Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 2;69(Pt 4):o472. doi: 10.1107/S1600536813005631

2-(4-Amino­benzene­sulfonamido)-4,6-dimethyl­pyrimidin-1-ium 2-carb­oxy-4,6-dinitro­phenolate

Graham Smith a,*, Urs D Wermuth a
PMCID: PMC3629512  PMID: 23634030

Abstract

In the structure of the phenolate salt of the sulfa drug sulfamethazine with 3,5-dinitro­salicylic acid, C12H15N4O2S+·C7H3N2O7 , the dihedral angle between the pyrimidine and benzene rings of the cation is 59.70 (17)°. In the crystal, cation–anion hydrogen-bonding inter­actions involving pyrim­idine–carb­oxy N+—H⋯O and amine–carb­oxy N—H⋯O pairs give a cyclic R 2 2(8) motif while secondary N—H⋯O hydrogen bonds between the aniline group and both sulfone and nitro O-atom acceptors give a two-dimensional structure extending in (001).

Related literature  

For background to sulfamethazine and its co-crystals, see: O’Neil (2001); Caira (2007); Ghosh et al. (2011). For similar structures, see: Caira (1991); Lynch et al. (2000); Smith & Wermuth (2013). For structures of 3,5-dinitro­salicylic acid salts, see: Smith et al. (2003). For graph-set analysis, see: Bernstein et al. (1995).graphic file with name e-69-0o472-scheme1.jpg

Experimental  

Crystal data  

  • C12H15N4O2S+·C7H3N2O7

  • M r = 506.46

  • Monoclinic, Inline graphic

  • a = 8.1691 (3) Å

  • b = 32.0736 (9) Å

  • c = 8.9869 (3) Å

  • β = 112.258 (5)°

  • V = 2179.23 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 200 K

  • 0.40 × 0.35 × 0.20 mm

Data collection  

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.918, T max = 0.980

  • 14977 measured reflections

  • 4264 independent reflections

  • 3645 reflections with I > \2s(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.158

  • S = 1.10

  • 4264 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813005631/nk2201sup1.cif

e-69-0o472-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813005631/nk2201Isup2.hkl

e-69-0o472-Isup2.hkl (209KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813005631/nk2201Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O11 0.88 1.75 2.617 (4) 168
N2A—H2A⋯O12 0.78 1.95 2.729 (4) 170
O12—H12⋯O2 0.96 1.52 2.416 (5) 154
N41A—H41A⋯O51i 0.81 2.50 3.248 (5) 153
N41A—H42A⋯O12A ii 0.81 2.46 3.202 (4) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Reseach Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

The drug sulfamethazine (or sulfadimidine) [4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide] (O'Neil, 2001) has been used as a model for co-crystal formation (Caira, 2007; Ghosh et al., 2011), commonly forming 1:1 adducts with carboxylic acids, predominently the benzoic analogues but including some amides. The structures of a number of these have been reported, e.g. anthranilic acid and 4-aminobenzoic acid (Caira, 1991), 2,4-dinitrobenzoic acid (Lynch et al., 2000), as well as benzamide, 4-hydroxybenzamide and picolinamide (Ghosh et al., 2011). In all of these co-crystals, heterodimers are formed through a cyclic intermolecular hydrogen-bonding motif [graph set R22(8) (Bernstein et al., 1995)], involving amine N—H···Ocarboxyl and carboxylic acid O—H···Npyrimidine pairs.

However, there are no examples of the structures of proton-transfer salts of sulfamethazine with carboxylic acids so we looked at the products from the 1:1 stoichiometric reactions with some strong acids. Crystalline materials were obtained from the 5-nitrosalicylic acid and picric acid reactions, namely the anhydrous (1:1) carboxylate and picrate salts, respectively (Smith & Wermuth, 2013). With 3,5-dinitrosalicylic acid (DNSA), the poorly-formed anhydrous 1:1 salt of the title compound, C12H15N4O2S+ C7H3N2O7-, was obtained, and the structure is reported herein. DNSA has been particularly useful in providing crystalline proton-transfer salts with both aliphatic and aromatic amines, the majority of which have been picrates, in which an anti-related acidic proton is retained on the carboxylic acid group rather than on the phenolic group (Smith et al., 2003).

With the title salt, the phenolate anion is found (Fig. 1), providing a variant of the R22(8) cation–anion hydrogen-bonding interaction as found in the non-transfer co-crystal structures, the difference arising from the presence of the transferred acid proton on the pyrimidine nitrogen (N1A). The slight asymmetry in the N1A···O and N2A···O hydrogen bond distances [2.622 (5) and 2.732 (4) Å] (Table 1) is comparable with those in the non-transfer co-crystals. In the DNSA anion, the anti-related acid proton forms the usual intramolecular hydrogen bond with the phenolate O-atom (Smith et al., 2003). Both H-atoms of the aniline group of the cation participate in intermolecular N—H···O hydrogen-bonding interactions with both sulfone and nitro O-atom acceptors, giving extensions along the a and b axes respectively, giving a two-dimensional structure lying along (001) (Fig. 2).

In the sulfamethazine cation, the dihedral angle between the pyrimidinium and phenyl rings is 59.70 (17)°, similar to that found in the picrate salt [58.18 (7)°] (Smith & Wermuth, 2013), but significantly smaller than commonly found with the adduct structures, e.g. 70.3 (4)° in the 2,4-dinitrobenzoic acid co-crystal (Lynch et al., 2000). The two interacting pyrimidine–DNSA moieties are close to coplanar [inter-ring dihedral angle 12.2 (2)°].

Experimental

The title compound was prepared by the reaction of 1 mmol quantities of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfamethazine) with 3,5-dinitrosalicylic in 50 ml of 50% ethanol–water with 10 min refluxing. Partial evaporation of the solvent gave poorly-formed yellow crystal plates (m.p. 457–458 K) from which a specimen was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods but their positional and isotropic displacement parameters were subsequently allowed to ride in the refinement with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were included at calculated positions [C—H (aromatic) = 0.93 Å or C—H (methyl) = 0.96 Å] and also treated as riding, with Uiso(H) = 1.2Ueq(C)aromatic or 1.5Ueq (C)methyl.

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom-numbering scheme for the title compound, with inter-species hydrogen bonds shown as a dashed lines. Non-H atoms are shown as 40% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The two-dimensional network structure viewed down c, showing hydrogen-bonding associations as dashed lines. Non-associative H atoms are omitted.

Crystal data

C12H15N4O2S+·C7H3N2O7 F(000) = 1048
Mr = 506.46 Dx = 1.544 Mg m3
Monoclinic, P21/c Melting point = 457–458 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 8.1691 (3) Å Cell parameters from 4751 reflections
b = 32.0736 (9) Å θ = 3.1–28.8°
c = 8.9869 (3) Å µ = 0.22 mm1
β = 112.258 (5)° T = 200 K
V = 2179.23 (15) Å3 Plate, yellow
Z = 4 0.40 × 0.35 × 0.20 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 4264 independent reflections
Radiation source: Enhance (Mo) X-ray source 3645 reflections with I > \2s(I)
Graphite monochromator Rint = 0.039
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.1°
ω scans h = −7→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −39→39
Tmin = 0.918, Tmax = 0.980 l = −11→11
14977 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0472P)2 + 4.2454P] where P = (Fo2 + 2Fc2)/3
4264 reflections (Δ/σ)max = 0.010
318 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.33370 (9) 0.09248 (2) 0.49476 (9) 0.0225 (2)
O11A 0.4293 (3) 0.11377 (7) 0.6420 (3) 0.0308 (7)
O12A 0.1986 (3) 0.06331 (7) 0.4858 (3) 0.0300 (7)
N1A 0.0333 (4) 0.16571 (9) 0.1560 (3) 0.0347 (9)
N2A 0.2414 (3) 0.13221 (8) 0.3706 (3) 0.0279 (8)
N3A 0.0595 (4) 0.09249 (9) 0.1533 (3) 0.0318 (8)
N41A 0.8562 (4) 0.00864 (9) 0.2912 (4) 0.0352 (9)
C2A 0.1081 (4) 0.12918 (10) 0.2241 (4) 0.0271 (9)
C4A −0.0789 (5) 0.09197 (13) 0.0121 (4) 0.0394 (11)
C5A −0.1668 (5) 0.12839 (15) −0.0589 (4) 0.0487 (13)
C6A −0.1059 (5) 0.16547 (14) 0.0136 (4) 0.0460 (14)
C11A 0.4832 (4) 0.06863 (9) 0.4269 (4) 0.0209 (8)
C21A 0.4332 (4) 0.03461 (10) 0.3223 (4) 0.0281 (9)
C31A 0.5563 (4) 0.01481 (10) 0.2778 (4) 0.0306 (10)
C41A 0.7336 (4) 0.02831 (9) 0.3364 (4) 0.0257 (9)
C42A −0.1332 (6) 0.05060 (14) −0.0664 (5) 0.0582 (16)
C51A 0.7806 (4) 0.06280 (10) 0.4394 (4) 0.0279 (9)
C61A 0.6577 (4) 0.08258 (9) 0.4841 (4) 0.0250 (9)
C62A −0.1833 (7) 0.20700 (16) −0.0541 (6) 0.0709 (17)
O2 0.5067 (5) 0.25084 (9) 0.7126 (4) 0.0712 (11)
O11 0.1194 (4) 0.24106 (9) 0.2706 (4) 0.0589 (11)
O12 0.2967 (4) 0.21077 (8) 0.4967 (4) 0.0606 (10)
O31 0.8156 (5) 0.34132 (12) 0.8480 (5) 0.0813 (16)
O32 0.6599 (6) 0.30963 (12) 0.9593 (4) 0.0868 (16)
O51 0.3439 (7) 0.42888 (10) 0.4234 (4) 0.0993 (19)
O52 0.1099 (6) 0.39640 (11) 0.2632 (5) 0.0763 (16)
N3 0.6791 (5) 0.32438 (11) 0.8427 (5) 0.0557 (15)
N5 0.2539 (7) 0.39791 (10) 0.3752 (5) 0.0568 (16)
C1 0.3126 (5) 0.28407 (11) 0.4776 (5) 0.0429 (11)
C2 0.4505 (6) 0.28519 (11) 0.6290 (5) 0.0462 (15)
C3 0.5295 (6) 0.32354 (12) 0.6872 (5) 0.0456 (14)
C4 0.4725 (6) 0.36005 (11) 0.6024 (5) 0.0483 (15)
C5 0.3300 (6) 0.35804 (11) 0.4587 (5) 0.0485 (14)
C6 0.2494 (6) 0.32095 (11) 0.3902 (5) 0.0464 (15)
C11 0.2342 (6) 0.24260 (11) 0.4069 (6) 0.0489 (15)
H1A 0.07050 0.18920 0.20720 0.0420*
H2A 0.26120 0.15340 0.41760 0.0330*
H5A −0.26560 0.12730 −0.15450 0.0580*
H21A 0.31660 0.02540 0.28290 0.0340*
H31A 0.52240 −0.00780 0.20800 0.0370*
H41A 0.83560 −0.01550 0.26240 0.0420*
H42A 0.95960 0.01430 0.34240 0.0420*
H43A −0.17740 0.03360 −0.00190 0.0870*
H44A −0.03300 0.03720 −0.07680 0.0870*
H45A −0.22420 0.05430 −0.17100 0.0870*
H51A 0.89660 0.07240 0.47790 0.0330*
H61A 0.69090 0.10540 0.55300 0.0300*
H63A −0.15940 0.22670 0.03180 0.1070*
H64A −0.30880 0.20420 −0.11010 0.1070*
H65A −0.13110 0.21660 −0.12740 0.1070*
H4 0.52880 0.38530 0.64130 0.0580*
H6 0.15680 0.32050 0.29020 0.0560*
H12 0.38970 0.21900 0.59520 0.0730*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0178 (4) 0.0252 (4) 0.0234 (4) 0.0015 (3) 0.0066 (3) 0.0017 (3)
O11A 0.0251 (11) 0.0396 (13) 0.0253 (12) 0.0024 (10) 0.0069 (10) −0.0038 (10)
O12A 0.0210 (11) 0.0346 (12) 0.0356 (13) −0.0023 (9) 0.0122 (10) 0.0024 (10)
N1A 0.0303 (15) 0.0369 (15) 0.0354 (16) 0.0092 (13) 0.0108 (13) 0.0082 (13)
N2A 0.0235 (13) 0.0207 (13) 0.0324 (15) 0.0026 (10) 0.0026 (12) −0.0014 (11)
N3A 0.0270 (14) 0.0381 (15) 0.0263 (14) −0.0019 (12) 0.0057 (12) 0.0023 (12)
N41A 0.0307 (15) 0.0290 (14) 0.0512 (18) 0.0007 (12) 0.0215 (14) −0.0033 (13)
C2A 0.0186 (15) 0.0354 (17) 0.0270 (16) 0.0058 (13) 0.0083 (13) 0.0074 (13)
C4A 0.0289 (18) 0.061 (2) 0.0254 (17) −0.0095 (17) 0.0071 (14) 0.0030 (17)
C5A 0.031 (2) 0.079 (3) 0.0253 (18) 0.003 (2) −0.0016 (16) 0.0090 (19)
C6A 0.0322 (19) 0.068 (3) 0.034 (2) 0.0196 (19) 0.0082 (17) 0.0169 (19)
C11A 0.0166 (14) 0.0206 (14) 0.0250 (15) 0.0019 (11) 0.0072 (12) 0.0044 (12)
C21A 0.0212 (15) 0.0263 (16) 0.0347 (18) −0.0045 (13) 0.0082 (14) −0.0025 (13)
C31A 0.0294 (17) 0.0221 (15) 0.0396 (19) −0.0044 (13) 0.0123 (15) −0.0081 (14)
C41A 0.0272 (16) 0.0236 (15) 0.0284 (16) 0.0042 (13) 0.0129 (14) 0.0064 (13)
C42A 0.060 (3) 0.067 (3) 0.033 (2) −0.024 (2) 0.001 (2) −0.004 (2)
C51A 0.0195 (15) 0.0312 (16) 0.0329 (17) −0.0036 (13) 0.0098 (13) −0.0001 (14)
C61A 0.0220 (15) 0.0237 (15) 0.0271 (16) −0.0026 (12) 0.0067 (13) −0.0022 (12)
C62A 0.065 (3) 0.076 (3) 0.059 (3) 0.040 (3) 0.009 (2) 0.028 (3)
O2 0.074 (2) 0.0400 (16) 0.072 (2) 0.0168 (16) −0.0036 (18) 0.0058 (15)
O11 0.068 (2) 0.0378 (16) 0.0570 (19) 0.0118 (14) 0.0079 (17) 0.0055 (14)
O12 0.076 (2) 0.0265 (13) 0.0627 (19) 0.0072 (14) 0.0075 (17) 0.0003 (13)
O31 0.055 (2) 0.092 (3) 0.107 (3) 0.006 (2) 0.042 (2) −0.017 (2)
O32 0.116 (3) 0.083 (3) 0.055 (2) −0.032 (2) 0.025 (2) −0.0023 (19)
O51 0.220 (5) 0.0320 (17) 0.057 (2) −0.005 (2) 0.065 (3) 0.0031 (15)
O52 0.096 (3) 0.067 (2) 0.085 (3) 0.039 (2) 0.056 (2) 0.041 (2)
N3 0.065 (3) 0.0376 (19) 0.074 (3) 0.0023 (18) 0.037 (2) −0.0111 (18)
N5 0.116 (4) 0.0297 (18) 0.050 (2) 0.010 (2) 0.060 (2) 0.0088 (16)
C1 0.055 (2) 0.0275 (18) 0.053 (2) 0.0116 (17) 0.028 (2) 0.0029 (16)
C2 0.059 (3) 0.0238 (17) 0.065 (3) 0.0117 (17) 0.034 (2) 0.0045 (17)
C3 0.059 (3) 0.036 (2) 0.050 (2) 0.0036 (18) 0.030 (2) −0.0050 (17)
C4 0.080 (3) 0.0228 (17) 0.064 (3) −0.0029 (18) 0.052 (3) −0.0022 (17)
C5 0.085 (3) 0.0319 (19) 0.048 (2) 0.016 (2) 0.047 (2) 0.0092 (17)
C6 0.071 (3) 0.0259 (18) 0.064 (3) 0.0116 (18) 0.050 (2) 0.0054 (17)
C11 0.060 (3) 0.0249 (18) 0.070 (3) 0.0087 (18) 0.034 (2) 0.0028 (18)

Geometric parameters (Å, º)

S1A—O11A 1.430 (3) C6A—C62A 1.501 (7)
S1A—O12A 1.426 (3) C11A—C61A 1.393 (5)
S1A—N2A 1.673 (3) C11A—C21A 1.397 (4)
S1A—C11A 1.736 (3) C21A—C31A 1.371 (5)
O2—C2 1.314 (5) C31A—C41A 1.409 (5)
O11—C11 1.230 (6) C41A—C51A 1.400 (4)
O12—C11 1.281 (5) C51A—C61A 1.370 (5)
O31—N3 1.225 (6) C5A—H5A 0.9300
O32—N3 1.213 (6) C21A—H21A 0.9300
O51—N5 1.214 (6) C31A—H31A 0.9300
O52—N5 1.226 (7) C42A—H45A 0.9600
O12—H12 0.9600 C42A—H43A 0.9600
N1A—C6A 1.352 (5) C42A—H44A 0.9600
N1A—C2A 1.356 (4) C51A—H51A 0.9300
N2A—C2A 1.357 (4) C61A—H61A 0.9300
N3A—C4A 1.342 (5) C62A—H63A 0.9600
N3A—C2A 1.325 (4) C62A—H64A 0.9600
N41A—C41A 1.369 (5) C62A—H65A 0.9600
N1A—H1A 0.8800 C1—C6 1.406 (5)
N2A—H2A 0.7800 C1—C11 1.508 (5)
N41A—H42A 0.8100 C1—C2 1.400 (6)
N41A—H41A 0.8100 C2—C3 1.396 (6)
N3—C3 1.467 (6) C3—C4 1.378 (5)
N5—C5 1.494 (5) C4—C5 1.374 (6)
C4A—C5A 1.393 (6) C5—C6 1.386 (5)
C4A—C42A 1.489 (6) C4—H4 0.9300
C5A—C6A 1.357 (6) C6—H6 0.9300
O11A—S1A—O12A 120.36 (15) C6A—C5A—H5A 121.00
O11A—S1A—N2A 101.75 (13) C4A—C5A—H5A 121.00
O11A—S1A—C11A 108.98 (16) C11A—C21A—H21A 120.00
O12A—S1A—N2A 108.57 (14) C31A—C21A—H21A 120.00
O12A—S1A—C11A 108.88 (15) C41A—C31A—H31A 120.00
N2A—S1A—C11A 107.50 (14) C21A—C31A—H31A 120.00
C11—O12—H12 110.00 C4A—C42A—H43A 109.00
C2A—N1A—C6A 119.7 (3) C4A—C42A—H45A 110.00
S1A—N2A—C2A 125.8 (2) C4A—C42A—H44A 109.00
C2A—N3A—C4A 117.2 (3) H44A—C42A—H45A 109.00
C6A—N1A—H1A 120.00 H43A—C42A—H44A 110.00
C2A—N1A—H1A 120.00 H43A—C42A—H45A 109.00
C2A—N2A—H2A 121.00 C61A—C51A—H51A 120.00
S1A—N2A—H2A 111.00 C41A—C51A—H51A 120.00
H41A—N41A—H42A 116.00 C51A—C61A—H61A 120.00
C41A—N41A—H42A 117.00 C11A—C61A—H61A 120.00
C41A—N41A—H41A 117.00 H64A—C62A—H65A 109.00
O31—N3—C3 117.6 (4) C6A—C62A—H64A 109.00
O32—N3—C3 118.8 (4) C6A—C62A—H65A 110.00
O31—N3—O32 123.6 (5) H63A—C62A—H64A 110.00
O51—N5—C5 116.2 (4) H63A—C62A—H65A 109.00
O52—N5—C5 117.8 (4) C6A—C62A—H63A 109.00
O51—N5—O52 126.1 (4) C2—C1—C6 120.8 (3)
N2A—C2A—N3A 120.9 (3) C2—C1—C11 119.3 (3)
N1A—C2A—N3A 123.3 (3) C6—C1—C11 120.0 (4)
N1A—C2A—N2A 115.8 (3) O2—C2—C3 120.9 (4)
C5A—C4A—C42A 121.4 (3) C1—C2—C3 118.3 (3)
N3A—C4A—C42A 116.9 (4) O2—C2—C1 120.8 (3)
N3A—C4A—C5A 121.7 (4) N3—C3—C2 118.2 (4)
C4A—C5A—C6A 118.9 (3) C2—C3—C4 122.0 (4)
N1A—C6A—C5A 118.9 (4) N3—C3—C4 119.7 (4)
N1A—C6A—C62A 116.9 (4) C3—C4—C5 117.9 (4)
C5A—C6A—C62A 124.2 (4) N5—C5—C6 118.3 (4)
C21A—C11A—C61A 119.8 (3) C4—C5—C6 123.3 (4)
S1A—C11A—C21A 121.0 (3) N5—C5—C4 118.4 (3)
S1A—C11A—C61A 119.1 (2) C1—C6—C5 117.5 (4)
C11A—C21A—C31A 119.9 (3) O11—C11—C1 119.8 (4)
C21A—C31A—C41A 120.8 (3) O12—C11—C1 115.7 (4)
C31A—C41A—C51A 118.4 (3) O11—C11—O12 124.5 (4)
N41A—C41A—C51A 120.8 (3) C3—C4—H4 121.00
N41A—C41A—C31A 120.8 (3) C5—C4—H4 121.00
C41A—C51A—C61A 120.8 (3) C1—C6—H6 121.00
C11A—C61A—C51A 120.3 (3) C5—C6—H6 121.00
N2A—S1A—C11A—C61A 89.7 (3) S1A—C11A—C21A—C31A −176.2 (3)
O11A—S1A—N2A—C2A −165.7 (3) C61A—C11A—C21A—C31A 0.7 (5)
O11A—S1A—C11A—C21A 157.1 (3) C21A—C11A—C61A—C51A −0.7 (5)
O12A—S1A—C11A—C21A 24.1 (3) S1A—C11A—C61A—C51A 176.4 (3)
O12A—S1A—C11A—C61A −152.9 (3) C11A—C21A—C31A—C41A 0.0 (5)
O12A—S1A—N2A—C2A −37.7 (3) C21A—C31A—C41A—N41A −179.7 (3)
C11A—S1A—N2A—C2A 79.9 (3) C21A—C31A—C41A—C51A −0.9 (5)
O11A—S1A—C11A—C61A −19.9 (3) C31A—C41A—C51A—C61A 1.0 (5)
N2A—S1A—C11A—C21A −93.4 (3) N41A—C41A—C51A—C61A 179.7 (3)
C2A—N1A—C6A—C62A 179.4 (4) C41A—C51A—C61A—C11A −0.2 (5)
C6A—N1A—C2A—N3A 4.6 (6) C6—C1—C2—O2 178.3 (5)
C6A—N1A—C2A—N2A −176.9 (3) C6—C1—C2—C3 −3.2 (7)
C2A—N1A—C6A—C5A −0.6 (6) C11—C1—C2—O2 −3.0 (7)
S1A—N2A—C2A—N1A 169.1 (2) C11—C1—C2—C3 175.5 (4)
S1A—N2A—C2A—N3A −12.3 (5) C2—C1—C6—C5 0.8 (7)
C4A—N3A—C2A—N1A −4.6 (5) C11—C1—C6—C5 −178.0 (4)
C2A—N3A—C4A—C42A −179.8 (4) C2—C1—C11—O11 −176.3 (5)
C4A—N3A—C2A—N2A 176.9 (3) C2—C1—C11—O12 3.0 (7)
C2A—N3A—C4A—C5A 0.9 (6) C6—C1—C11—O11 2.5 (7)
O32—N3—C3—C4 125.6 (5) C6—C1—C11—O12 −178.3 (4)
O31—N3—C3—C4 −52.1 (6) O2—C2—C3—N3 1.2 (7)
O32—N3—C3—C2 −55.2 (6) O2—C2—C3—C4 −179.6 (5)
O31—N3—C3—C2 127.1 (5) C1—C2—C3—N3 −177.4 (4)
O51—N5—C5—C6 −168.2 (5) C1—C2—C3—C4 1.9 (7)
O52—N5—C5—C4 −167.5 (5) N3—C3—C4—C5 −178.9 (4)
O52—N5—C5—C6 10.2 (7) C2—C3—C4—C5 1.9 (7)
O51—N5—C5—C4 14.1 (7) C3—C4—C5—N5 173.0 (5)
N3A—C4A—C5A—C6A 2.8 (6) C3—C4—C5—C6 −4.6 (8)
C42A—C4A—C5A—C6A −176.5 (4) N5—C5—C6—C1 −174.3 (4)
C4A—C5A—C6A—N1A −2.9 (6) C4—C5—C6—C1 3.3 (8)
C4A—C5A—C6A—C62A 177.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O11 0.88 1.75 2.617 (4) 168
N2A—H2A···O12 0.78 1.95 2.729 (4) 170
O12—H12···O2 0.96 1.52 2.416 (5) 154
N41A—H41A···O51i 0.81 2.50 3.248 (5) 153
N41A—H42A···O12Aii 0.81 2.46 3.202 (4) 152
C5A—H5A···O11Aiii 0.93 2.51 3.408 (5) 163
C51A—H51A···O12Aii 0.93 2.46 3.280 (4) 147
C61A—H61A···O11A 0.93 2.56 2.916 (4) 103
C62A—H63A···O11 0.96 2.51 3.218 (6) 131
C62A—H64A···O2iii 0.96 2.29 2.960 (7) 127

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2201).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Caira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641–648.
  5. Caira, M. R. (2007). Mol. Pharm. 4, 310–316. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489–3503.
  8. Lynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383–387.
  9. O’Neil, M. J. (2001). Editor. The Merck Index, 13th ed. p. 1588. Whitehouse Station, NJ: Merck & Co. Inc.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Smith, G. & Wermuth, U. D. (2013). Acta Cryst. C69 Submitted. [Google Scholar]
  12. Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707–713.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813005631/nk2201sup1.cif

e-69-0o472-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813005631/nk2201Isup2.hkl

e-69-0o472-Isup2.hkl (209KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813005631/nk2201Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES