = 17.3468 (9) Å T = 293 K
β = 108.624 (4)° Block, light-red
V = 3085.9 (3) Å3 0.14 × 0.11 × 0.06 mm
Z = 4

Data collection

Stoe IPDS-2 diffractometer 2998 independent reflections
Radiation source: fine-focus sealed tube 2556 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω scan θmax = 26.0°, θmin = 2.2°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) h = −23→23
Tmin = 0.493, Tmax = 0.748 k = −12→10
10827 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0346P)2 + 5.6439P] where P = (Fo2 + 2Fc2)/3
2998 reflections (Δ/σ)max = 0.001
179 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.5000 1.0000 0.5000 0.04285 (17)
N1 0.58695 (16) 0.8976 (3) 0.59516 (18) 0.0613 (7)
C1 0.63537 (18) 0.8574 (3) 0.64832 (19) 0.0490 (7)
Se1 0.71095 (2) 0.79679 (6) 0.72941 (2) 0.07953 (18)
N10 0.51948 (13) 1.1948 (3) 0.58050 (15) 0.0456 (6)
C10 0.48071 (18) 1.3084 (3) 0.55279 (19) 0.0519 (7)
H10 0.4496 1.3092 0.4992 0.062*
C11 0.48422 (19) 1.4238 (3) 0.59895 (19) 0.0538 (7)
H11 0.4558 1.4997 0.5765 0.065*
C12 0.52999 (17) 1.4274 (3) 0.67895 (18) 0.0479 (7)
C13 0.57134 (18) 1.3113 (3) 0.70726 (19) 0.0506 (7)
H13 0.6036 1.3087 0.7602 0.061*
C14 0.56489 (18) 1.1998 (3) 0.65745 (18) 0.0503 (7)
H14 0.5936 1.1235 0.6782 0.060*
C15 0.5318 (2) 1.5500 (3) 0.7320 (2) 0.0579 (8)
H15B 0.5292 1.6324 0.7002 0.070*
H15A 0.5782 1.5512 0.7761 0.070*
N20 0.34138 (14) 0.6923 (3) 0.51881 (16) 0.0499 (6)
C20 0.31374 (17) 0.6393 (3) 0.57385 (19) 0.0504 (7)
H20 0.3201 0.6876 0.6218 0.060*
C21 0.27652 (18) 0.5175 (3) 0.5634 (2) 0.0525 (8)
H21 0.2592 0.4845 0.6042 0.063*
C22 0.26479 (16) 0.4436 (3) 0.49260 (19) 0.0484 (7)
C23 0.29261 (19) 0.4991 (4) 0.4349 (2) 0.0556 (8)
H23 0.2864 0.4537 0.3861 0.067*
C24 0.32931 (18) 0.6210 (4) 0.4504 (2) 0.0556 (8)
H24 0.3470 0.6565 0.4105 0.067*
C25 0.22544 (19) 0.3082 (3) 0.4790 (2) 0.0594 (8)
H25B 0.2067 0.2898 0.4211 0.071*
H25A 0.1838 0.3135 0.4991 0.071*
O1 0.41951 (12) 0.9297 (2) 0.55852 (13) 0.0569 (6)
H1O1 0.3981 0.8571 0.5437 0.085*
C2 0.4253 (2) 0.9473 (4) 0.6411 (2) 0.0733 (11)
H2A 0.4674 0.8985 0.6747 0.110*
H2B 0.3817 0.9126 0.6502 0.110*
H2C 0.4305 1.0427 0.6546 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0432 (3) 0.0442 (3) 0.0405 (3) −0.0021 (3) 0.0125 (3) −0.0006 (3)
N1 0.0589 (17) 0.0628 (18) 0.0552 (16) 0.0070 (14) 0.0083 (14) 0.0008 (14)
C1 0.0547 (18) 0.0482 (17) 0.0464 (17) −0.0017 (14) 0.0194 (15) −0.0048 (13)
Se1 0.0631 (2) 0.1235 (4) 0.0473 (2) 0.0165 (2) 0.01114 (17) 0.0192 (2)
N10 0.0458 (13) 0.0472 (14) 0.0446 (13) −0.0059 (11) 0.0153 (11) −0.0015 (11)
C10 0.0552 (18) 0.0522 (18) 0.0444 (16) 0.0001 (15) 0.0105 (14) −0.0015 (14)
C11 0.0618 (19) 0.0460 (18) 0.0528 (18) 0.0041 (15) 0.0171 (15) 0.0027 (14)
C12 0.0551 (17) 0.0460 (17) 0.0474 (16) −0.0100 (14) 0.0231 (14) −0.0007 (13)
C13 0.0529 (17) 0.0551 (19) 0.0411 (15) −0.0065 (15) 0.0113 (13) 0.0002 (14)
C14 0.0531 (17) 0.0491 (17) 0.0471 (17) 0.0008 (14) 0.0139 (14) 0.0028 (14)
C15 0.078 (2) 0.0452 (17) 0.0534 (18) −0.0115 (16) 0.0252 (17) −0.0031 (15)
N20 0.0517 (14) 0.0441 (14) 0.0524 (15) −0.0061 (12) 0.0144 (12) 0.0033 (11)
C20 0.0539 (18) 0.0471 (17) 0.0509 (17) −0.0018 (14) 0.0179 (15) −0.0029 (14)
C21 0.0586 (18) 0.0501 (19) 0.0542 (18) −0.0050 (15) 0.0258 (15) 0.0060 (14)
C22 0.0445 (16) 0.0423 (15) 0.0574 (18) −0.0046 (13) 0.0150 (14) 0.0021 (14)
C23 0.064 (2) 0.0557 (18) 0.0476 (17) −0.0113 (17) 0.0184 (15) −0.0044 (15)
C24 0.0605 (19) 0.058 (2) 0.0504 (17) −0.0138 (16) 0.0208 (15) 0.0050 (15)
C25 0.0547 (19) 0.0495 (19) 0.073 (2) −0.0122 (15) 0.0186 (17) −0.0020 (16)
O1 0.0645 (14) 0.0578 (13) 0.0537 (12) −0.0239 (11) 0.0262 (11) −0.0092 (11)
C2 0.088 (3) 0.083 (3) 0.056 (2) −0.030 (2) 0.032 (2) −0.0117 (19)

Geometric parameters (Å, º)

Mn1—N1i 2.180 (3) C15—H15A 0.9700
Mn1—N1 2.180 (3) N20—C24 1.331 (4)
Mn1—O1i 2.211 (2) N20—C20 1.336 (4)
Mn1—O1 2.211 (2) C20—C21 1.372 (4)
Mn1—N10i 2.322 (2) C20—H20 0.9300
Mn1—N10 2.322 (2) C21—C22 1.380 (5)
N1—C1 1.149 (4) C21—H21 0.9300
C1—Se1 1.769 (3) C22—C23 1.386 (4)
N10—C10 1.338 (4) C22—C25 1.506 (4)
N10—C14 1.342 (4) C23—C24 1.368 (5)
C10—C11 1.374 (4) C23—H23 0.9300
C10—H10 0.9300 C24—H24 0.9300
C11—C12 1.386 (4) C25—C25iii 1.509 (7)
C11—H11 0.9300 C25—H25B 0.9700
C12—C13 1.383 (5) C25—H25A 0.9700
C12—C15 1.506 (4) O1—C2 1.412 (4)
C13—C14 1.372 (4) O1—H1O1 0.8200
C13—H13 0.9300 C2—H2A 0.9600
C14—H14 0.9300 C2—H2B 0.9600
C15—C15ii 1.538 (7) C2—H2C 0.9600
C15—H15B 0.9700
N1i—Mn1—N1 180.000 (1) C12—C15—H15B 109.1
N1i—Mn1—O1i 89.25 (10) C15ii—C15—H15B 109.1
N1—Mn1—O1i 90.75 (10) C12—C15—H15A 109.1
N1i—Mn1—O1 90.75 (10) C15ii—C15—H15A 109.1
N1—Mn1—O1 89.25 (10) H15B—C15—H15A 107.9
O1i—Mn1—O1 180.0 C24—N20—C20 116.0 (3)
N1i—Mn1—N10i 89.13 (10) N20—C20—C21 123.5 (3)
N1—Mn1—N10i 90.87 (10) N20—C20—H20 118.3
O1i—Mn1—N10i 88.92 (8) C21—C20—H20 118.3
O1—Mn1—N10i 91.08 (8) C20—C21—C22 120.2 (3)
N1i—Mn1—N10 90.87 (10) C20—C21—H21 119.9
N1—Mn1—N10 89.13 (10) C22—C21—H21 119.9
O1i—Mn1—N10 91.08 (8) C21—C22—C23 116.5 (3)
O1—Mn1—N10 88.92 (8) C21—C22—C25 122.1 (3)
N10i—Mn1—N10 180.0 C23—C22—C25 121.4 (3)
C1—N1—Mn1 172.7 (3) C24—C23—C22 119.5 (3)
N1—C1—Se1 179.0 (3) C24—C23—H23 120.2
C10—N10—C14 115.9 (3) C22—C23—H23 120.2
C10—N10—Mn1 120.1 (2) N20—C24—C23 124.3 (3)
C14—N10—Mn1 123.9 (2) N20—C24—H24 117.8
N10—C10—C11 123.7 (3) C23—C24—H24 117.8
N10—C10—H10 118.1 C22—C25—C25iii 112.6 (3)
C11—C10—H10 118.1 C22—C25—H25B 109.1
C10—C11—C12 120.1 (3) C25iii—C25—H25B 109.1
C10—C11—H11 119.9 C22—C25—H25A 109.1
C12—C11—H11 119.9 C25iii—C25—H25A 109.1
C13—C12—C11 116.3 (3) H25B—C25—H25A 107.8
C13—C12—C15 122.6 (3) C2—O1—Mn1 126.0 (2)
C11—C12—C15 121.1 (3) C2—O1—H1O1 107.0
C14—C13—C12 120.2 (3) Mn1—O1—H1O1 118.7
C14—C13—H13 119.9 O1—C2—H2A 109.5
C12—C13—H13 119.9 O1—C2—H2B 109.5
N10—C14—C13 123.7 (3) H2A—C2—H2B 109.5
N10—C14—H14 118.1 O1—C2—H2C 109.5
C13—C14—H14 118.1 H2A—C2—H2C 109.5
C12—C15—C15ii 112.4 (2) H2B—C2—H2C 109.5

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y, −z+3/2; (iii) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···N20 0.82 1.92 2.731 (3) 173

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6898).

References

  1. Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026. [DOI] [PubMed]
  2. Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587–595.
  3. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  6. Wöhlert, S. & Näther, C. (2012a). Z. Anorg. Allg. Chem. 638, 2262–2272.
  7. Wöhlert, S. & Näther, C. (2012b). Z. Naturforsch. Teil B, 67, 41–50.
  8. Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007150/bt6898sup1.cif

e-69-0m223-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007150/bt6898Isup2.hkl

e-69-0m223-Isup2.hkl (147.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES