Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 2;69(Pt 4):o470. doi: 10.1107/S1600536813004807

d-Phenyl­glycinium bromide

Mohanadoss Parthasarathy a, Kannan Arun Kumar b, Rengasamy Gopalakrishnan a,*
PMCID: PMC3629510  PMID: 23634028

Abstract

In the crystal of the title salt, C8H10NO2 +·Br, the bromide anions and the phenylglycinium cations are ­linked through N—H⋯Br, O—H⋯Br and C—H⋯O hydrogen bonds, generating sheets lying parallel to (001).

Related literature  

For a similar compound with a different halogen anion, see: Ravichandran et al. (1998). For related structures and background, see: Srinivasan et al. (2001); Bouchouit et al. (2004); Ramaswamy et al. (2001); Bouacida et al. (2006); Thomsen et al. (1994). For biological importance, see: Satyam et al. (1996); Jayasinghe et al. (1994); Chun et al. (2010); Thomas & West (2011).graphic file with name e-69-0o470-scheme1.jpg

Experimental  

Crystal data  

  • C8H10NO2 +·Br

  • M r = 232.08

  • Orthorhombic, Inline graphic

  • a = 5.5240 (5) Å

  • b = 7.4735 (5) Å

  • c = 23.1229 (18) Å

  • V = 954.60 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.27 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.317, T max = 0.415

  • 5824 measured reflections

  • 2170 independent reflections

  • 2003 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.046

  • S = 1.03

  • 2170 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983)

  • Flack parameter: 0.011 (8)

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004807/pk2465sup1.cif

e-69-0o470-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004807/pk2465Isup2.hkl

e-69-0o470-Isup2.hkl (106.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004807/pk2465Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Br1i 0.89 2.54 3.3586 (17) 154
N1—H1C⋯Br1ii 0.89 2.57 3.429 (2) 163
N1—H1A⋯Br1 0.89 2.45 3.3166 (18) 164
O1—H1D⋯Br1iii 0.82 2.39 3.2027 (17) 171
C7—H7⋯O2iv 0.98 2.59 3.527 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to Professor K. Sivakumar, Department of Physics, Anna University, Chennai-25, for fruitful scientific discussions. The authors are thankful to the SAIF, IIT Madras, Chennai-36, India, for the X-ray data collection.

supplementary crystallographic information

Comment

D-Phenylglycine is an important constituent in the production of semisynthetic penicillins and cephalosporins. Recently the usages of some phenylglycine derivatives in the synthesis of antitumor drugs and other pharmacological applications have been found to be increasing (Satyam et al., 1996; Jayasinghe et al., 1994). Phenylglycine has been reported as a delivery tool for improving l-dopa absorption (Chun et al., 2010) and also found to have anti-inflammatory activity (Thomas et al., 2011). The torsion angle N1-C7-C8-O1, which indicates the relative orientation of the carboxyl group and the amino N atom, is 15.5 (3)° and close to the corresponding value of 18.9°(5) reported for D-Phenylglycine Hydrochloride (Ravichandran et al., 1998). The orientation of the phenyl ring as described by the torsion angle C5—C6—C7—N1 is 130.05 (3)°. The intermolecular interaction between the molecular ions are primarly decided by hydrogen bonding. The hydrogen bonds N1—H1A···Br1, N1—H1B···Br1i [Symmetry code: (i) -x+1, y-1/2, -z+3/2], N1—H1C···Br1ii [Symmetry code: (ii) x-1, y, z] and O1—H1D···Br1iii [Symmetry code: (iii) x-1, y-1, z] and C7—H7···O2iv [Symmetry code: (iv) x-1, y-1, z] hydrogen bond interconnects the molecular ions to form an extensive two-dimensional molecular sheet parallel to (001) plane. Parallel stacking of these sheets along [0 0 1] direction constitute the molecular packing of the crystal.

Experimental

The title compound (I), was prepared by mixing a 1:1 ratio of D-Phenylglycine and hydrobromic acid in water solvent. The suitable single-crystal of the compound was selected for X-ray analysis from the above solution by slow evaporation method.

Refinement

The hydrogen atoms associated with C atoms were identified from the difference electron density peaks and subsequently treated as riding atoms with distances of d(C–H) = 0.98 Å (for CH) with Uiso(H) = -1.5Ueq(C) and d(C–H) = 0.93 Å (for aromatic CH) with Uiso(H) = 1.2Ueq(C). The carboxylic acid hydrogen was constrained to a distance of d(O–H) = 0.82 Å with Uiso(H) = 1.5Ueq(C) and the positions of NH3 H atoms were also treated as riding about the parent atom.

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot of the molecular structure drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure showing the two dimensional anionic-cationic (0 0 1) sheet formed through N—H···Br, O—H···Br and C—H···O interactions viewed down c axis.

Crystal data

C8H10NO2+·Br F(000) = 464
Mr = 232.08 Dx = 1.615 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3239 reflections
a = 5.5240 (5) Å θ = 2.6–28.8°
b = 7.4735 (5) Å µ = 4.27 mm1
c = 23.1229 (18) Å T = 295 K
V = 954.60 (13) Å3 Block, colourless
Z = 4 0.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2170 independent reflections
Radiation source: fine-focus sealed tube 2003 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
ω and φ scan θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −6→7
Tmin = 0.317, Tmax = 0.415 k = −9→5
5824 measured reflections l = −28→30

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2)]
wR(F2) = 0.046 (Δ/σ)max = 0.003
S = 1.03 Δρmax = 0.25 e Å3
2170 reflections Δρmin = −0.29 e Å3
114 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0530 (13)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983)
Secondary atom site location: difference Fourier map Flack parameter: 0.011 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1060 (5) 0.5444 (3) 0.56980 (9) 0.0370 (5)
H1 −0.0251 0.5884 0.5906 0.044*
C2 0.1209 (5) 0.5734 (3) 0.51081 (9) 0.0418 (6)
H2 −0.0006 0.6372 0.4921 0.050*
C3 0.3119 (5) 0.5092 (3) 0.47991 (9) 0.0424 (6)
H3 0.3196 0.5290 0.4402 0.051*
C4 0.4922 (5) 0.4160 (3) 0.50678 (9) 0.0443 (6)
H4 0.6229 0.3734 0.4855 0.053*
C5 0.4804 (4) 0.3849 (3) 0.56595 (9) 0.0355 (5)
H5 0.6024 0.3204 0.5842 0.043*
C6 0.2866 (4) 0.4500 (2) 0.59770 (7) 0.0264 (4)
C7 0.2695 (4) 0.4057 (2) 0.66152 (7) 0.0282 (5)
H7 0.4217 0.3499 0.6738 0.034*
C8 0.0650 (4) 0.2773 (3) 0.67328 (8) 0.0311 (5)
N1 0.2266 (4) 0.5687 (2) 0.69772 (6) 0.0345 (4)
H1A 0.3369 0.6514 0.6892 0.063 (8)*
H1B 0.2379 0.5399 0.7350 0.063 (8)*
H1C 0.0794 0.6117 0.6905 0.047 (7)*
O1 0.1199 (4) 0.1163 (2) 0.65347 (8) 0.0561 (5)
H1D 0.0051 0.0486 0.6586 0.084*
O2 −0.1206 (3) 0.3164 (2) 0.69632 (6) 0.0441 (4)
Br1 0.71415 (4) 0.82278 (3) 0.681529 (8) 0.03843 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0381 (14) 0.0388 (11) 0.0339 (11) 0.0062 (12) 0.0048 (10) −0.0032 (10)
C2 0.0552 (17) 0.0342 (12) 0.0360 (12) 0.0066 (11) −0.0030 (11) 0.0072 (10)
C3 0.0638 (18) 0.0364 (12) 0.0270 (10) −0.0101 (13) 0.0087 (11) 0.0010 (9)
C4 0.0417 (16) 0.0496 (14) 0.0415 (14) −0.0021 (12) 0.0170 (11) −0.0082 (11)
C5 0.0277 (13) 0.0429 (12) 0.0360 (12) 0.0004 (11) 0.0035 (9) −0.0027 (10)
C6 0.0261 (11) 0.0258 (9) 0.0273 (9) −0.0062 (10) 0.0011 (9) −0.0013 (7)
C7 0.0261 (13) 0.0316 (10) 0.0269 (9) −0.0034 (10) 0.0012 (8) 0.0002 (7)
C8 0.0352 (14) 0.0323 (11) 0.0258 (11) −0.0071 (10) −0.0018 (9) 0.0014 (8)
N1 0.0377 (13) 0.0396 (9) 0.0262 (9) −0.0137 (10) 0.0029 (8) −0.0036 (7)
O1 0.0634 (15) 0.0333 (8) 0.0715 (12) −0.0161 (9) 0.0238 (10) −0.0057 (8)
O2 0.0328 (9) 0.0448 (9) 0.0547 (9) −0.0106 (9) 0.0085 (7) −0.0021 (8)
Br1 0.04061 (14) 0.03701 (12) 0.03766 (12) −0.01269 (10) 0.00446 (10) −0.00279 (9)

Geometric parameters (Å, º)

C1—C6 1.382 (3) C6—C7 1.515 (2)
C1—C2 1.383 (3) C7—N1 1.497 (2)
C1—H1 0.9300 C7—C8 1.507 (3)
C2—C3 1.361 (3) C7—H7 0.9800
C2—H2 0.9300 C8—O2 1.192 (3)
C3—C4 1.365 (3) C8—O1 1.323 (3)
C3—H3 0.9300 N1—H1A 0.8900
C4—C5 1.389 (3) N1—H1B 0.8900
C4—H4 0.9300 N1—H1C 0.8900
C5—C6 1.386 (3) O1—H1D 0.8200
C5—H5 0.9300
C6—C1—C2 119.8 (2) C5—C6—C7 119.15 (19)
C6—C1—H1 120.1 N1—C7—C8 107.37 (17)
C2—C1—H1 120.1 N1—C7—C6 112.12 (15)
C3—C2—C1 120.6 (2) C8—C7—C6 111.19 (16)
C3—C2—H2 119.7 N1—C7—H7 108.7
C1—C2—H2 119.7 C8—C7—H7 108.7
C2—C3—C4 120.4 (2) C6—C7—H7 108.7
C2—C3—H3 119.8 O2—C8—O1 125.1 (2)
C4—C3—H3 119.8 O2—C8—C7 124.73 (19)
C3—C4—C5 120.0 (2) O1—C8—C7 110.16 (19)
C3—C4—H4 120.0 C7—N1—H1A 109.5
C5—C4—H4 120.0 C7—N1—H1B 109.5
C6—C5—C4 119.9 (2) H1A—N1—H1B 109.5
C6—C5—H5 120.0 C7—N1—H1C 109.5
C4—C5—H5 120.0 H1A—N1—H1C 109.5
C1—C6—C5 119.30 (19) H1B—N1—H1C 109.5
C1—C6—C7 121.4 (2) C8—O1—H1D 109.5
C6—C1—C2—C3 0.2 (4) C1—C6—C7—N1 −54.0 (3)
C1—C2—C3—C4 −0.3 (4) C5—C6—C7—N1 130.1 (2)
C2—C3—C4—C5 0.5 (4) C1—C6—C7—C8 66.2 (2)
C3—C4—C5—C6 −0.6 (3) C5—C6—C7—C8 −109.7 (2)
C2—C1—C6—C5 −0.2 (3) N1—C7—C8—O2 15.6 (3)
C2—C1—C6—C7 −176.2 (2) C6—C7—C8—O2 −107.4 (2)
C4—C5—C6—C1 0.5 (3) N1—C7—C8—O1 −165.48 (17)
C4—C5—C6—C7 176.5 (2) C6—C7—C8—O1 71.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···Br1i 0.89 2.54 3.3586 (17) 154
N1—H1C···Br1ii 0.89 2.57 3.429 (2) 163
N1—H1A···Br1 0.89 2.45 3.3166 (18) 164
O1—H1D···Br1iii 0.82 2.39 3.2027 (17) 171
C7—H7···O2iv 0.98 2.59 3.527 (3) 159

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) x−1, y−1, z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2465).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840.
  3. Bouchouit, K., Bendheif, L. & Benali-Cherif, N. (2004). Acta Cryst. E60, o272–o274.
  4. Bruker (2004). SADABS, APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chun, L. W., Yang, B. F., Hsiao, H. L., Tung, H. T., Ming, C. T. & Hui, P. W. (2010). J. Biomed. Sci. 17, 71–78.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Jayasinghe, L. R., Datta, A., Ali, S. M., Zymunt, J., Van der Velde, D. G. & Georg, G. I. (1994). J. Med. Chem. 37, 2981–2984. [DOI] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Ramaswamy, S., Sridhar, B., Ramakrishnan, V. & Rajaram, R. K. (2001). Acta Cryst. E57, o1149–o1151.
  11. Ravichandran, S., Dattagupta, J. K. & Chakrabarti, C. (1998). Acta Cryst. C54, 499–501.
  12. Satyam, A., Hocker, M. D., Kanemaguire, K. A., Morgan, A. S., Villar, H. O. & Lyttle, M. H. (1996). J. Med. Chem. 39, 1736–1747. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Srinivasan, N., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, o754–o756.
  16. Thomas, G. & West, G. B. (2011). J. Pharm. Pharmacol. 26, 151–152. [DOI] [PubMed]
  17. Thomsen, C., Boel, E. & Suzdak, P. D. (1994). Eur. J. Pharmacol. 267, 77–84. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004807/pk2465sup1.cif

e-69-0o470-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004807/pk2465Isup2.hkl

e-69-0o470-Isup2.hkl (106.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004807/pk2465Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES