Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 2;69(Pt 4):o467–o468. doi: 10.1107/S1600536813005606

The furan­osteroid viridiol

Pierre F Andersson a, Anders Broberg a, Daniel Lundberg a,*
PMCID: PMC3629508  PMID: 23634026

Abstract

The asymmetric unit of the title compound, C20H18O6 (systematic name: 1β,3β-dihy­droxy-2β-meth­oxyfuro[4′,3′,2′:4,5,6]-18-norandrosta-8,11,13-triene-7,17-dione), a dihydro derivative of the fungal steroid viridin, contains two mol­ecules with similar conformations. The rings bearing the hy­droxy groups adopt boat conformations. The absolute structure was assigned based on the known chirality of a precursor compound. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating a three-dimensional network and weak C—H⋯O inter­actions consolidate the packing.

Related literature  

For background to fungal metabolites, see: Brian & McGowan (1945); Moffatt et al. (1969); Jones & Hancock (1987); Hanson (1995); Cross et al. (1995); Przybyl (2002); Smith et al. (2009); Andersson et al. (2010); Queloz et al. (2011); Andersson (2012); Andersson et al. (2012, 2013). For related structures, see: Neidle et al. (1972); Lang et al. (2009). For other characterization methods, see: Brian et al. (1957); Aldridge et al. (1975); Blight & Grove (1986). For background to the assignment of the absolute structure of the title compound, see: MacMillan et al. (1972); Harrison (1990); Dewick (2002); Wipf & Kerekes (2003); Flack & Bernardinelli (2000).graphic file with name e-69-0o467-scheme1.jpg

Experimental  

Crystal data  

  • C20H18O6

  • M r = 354.34

  • Orthorhombic, Inline graphic

  • a = 6.8285 (2) Å

  • b = 20.1939 (6) Å

  • c = 22.4344 (6) Å

  • V = 3093.57 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 93 K

  • 0.3 × 0.25 × 0.2 mm

Data collection  

  • Oxford Diffraction XcaliburIII Sapphire-3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.891, T max = 1.000

  • 26916 measured reflections

  • 4874 independent reflections

  • 3294 reflections with I > 2σ(I)

  • R int = 0.085

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.089

  • S = 0.91

  • 4874 reflections

  • 485 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2001).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813005606/hb7028sup1.cif

e-69-0o467-sup1.cif (38.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813005606/hb7028Isup2.hkl

e-69-0o467-Isup2.hkl (238.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813005606/hb7028Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O19A—H19A⋯O19B i 0.85 (3) 2.08 (3) 2.886 (3) 160 (3)
O19B—H19B⋯O20A ii 0.83 (3) 2.30 (3) 3.002 (3) 143 (3)
O20A—H20A⋯O25B iii 0.91 (3) 1.85 (3) 2.717 (3) 160 (3)
O20B—H20B⋯O24A iv 0.81 (3) 2.05 (3) 2.842 (3) 166 (3)
C2A—H2A⋯O23B v 1.00 2.45 3.325 (3) 146
C2B—H2B⋯O23A 1.00 2.38 3.295 (3) 151
C11A—H11A⋯O19A 0.95 2.43 3.084 (3) 126
C11B—H11B⋯O19B 0.95 2.58 3.230 (3) 126
C18A—H18A⋯O20A 0.98 2.38 3.227 (3) 145
C18B—H18D⋯O20B 0.98 2.39 3.241 (4) 145
C21A—H21A⋯O24A vi 0.95 2.37 3.282 (3) 162
C21B—H21B⋯O24B vii 0.95 2.25 3.180 (3) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

We are grateful to Dr Lars Eriksson for skillful technical assistance and fruitful discussions. The isolate Ö3 from which the viridiol was obtained was from a study which was, in part, supported by the Swedish research council FORMAS grant No. 2010–1344.

supplementary crystallographic information

Comment

The disease known as dieback of ash on European ash (Fraxinus excelsior) was first observed in Poland in 1995, but has spread rapidly over most of the European subcontinent (Przybyl, 2002). During studies of the secondary metabolite production of the fungus Hymenoscyphus pseudoalbidus, the pathogen responsible for dieback of ash (Queloz et al., 2011), a number of steroidal compounds have been isolated (Andersson et al., 2010; Andersson et al. 2013; Andersson et al. 2012). These compounds belong to a family of fungal steroids (Hanson, 1995), of which some have been shown to have interesting bioactivities (Cross et al. 1995; Smith et al. 2009; Andersson 2012).

The first reported compound of this family was viridin (Brian & McGowan, 1945), with its crystal structure published nearly 30 years later (Neidle et al., 1972). The absolute structures of a few other members have been reported through successful osmylation (Lang et al. 2009). Other members of the same family have also been characterized through other methods than crystallography, including wortmannin (Brian et al., 1957), demethoxyviridin and demethoxyviridiol (Aldridge et al., 1975), and virone and wortmannolone (Blight & Grove, 1986). The phytotoxin viridiol (Moffatt et al., 1969), which has also been suggested to be part of the pathogenicity of H. pseudoalbidus (Andersson et al. 2010), can be produced in Gliocladium virens from viridin (Jones & Hancock, 1987). The previously reported absolute configuration of these compounds are based on the evidence of their steroidal origin i. e. the configuration of the C10 carbon is based on lanosterol (Dewick, 2002; Harrison, 1990). Here, we present the crystal structure of viridiol (I) confirming the previously presented structure, both relative and absolute (MacMillan et al., 1972; Moffatt et al., 1969; Wipf & Kerekes, 2003) (Scheme 1, Fig. 1)

Compound (I) crystallizes in the orthorhombic space group P212121 (No. 19), with two crystallographically independent viridiol molecules with a total of eight in the unit cell. (Fig. 2) The nearly flat furanosteroid skeleton lies in the bc plane, with the A ring and its methoxy group bending away from the plane (Fig. 1). In the crystal, O—H···O and C—H···O interactions link the molecules (Table 1, Fig. 3).

Experimental

The viridiol containing fraction from a previous study (Andersson et al., 2013) was subjected to rotatory evaporation, which lead to crystal formation. The crystals, too small for crystallography, were harvested by filtration and dried (approx. 3 mg). The crystals were subsequently dissolved in 80 °C toluene (4 ml) in a 5 ml test tube. The solution was left at room temperature and the toluene was evaporated slowly by a gentle stream of nitrogen gas. Large enough crystals formed at the bottom of the test tube after stepwise precipitation of impurities on the inner test tube wall. A colourless block was mounted on a glass capillary and a data set was measured under cold conditions (93 K).

Refinement

After initial integration, the furanosteroid backbone was found through refinements using SHELXD. After additional cycles in SHELXL, the remaining atoms were found. No restraints were applied to the carbon skeleton. All non-H atoms were refined anisotropically. Hydrogen atoms on carbons were refined as riding on their respective carbon, while the two hydroxy hydrogen were fully refined. In the absence of any significant anomalous scattering, the Flack parameter was indeterminate (Flack & Bernardinelli, 2000). Hence, the Friedel equivalents were merged prior to the final refinements, and the absolute structure was set by reference to the known chirality of the pathway for the previously reported precursor lanosterol (Dewick, 2002; Harrison, 1990) (Fig. 4).

Figures

Fig. 1.

Fig. 1.

Labelling of (I) follows the system used previously (Aldridge et al., 1975). H atoms on alkyl and aryl carbons have been removed for clarity. Displacement ellipoids are set at 50%.

Fig. 2.

Fig. 2.

Unit cell packing of (I), viewed along the a axis.

Fig. 3.

Fig. 3.

One intramolecular and many intermolecular hydrogen bonds in the range 1.85–2.58 Å are present in (I), including both conventional (O–H···O) and non-conventional (C–H···O) ones.

Fig. 4.

Fig. 4.

ORTEP plot of (I).

Crystal data

C20H18O6 F(000) = 1488
Mr = 354.34 Dx = 1.522 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5568 reflections
a = 6.8285 (2) Å θ = 2.9–32.3°
b = 20.1939 (6) Å µ = 0.11 mm1
c = 22.4344 (6) Å T = 93 K
V = 3093.57 (15) Å3 Block, colourless
Z = 8 0.3 × 0.25 × 0.2 mm

Data collection

Oxford Diffraction XcaliburIII Sapphire-3 CCD diffractometer 4874 independent reflections
Radiation source: fine-focus sealed tube 3294 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.085
Detector resolution: 16.5467 pixels mm-1 θmax = 29.6°, θmin = 3.1°
ω scans at different φ h = −9→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −27→28
Tmin = 0.891, Tmax = 1.000 l = −31→27
26916 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0383P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max < 0.001
4874 reflections Δρmax = 0.33 e Å3
485 parameters Δρmin = −0.25 e Å3
0 restraints Absolute structure: syn
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.6537 (4) 0.27709 (14) 0.36272 (12) 0.0138 (6)
H1A 0.7696 0.2648 0.3378 0.017*
C2A 0.7233 (4) 0.33366 (13) 0.40850 (12) 0.0126 (6)
H2A 0.8510 0.3506 0.3928 0.015*
C3A 0.5943 (4) 0.39445 (13) 0.41746 (12) 0.0133 (6)
H3A 0.6728 0.4296 0.4379 0.016*
C4A 0.5392 (4) 0.41850 (13) 0.35652 (12) 0.0130 (6)
C5A 0.5063 (4) 0.37163 (12) 0.31066 (11) 0.0112 (5)
C6A 0.4956 (5) 0.40461 (12) 0.25876 (11) 0.0144 (6)
C7A 0.4926 (4) 0.37424 (13) 0.20055 (11) 0.0142 (6)
C8A 0.4930 (5) 0.29928 (12) 0.20388 (11) 0.0129 (6)
C9A 0.4948 (4) 0.26436 (12) 0.25865 (11) 0.0111 (6)
C10A 0.4855 (5) 0.29948 (12) 0.31901 (11) 0.0125 (6)
C11A 0.4926 (5) 0.19481 (13) 0.25915 (11) 0.0154 (6)
H11A 0.4941 0.1721 0.2962 0.019*
C12A 0.4883 (5) 0.15934 (13) 0.20748 (11) 0.0142 (6)
H12A 0.4869 0.1123 0.2082 0.017*
C13A 0.4860 (5) 0.19347 (13) 0.15357 (11) 0.0128 (6)
C14A 0.4907 (5) 0.26182 (13) 0.15062 (11) 0.0128 (6)
C15A 0.4908 (5) 0.28556 (13) 0.08641 (11) 0.0170 (6)
H15A 0.6103 0.3115 0.0776 0.020*
H15B 0.3744 0.3133 0.0781 0.020*
C16A 0.4857 (5) 0.22141 (13) 0.04961 (11) 0.0169 (6)
H16A 0.3696 0.2209 0.0232 0.020*
H16B 0.6048 0.2177 0.0247 0.020*
C17A 0.4762 (4) 0.16537 (14) 0.09340 (11) 0.0144 (6)
C18A 0.2815 (4) 0.28525 (15) 0.34602 (12) 0.0152 (6)
H18A 0.2704 0.3073 0.3848 0.023*
H18B 0.2650 0.2374 0.3512 0.023*
H18C 0.1798 0.3021 0.3192 0.023*
O19A 0.5889 (3) 0.21883 (10) 0.39170 (9) 0.0183 (5)
H19A 0.690 (5) 0.1979 (16) 0.4026 (14) 0.027*
O20A 0.4303 (3) 0.37778 (10) 0.45422 (9) 0.0175 (5)
H20A 0.360 (5) 0.4134 (16) 0.4665 (13) 0.026*
C21A 0.5428 (4) 0.47768 (14) 0.32940 (12) 0.0169 (7)
H21A 0.5620 0.5185 0.3495 0.020*
O22A 0.5152 (3) 0.47204 (8) 0.26879 (7) 0.0163 (4)
O23A 0.4968 (3) 0.40411 (9) 0.15318 (8) 0.0202 (5)
O24A 0.4658 (3) 0.10611 (9) 0.08101 (8) 0.0197 (5)
O25A 0.7644 (3) 0.30680 (10) 0.46491 (8) 0.0155 (5)
C26A 0.9470 (5) 0.27292 (15) 0.46869 (13) 0.0198 (7)
H26A 0.9599 0.2425 0.4349 0.030*
H26B 0.9525 0.2478 0.5060 0.030*
H26C 1.0542 0.3052 0.4678 0.030*
C1B 0.1585 (4) 0.56087 (14) 0.11712 (12) 0.0138 (6)
H1B 0.2773 0.5707 0.1416 0.017*
C2B 0.2209 (4) 0.50356 (13) 0.07249 (11) 0.0122 (6)
H2B 0.3410 0.4826 0.0897 0.015*
C3B 0.0753 (4) 0.44728 (14) 0.06042 (12) 0.0142 (6)
H3B 0.1451 0.4112 0.0385 0.017*
C4B 0.0186 (5) 0.42186 (13) 0.12046 (12) 0.0148 (6)
C5B 0.0000 (5) 0.46678 (12) 0.16840 (11) 0.0122 (6)
C6B −0.0095 (5) 0.43195 (12) 0.21909 (12) 0.0153 (6)
C7B 0.0047 (5) 0.45916 (13) 0.27823 (12) 0.0147 (6)
C8B 0.0128 (5) 0.53407 (12) 0.27772 (11) 0.0131 (6)
C9B 0.0140 (4) 0.57193 (13) 0.22427 (11) 0.0124 (6)
C10B −0.0063 (5) 0.54023 (12) 0.16285 (11) 0.0122 (6)
C11B 0.0197 (4) 0.64112 (12) 0.22764 (11) 0.0130 (6)
H11B 0.0221 0.6661 0.1917 0.016*
C12B 0.0220 (5) 0.67419 (13) 0.28128 (11) 0.0142 (6)
H12B 0.0244 0.7212 0.2827 0.017*
C13B 0.0207 (4) 0.63669 (13) 0.33360 (11) 0.0111 (6)
C14B 0.0183 (4) 0.56769 (12) 0.33227 (11) 0.0126 (6)
C15B 0.0213 (5) 0.53980 (13) 0.39498 (11) 0.0143 (6)
H15C 0.1383 0.5116 0.4011 0.017*
H15D −0.0974 0.5130 0.4027 0.017*
C16B 0.0272 (5) 0.60024 (13) 0.43590 (11) 0.0152 (6)
H16C −0.0855 0.5998 0.4636 0.018*
H16D 0.1496 0.6006 0.4596 0.018*
C17B 0.0180 (5) 0.66011 (13) 0.39581 (11) 0.0148 (6)
C18B −0.2121 (5) 0.55864 (15) 0.13852 (13) 0.0175 (7)
H18D −0.2304 0.5386 0.0991 0.026*
H18E −0.2231 0.6069 0.1353 0.026*
H18F −0.3128 0.5420 0.1658 0.026*
O19B 0.1100 (3) 0.62125 (10) 0.08747 (9) 0.0187 (5)
H19B 0.052 (5) 0.6121 (16) 0.0560 (14) 0.028*
O20B −0.0878 (3) 0.46870 (10) 0.02504 (9) 0.0194 (5)
H20B −0.090 (5) 0.4507 (15) −0.0072 (14) 0.029*
C21B 0.0133 (5) 0.36090 (14) 0.14567 (12) 0.0180 (6)
H21B 0.0199 0.3206 0.1240 0.022*
O22B −0.0029 (3) 0.36481 (8) 0.20658 (8) 0.0182 (4)
O23B 0.0138 (4) 0.42681 (9) 0.32411 (8) 0.0211 (5)
O24B 0.0124 (4) 0.71751 (9) 0.41237 (8) 0.0244 (5)
O25B 0.2759 (3) 0.53000 (9) 0.01613 (8) 0.0145 (4)
C26B 0.4663 (4) 0.55951 (14) 0.01558 (12) 0.0165 (6)
H26D 0.4740 0.5934 0.0468 0.025*
H26E 0.4899 0.5800 −0.0233 0.025*
H26F 0.5654 0.5254 0.0229 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0182 (16) 0.0109 (15) 0.0122 (14) 0.0002 (12) 0.0016 (12) 0.0007 (12)
C2A 0.0151 (16) 0.0110 (14) 0.0118 (15) 0.0000 (12) −0.0030 (12) 0.0008 (12)
C3A 0.0185 (16) 0.0079 (14) 0.0136 (14) −0.0002 (12) 0.0016 (12) −0.0013 (12)
C4A 0.0125 (16) 0.0121 (14) 0.0145 (14) 0.0004 (12) −0.0001 (12) −0.0001 (11)
C5A 0.0091 (14) 0.0125 (13) 0.0119 (13) 0.0005 (13) 0.0025 (13) −0.0004 (10)
C6A 0.0152 (15) 0.0095 (14) 0.0185 (14) 0.0027 (14) 0.0001 (14) 0.0001 (11)
C7A 0.0112 (15) 0.0141 (13) 0.0174 (14) −0.0001 (14) −0.0007 (14) 0.0025 (12)
C8A 0.0134 (15) 0.0120 (13) 0.0134 (13) 0.0012 (14) −0.0038 (13) 0.0007 (11)
C9A 0.0083 (14) 0.0108 (13) 0.0141 (13) −0.0001 (13) 0.0005 (13) −0.0004 (10)
C10A 0.0162 (16) 0.0113 (13) 0.0101 (12) −0.0001 (14) 0.0004 (13) 0.0007 (10)
C11A 0.0211 (16) 0.0144 (14) 0.0108 (13) −0.0001 (15) 0.0002 (14) 0.0033 (11)
C12A 0.0188 (16) 0.0085 (12) 0.0152 (14) −0.0021 (14) −0.0013 (14) 0.0011 (11)
C13A 0.0117 (15) 0.0142 (13) 0.0125 (13) −0.0026 (14) 0.0023 (13) −0.0013 (11)
C14A 0.0109 (15) 0.0159 (14) 0.0116 (13) 0.0009 (14) 0.0004 (13) 0.0017 (10)
C15A 0.0234 (17) 0.0141 (14) 0.0134 (13) −0.0011 (15) −0.0019 (14) 0.0036 (11)
C16A 0.0231 (17) 0.0176 (14) 0.0099 (13) −0.0016 (15) 0.0023 (14) 0.0009 (11)
C17A 0.0124 (16) 0.0169 (14) 0.0139 (14) 0.0008 (14) 0.0010 (13) −0.0039 (12)
C18A 0.0186 (16) 0.0125 (15) 0.0145 (15) −0.0011 (13) 0.0036 (12) −0.0005 (12)
O19A 0.0266 (14) 0.0097 (11) 0.0186 (11) −0.0012 (10) −0.0061 (9) 0.0043 (9)
O20A 0.0188 (12) 0.0145 (11) 0.0191 (11) 0.0039 (9) 0.0067 (9) −0.0023 (9)
C21A 0.0189 (18) 0.0146 (15) 0.0172 (15) 0.0015 (13) −0.0044 (13) −0.0010 (12)
O22A 0.0256 (12) 0.0077 (9) 0.0156 (10) −0.0006 (10) −0.0014 (10) 0.0008 (7)
O23A 0.0269 (12) 0.0153 (10) 0.0185 (10) −0.0001 (11) −0.0040 (11) 0.0042 (8)
O24A 0.0285 (13) 0.0172 (11) 0.0134 (10) −0.0004 (10) 0.0014 (9) −0.0024 (8)
O25A 0.0172 (12) 0.0160 (11) 0.0133 (10) 0.0024 (9) −0.0013 (8) 0.0035 (9)
C26A 0.0192 (18) 0.0183 (16) 0.0220 (16) 0.0018 (14) −0.0027 (13) 0.0008 (13)
C1B 0.0179 (17) 0.0129 (16) 0.0106 (14) 0.0027 (13) −0.0007 (12) −0.0002 (12)
C2B 0.0188 (16) 0.0107 (14) 0.0070 (13) 0.0024 (12) −0.0005 (12) 0.0002 (11)
C3B 0.0170 (17) 0.0102 (14) 0.0153 (15) 0.0035 (13) −0.0002 (12) −0.0018 (12)
C4B 0.0114 (15) 0.0133 (14) 0.0196 (15) −0.0031 (14) 0.0018 (13) −0.0041 (11)
C5B 0.0114 (15) 0.0102 (13) 0.0151 (14) 0.0002 (14) −0.0001 (13) −0.0042 (10)
C6B 0.0190 (16) 0.0067 (13) 0.0202 (14) −0.0009 (14) 0.0039 (14) −0.0019 (11)
C7B 0.0137 (15) 0.0125 (13) 0.0178 (14) 0.0023 (13) 0.0022 (14) 0.0019 (11)
C8B 0.0148 (15) 0.0104 (13) 0.0142 (13) 0.0035 (13) −0.0013 (13) 0.0000 (11)
C9B 0.0123 (15) 0.0126 (14) 0.0124 (13) −0.0020 (13) 0.0000 (13) −0.0003 (10)
C10B 0.0155 (15) 0.0082 (13) 0.0131 (13) 0.0033 (14) −0.0008 (13) −0.0012 (10)
C11B 0.0161 (16) 0.0105 (13) 0.0125 (13) 0.0002 (13) −0.0015 (13) 0.0032 (10)
C12B 0.0181 (17) 0.0073 (13) 0.0173 (14) −0.0008 (13) 0.0001 (13) −0.0024 (11)
C13B 0.0078 (14) 0.0156 (14) 0.0101 (13) 0.0014 (13) −0.0008 (12) −0.0015 (10)
C14B 0.0090 (15) 0.0132 (14) 0.0157 (14) 0.0013 (13) −0.0007 (13) 0.0045 (11)
C15B 0.0186 (17) 0.0111 (13) 0.0132 (13) 0.0009 (14) 0.0009 (13) 0.0024 (10)
C16B 0.0173 (16) 0.0174 (14) 0.0109 (13) 0.0006 (14) −0.0021 (12) 0.0025 (11)
C17B 0.0142 (16) 0.0133 (14) 0.0170 (14) −0.0006 (14) −0.0030 (13) −0.0029 (11)
C18B 0.0209 (17) 0.0149 (16) 0.0167 (15) 0.0024 (14) −0.0062 (13) −0.0018 (13)
O19B 0.0324 (13) 0.0112 (11) 0.0125 (10) 0.0024 (9) −0.0019 (10) 0.0015 (9)
O20B 0.0196 (12) 0.0227 (12) 0.0160 (11) 0.0050 (10) −0.0058 (9) −0.0068 (9)
C21B 0.0187 (16) 0.0165 (15) 0.0187 (15) −0.0018 (15) 0.0013 (14) −0.0054 (12)
O22B 0.0256 (12) 0.0097 (9) 0.0195 (10) −0.0004 (10) 0.0039 (11) −0.0013 (8)
O23B 0.0325 (13) 0.0138 (10) 0.0169 (10) 0.0022 (11) 0.0044 (11) 0.0042 (8)
O24B 0.0435 (14) 0.0147 (10) 0.0151 (10) −0.0009 (12) −0.0042 (11) −0.0013 (8)
O25B 0.0178 (11) 0.0138 (10) 0.0118 (10) 0.0004 (9) −0.0003 (8) 0.0019 (8)
C26B 0.0149 (17) 0.0177 (14) 0.0169 (14) 0.0017 (13) −0.0008 (13) −0.0007 (12)

Geometric parameters (Å, º)

C1A—O19A 1.415 (3) C1B—O19B 1.428 (3)
C1A—C10A 1.576 (4) C1B—C10B 1.579 (4)
C1A—C2A 1.608 (4) C1B—C2B 1.589 (4)
C1A—H1A 1.0000 C1B—H1B 1.0000
C2A—O25A 1.405 (3) C2B—O25B 1.423 (3)
C2A—C3A 1.524 (4) C2B—C3B 1.534 (4)
C2A—H2A 1.0000 C2B—H2B 1.0000
C3A—O20A 1.431 (3) C3B—O20B 1.434 (3)
C3A—C4A 1.499 (4) C3B—C4B 1.492 (4)
C3A—H3A 1.0000 C3B—H3B 1.0000
C4A—C21A 1.341 (4) C4B—C21B 1.355 (4)
C4A—C5A 1.416 (3) C4B—C5B 1.413 (3)
C5A—C6A 1.343 (3) C5B—C6B 1.339 (3)
C5A—C10A 1.476 (4) C5B—C10B 1.489 (3)
C6A—O22A 1.386 (3) C6B—O22B 1.385 (3)
C6A—C7A 1.443 (4) C6B—C7B 1.439 (4)
C7A—O23A 1.222 (3) C7B—O23B 1.221 (3)
C7A—C8A 1.516 (3) C7B—C8B 1.514 (4)
C8A—C14A 1.414 (3) C8B—C14B 1.400 (4)
C8A—C9A 1.417 (3) C8B—C9B 1.422 (3)
C9A—C11A 1.405 (4) C9B—C11B 1.400 (3)
C9A—C10A 1.530 (3) C9B—C10B 1.526 (3)
C10A—C18A 1.546 (4) C10B—C18B 1.553 (4)
C11A—C12A 1.363 (3) C11B—C12B 1.377 (3)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—C13A 1.392 (3) C12B—C13B 1.397 (3)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—C14A 1.382 (4) C13B—C14B 1.394 (3)
C13A—C17A 1.466 (4) C13B—C17B 1.474 (4)
C14A—C15A 1.518 (3) C14B—C15B 1.515 (3)
C15A—C16A 1.537 (3) C15B—C16B 1.528 (4)
C15A—H15A 0.9900 C15B—H15C 0.9900
C15A—H15B 0.9900 C15B—H15D 0.9900
C16A—C17A 1.500 (4) C16B—C17B 1.508 (4)
C16A—H16A 0.9900 C16B—H16C 0.9900
C16A—H16B 0.9900 C16B—H16D 0.9900
C17A—O24A 1.231 (3) C17B—O24B 1.218 (3)
C18A—H18A 0.9800 C18B—H18D 0.9800
C18A—H18B 0.9800 C18B—H18E 0.9800
C18A—H18C 0.9800 C18B—H18F 0.9800
O19A—H19A 0.84 (3) O19B—H19B 0.83 (3)
O20A—H20A 0.91 (3) O20B—H20B 0.81 (3)
C21A—O22A 1.377 (3) C21B—O22B 1.373 (3)
C21A—H21A 0.9500 C21B—H21B 0.9500
O25A—C26A 1.425 (4) O25B—C26B 1.430 (3)
C26A—H26A 0.9800 C26B—H26D 0.9800
C26A—H26B 0.9800 C26B—H26E 0.9800
C26A—H26C 0.9800 C26B—H26F 0.9800
O19A—C1A—C10A 107.2 (2) O19B—C1B—C10B 111.3 (2)
O19A—C1A—C2A 112.9 (2) O19B—C1B—C2B 113.0 (2)
C10A—C1A—C2A 114.1 (2) C10B—C1B—C2B 114.1 (2)
O19A—C1A—H1A 107.4 O19B—C1B—H1B 105.9
C10A—C1A—H1A 107.4 C10B—C1B—H1B 105.9
C2A—C1A—H1A 107.4 C2B—C1B—H1B 105.9
O25A—C2A—C3A 107.9 (2) O25B—C2B—C3B 107.0 (2)
O25A—C2A—C1A 111.1 (2) O25B—C2B—C1B 110.9 (2)
C3A—C2A—C1A 119.0 (2) C3B—C2B—C1B 118.5 (2)
O25A—C2A—H2A 106.0 O25B—C2B—H2B 106.6
C3A—C2A—H2A 106.0 C3B—C2B—H2B 106.6
C1A—C2A—H2A 106.0 C1B—C2B—H2B 106.6
O20A—C3A—C4A 113.9 (2) O20B—C3B—C4B 113.7 (2)
O20A—C3A—C2A 109.8 (2) O20B—C3B—C2B 112.2 (2)
C4A—C3A—C2A 106.6 (2) C4B—C3B—C2B 105.3 (2)
O20A—C3A—H3A 108.8 O20B—C3B—H3B 108.5
C4A—C3A—H3A 108.8 C4B—C3B—H3B 108.5
C2A—C3A—H3A 108.8 C2B—C3B—H3B 108.5
C21A—C4A—C5A 105.6 (2) C21B—C4B—C5B 105.3 (2)
C21A—C4A—C3A 134.3 (3) C21B—C4B—C3B 134.1 (3)
C5A—C4A—C3A 119.1 (2) C5B—C4B—C3B 119.3 (2)
C6A—C5A—C4A 107.9 (2) C6B—C5B—C4B 108.3 (2)
C6A—C5A—C10A 126.5 (2) C6B—C5B—C10B 126.4 (2)
C4A—C5A—C10A 125.7 (2) C4B—C5B—C10B 125.3 (2)
C5A—C6A—O22A 109.9 (2) C5B—C6B—O22B 109.9 (2)
C5A—C6A—C7A 125.1 (2) C5B—C6B—C7B 125.4 (2)
O22A—C6A—C7A 124.4 (2) O22B—C6B—C7B 123.9 (2)
O23A—C7A—C6A 125.2 (2) O23B—C7B—C6B 125.2 (2)
O23A—C7A—C8A 122.4 (2) O23B—C7B—C8B 122.6 (2)
C6A—C7A—C8A 112.3 (2) C6B—C7B—C8B 112.1 (2)
C14A—C8A—C9A 117.8 (2) C14B—C8B—C9B 118.4 (2)
C14A—C8A—C7A 119.5 (2) C14B—C8B—C7B 118.6 (2)
C9A—C8A—C7A 122.7 (2) C9B—C8B—C7B 123.0 (2)
C11A—C9A—C8A 120.3 (2) C11B—C9B—C8B 119.4 (2)
C11A—C9A—C10A 117.1 (2) C11B—C9B—C10B 118.0 (2)
C8A—C9A—C10A 122.5 (2) C8B—C9B—C10B 122.4 (2)
C5A—C10A—C9A 110.0 (2) C5B—C10B—C9B 109.9 (2)
C5A—C10A—C18A 108.7 (2) C5B—C10B—C18B 107.1 (2)
C9A—C10A—C18A 107.3 (2) C9B—C10B—C18B 107.4 (2)
C5A—C10A—C1A 107.0 (2) C5B—C10B—C1B 107.3 (2)
C9A—C10A—C1A 112.8 (2) C9B—C10B—C1B 114.3 (2)
C18A—C10A—C1A 111.1 (2) C18B—C10B—C1B 110.7 (2)
C12A—C11A—C9A 121.3 (2) C12B—C11B—C9B 122.1 (2)
C12A—C11A—H11A 119.4 C12B—C11B—H11B 118.9
C9A—C11A—H11A 119.4 C9B—C11B—H11B 118.9
C11A—C12A—C13A 118.6 (2) C11B—C12B—C13B 118.1 (2)
C11A—C12A—H12A 120.7 C11B—C12B—H12B 120.9
C13A—C12A—H12A 120.7 C13B—C12B—H12B 120.9
C14A—C13A—C12A 122.4 (2) C14B—C13B—C12B 121.6 (2)
C14A—C13A—C17A 110.1 (2) C14B—C13B—C17B 109.9 (2)
C12A—C13A—C17A 127.5 (2) C12B—C13B—C17B 128.4 (2)
C13A—C14A—C8A 119.6 (2) C13B—C14B—C8B 120.2 (2)
C13A—C14A—C15A 111.1 (2) C13B—C14B—C15B 110.6 (2)
C8A—C14A—C15A 129.3 (2) C8B—C14B—C15B 129.2 (2)
C14A—C15A—C16A 104.1 (2) C14B—C15B—C16B 105.2 (2)
C14A—C15A—H15A 110.9 C14B—C15B—H15C 110.7
C16A—C15A—H15A 110.9 C16B—C15B—H15C 110.7
C14A—C15A—H15B 110.9 C14B—C15B—H15D 110.7
C16A—C15A—H15B 110.9 C16B—C15B—H15D 110.7
H15A—C15A—H15B 109.0 H15C—C15B—H15D 108.8
C17A—C16A—C15A 106.6 (2) C17B—C16B—C15B 106.3 (2)
C17A—C16A—H16A 110.4 C17B—C16B—H16C 110.5
C15A—C16A—H16A 110.4 C15B—C16B—H16C 110.5
C17A—C16A—H16B 110.4 C17B—C16B—H16D 110.5
C15A—C16A—H16B 110.4 C15B—C16B—H16D 110.5
H16A—C16A—H16B 108.6 H16C—C16B—H16D 108.7
O24A—C17A—C13A 125.9 (2) O24B—C17B—C13B 126.5 (2)
O24A—C17A—C16A 126.0 (2) O24B—C17B—C16B 125.6 (2)
C13A—C17A—C16A 108.0 (2) C13B—C17B—C16B 107.9 (2)
C10A—C18A—H18A 109.5 C10B—C18B—H18D 109.5
C10A—C18A—H18B 109.5 C10B—C18B—H18E 109.5
H18A—C18A—H18B 109.5 H18D—C18B—H18E 109.5
C10A—C18A—H18C 109.5 C10B—C18B—H18F 109.5
H18A—C18A—H18C 109.5 H18D—C18B—H18F 109.5
H18B—C18A—H18C 109.5 H18E—C18B—H18F 109.5
C1A—O19A—H19A 107 (2) C1B—O19B—H19B 108 (2)
C3A—O20A—H20A 114 (2) C3B—O20B—H20B 112 (2)
C4A—C21A—O22A 111.8 (2) C4B—C21B—O22B 111.4 (2)
C4A—C21A—H21A 124.1 C4B—C21B—H21B 124.3
O22A—C21A—H21A 124.1 O22B—C21B—H21B 124.3
C21A—O22A—C6A 104.8 (2) C21B—O22B—C6B 105.11 (19)
C2A—O25A—C26A 114.4 (2) C2B—O25B—C26B 113.8 (2)
O25A—C26A—H26A 109.5 O25B—C26B—H26D 109.5
O25A—C26A—H26B 109.5 O25B—C26B—H26E 109.5
H26A—C26A—H26B 109.5 H26D—C26B—H26E 109.5
O25A—C26A—H26C 109.5 O25B—C26B—H26F 109.5
H26A—C26A—H26C 109.5 H26D—C26B—H26F 109.5
H26B—C26A—H26C 109.5 H26E—C26B—H26F 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O19A—H19A···O19Bi 0.85 (3) 2.08 (3) 2.886 (3) 160 (3)
O19B—H19B···O20Aii 0.83 (3) 2.30 (3) 3.002 (3) 143 (3)
O20A—H20A···O25Biii 0.91 (3) 1.85 (3) 2.717 (3) 160 (3)
O20B—H20B···O24Aiv 0.81 (3) 2.05 (3) 2.842 (3) 166 (3)
C2A—H2A···O23Bv 1.00 2.45 3.325 (3) 146
C2B—H2B···O23A 1.00 2.38 3.295 (3) 151
C11A—H11A···O19A 0.95 2.43 3.084 (3) 126
C11B—H11B···O19B 0.95 2.58 3.230 (3) 126
C18A—H18A···O20A 0.98 2.38 3.227 (3) 145
C18B—H18D···O20B 0.98 2.39 3.241 (4) 145
C21A—H21A···O24Avi 0.95 2.37 3.282 (3) 162
C21B—H21B···O24Bvii 0.95 2.25 3.180 (3) 167

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1/2, −y+1, z−1/2; (iii) −x+1/2, −y+1, z+1/2; (iv) x−1/2, −y+1/2, −z; (v) x+1, y, z; (vi) −x+1, y+1/2, −z+1/2; (vii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7028).

References

  1. Aldridge, D. C., Turner, W. B., Geddes, A. J. & Sheldrick, B. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 943–945.
  2. Andersson, P. F. (2012). PhD thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden. Available at http://pub.epsilon.slu.se/8996.
  3. Andersson, P. F., Bengtsson, S., Cleary, M. R., Stenlid, J. & Broberg, A. (2013). Phytochemistry, 86, 195–200. [DOI] [PubMed]
  4. Andersson, P. F., Bengtsson, S., Stenlid, J. & Broberg, A. (2012). Molecules, 17, 7769–7781. [DOI] [PMC free article] [PubMed]
  5. Andersson, P. F., Johansson, S. B. K., Stenlid, J. & Broberg, A. (2010). For. Pathol. 40, 43–46.
  6. Blight, M. M. & Grove, J. F. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 1317–1322.
  7. Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  8. Brian, P. W., Curtis, P. J., Hemming, H. G. & Norris, G. L. F. (1957). Trans. Br. Mycol. Soc. 40, 365–368.
  9. Brian, P. W. & McGowan, J. C. (1945). Nature, 156, 144–145.
  10. Cross, M. J., Stewart, A., Hodgkin, M. N., Kerr, D. J. & Wakelam, M. J. O. (1995). J. Biol. Chem. 270, 25352–25355. [DOI] [PubMed]
  11. Dewick, P. M. (2002). Nat. Prod. Rep. 19, 181–222. [DOI] [PubMed]
  12. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
  13. Hanson, J. R. (1995). Nat. Prod. Rep. 12, 381–384. [DOI] [PubMed]
  14. Harrison, D. M. (1990). Nat. Prod. Rep. 7, 459–484. [DOI] [PubMed]
  15. Jones, R. W. & Hancock, J. G. (1987). Can. J. Microbiol. 33, 963–966. [DOI] [PubMed]
  16. Lang, Y., Souza, F. E. S., Xu, X., Taylor, N. J., Assoud, A. & Rodrigo, R. (2009). J. Org. Chem. 74, 5429–5439. [DOI] [PubMed]
  17. MacMillan, J., Simpson, T. J., Vanstone, A. E. & Yeboah, S. K. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 2892–2898.
  18. Moffatt, J. S., Bu’Lock, J. D. & Yuen, T. H. (1969). J. Chem. Soc. D, p. 839a.
  19. Neidle, S., Rogers, D. & Hursthouse, M. B. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 760–766.
  20. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  21. Przybyl, K. (2002). For. Pathol. 32, 387–394.
  22. Queloz, V., Grunig, C. R., Berndt, R., Kowalski, T., Sieber, T. N. & Holdenrieder, O. (2011). For. Pathol. 41, 133–142.
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Smith, A., Blois, J., Yuan, H., Aikawa, E., Ellson, C., Figueiredo, J. L., Weissleder, R., Kohler, R., Yaffe, M. B., Cantley, L. C. & Josephson, L. (2009). Mol. Cancer Ther. 8, 1666–1675. [DOI] [PMC free article] [PubMed]
  25. Wipf, P. & Kerekes, A. D. (2003). J. Nat. Prod. 66, 716–718. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813005606/hb7028sup1.cif

e-69-0o467-sup1.cif (38.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813005606/hb7028Isup2.hkl

e-69-0o467-Isup2.hkl (238.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813005606/hb7028Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES