Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 9;69(Pt 4):o508. doi: 10.1107/S1600536813005862

5-Iodo-3-phenyl-2,1-benzoxazole

Yuriy Teslenko a,*, Vasyl S Matiychuk a, Vasyl Kinzhybalo b, Tadeusz Lis c, Mykola D Obushak a
PMCID: PMC3629537  PMID: 23634055

Abstract

The title compound, C13H8INO, was prepared by a condensation reaction of 4-nitro­benzene with phenyl­acetonitrile in NaOH–ethanol solution. There are two independent mol­ecules in the asymmetric unit, in which the dihedral angles between the benzene ring and the benzoisoxazole unit are 4.2 (3) and 4.1 (3)°. The crystal packing is governed by C—H⋯N, C—I⋯π and C—I⋯O inter­actions.

Related literature  

For the biologial activity and applications of benzo[c]isoxazoles, see: McEvoy et al. (1968); Hester et al. (1989); Walsh et al. (1990); Angibaud et al. (2003). For a related structure, see: Teslenko et al. (2008). For a general synthetic procedure, see: Davis & Pizzini (1960).graphic file with name e-69-0o508-scheme1.jpg

Experimental  

Crystal data  

  • C13H8INO

  • M r = 321.10

  • Monoclinic, Inline graphic

  • a = 5.381 (3) Å

  • b = 15.225 (7) Å

  • c = 13.749 (7) Å

  • β = 94.92 (3)°

  • V = 1122.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 100 K

  • 0.25 × 0.08 × 0.03 mm

Data collection  

  • Kuma KM-4-CCD four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.44, T max = 0.80

  • 15060 measured reflections

  • 6015 independent reflections

  • 4621 reflections with I > 2σ(I)

  • R int = 0.053

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.090

  • S = 1.00

  • 6015 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.98 e Å−3

  • Δρmin = −1.01 e Å−3

  • Absolute structure: Flack (1983), 1659 Friedel pairs

  • Flack parameter: 0.00 (3)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813005862/gk2554sup1.cif

e-69-0o508-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813005862/gk2554Isup2.hkl

e-69-0o508-Isup2.hkl (294.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813005862/gk2554Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536813005862/gk2554Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Intermolecular interactions (Å, °).

Cg is the centroid of the C1B–C6B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3A⋯N1B i 0.95 2.40 3.247 (7) 149
C11A—H11A⋯N1A ii 0.95 2.47 3.339 (8) 152
C4A—I1ACg iii 2.100 (5) 3.618 (2) 5.637 (6) 160.0 (2)
C4B—I1B⋯O1A 2.100 (5) 3.335 (5) 5.325 (7) 156.3 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the State fund for fundamental research of Ukraine for the financial support (Project F54.3/004).

supplementary crystallographic information

Comment

Our interest in benzo[c]isoxazoles is concerned with their application as precursors of a variety of bioactive compounds (Angibaud et al., 2003; Walsh et al., 1990; Hester et al., 1989; McEvoy et al., 1968). The title compound will be used in our further investigations as arylation agent in palladium-catalyzed reactions with alkenes and alkynes.

The title compound crystalizes in the noncentrosymmetric monoclinic P21 space group with two independent molecules in the asymmetric part (A and B), see Fig. 1. The molecules are almost planar, the dihedral angles between the mean planes of benzoisoxazole and benzene rings being 4.2 (3)° and 4.1 (3)° for A and B, respectively. The geometrical parameters of the molecules are similar and consistent with the previously studied 2,1-benzoxazole derivatives (Teslenko et al., 2008).

Crystal packing is governed by hydrogen bonds of C–H···N type and other intermolecular interactions including C–I···π and C–I···O. Intermolecular interactions C4A–I1A···Cgiii (Cg is a centroid of C1B/C6B aromatic ring) and C4B–I1B···O1A connect the molecules into chains propagating in b-axis direction along 21 screw axis (see Fig. 2). Hydrogen bond C3A–H3A···N1Bi connects the chains into corrugated layer parallel to the bc-plane. Hydrogen bond C11A–H11A···N1Aii binds successive layers.

Experimental

Phenylacetonitrile (1.4 g, 12 mmol) and 5 ml of benzene solution of 4-iodonitrobenene (2.49 g, 10 mmol) were added with stirring to 40 ml of ethanol solution of potassium hydroxide (4 g, 0.1 mole). The mixture was stirred for 4 h at 323 K, then poured into 150 ml of water and acidified with hydrochloric acid. The precipitate was isolated by filtration, washed with water and dried. Recrystallization of crude product from ethanol gave 2.57 g (80% yield) of 5-iodo-3-phenyl-2,1-benzoxazole as pale yellow needles suitable for X-ray analysis, m.p. 390–391 K.

Refinement

All H atoms were found in difference Fourier maps. All H atoms were positioned geometrically and treated as riding on their carriers, with C–H = 0.95 Å and Uiso(H) = values of 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound showing intermolecular interactions as dashed lines (molecule A - red, molecule B - green).

Crystal data

C13H8INO F(000) = 616
Mr = 321.10 Dx = 1.901 Mg m3
Monoclinic, P21 Melting point = 390–391 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 5.381 (3) Å Cell parameters from 15060 reflections
b = 15.225 (7) Å θ = 3.0–34.7°
c = 13.749 (7) Å µ = 2.83 mm1
β = 94.92 (3)° T = 100 K
V = 1122.2 (10) Å3 Needle, pale yellow
Z = 4 0.25 × 0.08 × 0.03 mm

Data collection

Kuma KM-4-CCD four-circle diffractometer 6015 independent reflections
Radiation source: fine-focus sealed tube 4621 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
ω scans θmax = 34.7°, θmin = 3.0°
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) h = −8→7
Tmin = 0.44, Tmax = 0.80 k = −17→23
15060 measured reflections l = −20→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.046P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
6015 reflections Δρmax = 1.98 e Å3
289 parameters Δρmin = −1.01 e Å3
1 restraint Absolute structure: Flack (1983), 1659 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1A 0.51472 (6) 0.01154 (2) 0.19512 (2) 0.02514 (9)
O1A −0.2353 (8) 0.2574 (3) 0.4305 (3) 0.0262 (9)
N1A −0.0803 (9) 0.3076 (4) 0.3739 (4) 0.0316 (10)
C1A 0.0530 (10) 0.2453 (4) 0.3322 (4) 0.0256 (12)
C2A 0.2425 (11) 0.2686 (4) 0.2666 (5) 0.0303 (13)
H2A 0.2765 0.3276 0.2499 0.036*
C3A 0.3651 (11) 0.2002 (4) 0.2316 (4) 0.0261 (11)
H3A 0.4926 0.2110 0.1894 0.031*
C4A 0.3088 (10) 0.1115 (4) 0.2561 (4) 0.0219 (10)
C5A 0.1314 (10) 0.0903 (4) 0.3171 (4) 0.0204 (10)
H5A 0.0981 0.0309 0.3328 0.024*
C6A −0.0029 (10) 0.1613 (3) 0.3564 (4) 0.0201 (10)
C7A −0.1871 (10) 0.1707 (4) 0.4203 (4) 0.0213 (10)
C8A −0.3335 (10) 0.1101 (4) 0.4753 (4) 0.0204 (10)
C9A −0.2895 (11) 0.0191 (4) 0.4735 (4) 0.0260 (11)
H9A −0.1608 −0.0034 0.4373 0.031*
C10A −0.4324 (12) −0.0380 (4) 0.5240 (4) 0.0267 (12)
H10A −0.3982 −0.0992 0.5230 0.032*
C11A −0.6211 (10) −0.0080 (4) 0.5750 (4) 0.0296 (14)
H11A −0.7201 −0.0478 0.6084 0.036*
C12A −0.6676 (11) 0.0838 (4) 0.5776 (4) 0.0229 (11)
H12A −0.7973 0.1054 0.6138 0.027*
C13A −0.5264 (10) 0.1421 (4) 0.5282 (4) 0.0220 (11)
H13A −0.5597 0.2033 0.5300 0.026*
I1B −0.05111 (7) 0.30782 (2) 0.66158 (3) 0.02711 (9)
O1B 0.7816 (8) 0.2167 (3) 1.0229 (3) 0.0258 (8)
N1B 0.6242 (9) 0.2844 (3) 1.0482 (4) 0.0270 (10)
C1B 0.4622 (10) 0.2937 (3) 0.9704 (4) 0.0232 (11)
C2B 0.2531 (11) 0.3519 (4) 0.9611 (5) 0.0272 (12)
H2B 0.2166 0.3890 1.0136 0.033*
C3B 0.1074 (11) 0.3530 (4) 0.8749 (4) 0.0249 (11)
H3B −0.0335 0.3907 0.8673 0.030*
C4B 0.1657 (9) 0.2974 (3) 0.7956 (4) 0.0206 (10)
C5B 0.3589 (10) 0.2384 (4) 0.8030 (4) 0.0220 (11)
H5B 0.3902 0.2010 0.7501 0.026*
C6B 0.5112 (10) 0.2353 (3) 0.8931 (4) 0.0199 (10)
C7B 0.7150 (10) 0.1873 (3) 0.9304 (4) 0.0196 (10)
C8B 0.8618 (10) 0.1135 (4) 0.8959 (4) 0.0216 (10)
C9B 0.8005 (11) 0.0769 (4) 0.8031 (4) 0.0258 (12)
H9B 0.6644 0.0996 0.7621 0.031*
C10B 0.9389 (10) 0.0082 (4) 0.7720 (4) 0.0255 (10)
H10B 0.8969 −0.0158 0.7089 0.031*
C11B 1.1383 (12) −0.0274 (4) 0.8297 (4) 0.0285 (12)
H11B 1.2315 −0.0753 0.8076 0.034*
C12B 1.1968 (11) 0.0099 (5) 0.9218 (4) 0.0301 (11)
H12B 1.3328 −0.0131 0.9626 0.036*
C13B 1.0630 (11) 0.0790 (4) 0.9549 (4) 0.0253 (11)
H13B 1.1071 0.1032 1.0177 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1A 0.02109 (16) 0.03002 (19) 0.02445 (17) 0.00079 (15) 0.00275 (13) −0.00571 (15)
O1A 0.028 (2) 0.021 (2) 0.031 (2) 0.0056 (16) 0.0085 (17) 0.0011 (16)
N1A 0.036 (3) 0.024 (2) 0.037 (3) −0.001 (3) 0.014 (2) 0.007 (2)
C1A 0.010 (2) 0.055 (4) 0.011 (2) 0.000 (2) −0.0008 (18) 0.000 (2)
C2A 0.029 (3) 0.033 (3) 0.030 (3) −0.001 (3) 0.006 (2) 0.011 (2)
C3A 0.029 (3) 0.028 (3) 0.022 (3) 0.001 (2) 0.006 (2) 0.004 (2)
C4A 0.021 (3) 0.025 (3) 0.020 (2) 0.006 (2) −0.0003 (19) −0.002 (2)
C5A 0.021 (3) 0.015 (2) 0.025 (3) 0.000 (2) 0.001 (2) −0.0027 (19)
C6A 0.021 (3) 0.018 (3) 0.021 (3) 0.000 (2) 0.001 (2) 0.0002 (19)
C7A 0.020 (3) 0.021 (3) 0.022 (3) 0.001 (2) −0.003 (2) 0.0008 (19)
C8A 0.021 (2) 0.023 (3) 0.017 (2) 0.001 (2) 0.0032 (19) −0.0026 (19)
C9A 0.042 (3) 0.018 (3) 0.019 (2) 0.005 (3) 0.005 (2) −0.001 (2)
C10A 0.039 (3) 0.017 (3) 0.024 (3) −0.001 (2) 0.000 (2) 0.002 (2)
C11A 0.021 (3) 0.048 (4) 0.020 (3) −0.012 (2) 0.001 (2) 0.008 (2)
C12A 0.020 (3) 0.026 (3) 0.023 (3) 0.000 (2) 0.000 (2) −0.003 (2)
C13A 0.020 (3) 0.025 (3) 0.021 (3) 0.003 (2) 0.001 (2) −0.002 (2)
I1B 0.02550 (18) 0.02499 (18) 0.03013 (19) 0.00099 (17) −0.00173 (14) 0.00057 (16)
O1B 0.032 (2) 0.028 (2) 0.0171 (19) −0.0014 (18) 0.0017 (15) −0.0014 (16)
N1B 0.035 (3) 0.021 (2) 0.025 (2) −0.0026 (19) 0.004 (2) 0.0006 (17)
C1B 0.030 (3) 0.022 (3) 0.019 (2) −0.005 (2) 0.007 (2) 0.0006 (18)
C2B 0.027 (3) 0.026 (3) 0.030 (3) −0.003 (2) 0.012 (2) 0.001 (2)
C3B 0.021 (3) 0.024 (3) 0.032 (3) 0.000 (2) 0.009 (2) −0.001 (2)
C4B 0.022 (2) 0.018 (3) 0.022 (2) −0.004 (2) 0.0011 (19) 0.0015 (18)
C5B 0.023 (3) 0.021 (3) 0.022 (3) −0.004 (2) 0.003 (2) −0.0012 (19)
C6B 0.021 (3) 0.018 (2) 0.021 (3) −0.003 (2) 0.005 (2) −0.0020 (18)
C7B 0.023 (3) 0.017 (2) 0.019 (2) −0.005 (2) 0.002 (2) 0.0018 (18)
C8B 0.020 (3) 0.019 (2) 0.026 (3) −0.003 (2) 0.003 (2) 0.003 (2)
C9B 0.024 (3) 0.028 (3) 0.025 (3) 0.000 (2) 0.000 (2) 0.001 (2)
C10B 0.026 (3) 0.025 (3) 0.026 (2) 0.002 (3) 0.0045 (19) −0.004 (2)
C11B 0.029 (3) 0.026 (3) 0.031 (3) 0.003 (2) 0.009 (2) 0.004 (2)
C12B 0.029 (3) 0.031 (3) 0.029 (3) 0.005 (3) −0.003 (2) 0.006 (3)
C13B 0.027 (3) 0.028 (3) 0.020 (3) 0.001 (2) −0.002 (2) 0.002 (2)

Geometric parameters (Å, º)

I1A—C4A 2.100 (5) I1B—C4B 2.100 (5)
O1A—C7A 1.354 (6) O1B—C7B 1.366 (6)
O1A—N1A 1.413 (6) O1B—N1B 1.397 (6)
N1A—C1A 1.346 (8) N1B—C1B 1.329 (8)
C1A—C6A 1.361 (8) C1B—C6B 1.427 (7)
C1A—C2A 1.462 (8) C1B—C2B 1.430 (8)
C2A—C3A 1.344 (9) C2B—C3B 1.363 (9)
C2A—H2A 0.9500 C2B—H2B 0.9500
C3A—C4A 1.430 (8) C3B—C4B 1.437 (8)
C3A—H3A 0.9500 C3B—H3B 0.9500
C4A—C5A 1.362 (7) C4B—C5B 1.371 (8)
C5A—C6A 1.432 (7) C5B—C6B 1.426 (8)
C5A—H5A 0.9500 C5B—H5B 0.9500
C6A—C7A 1.387 (7) C6B—C7B 1.379 (7)
C7A—C8A 1.466 (7) C7B—C8B 1.475 (8)
C8A—C9A 1.405 (8) C8B—C13B 1.398 (8)
C8A—C13A 1.405 (7) C8B—C9B 1.406 (8)
C9A—C10A 1.387 (8) C9B—C10B 1.374 (8)
C9A—H9A 0.9500 C9B—H9B 0.9500
C10A—C11A 1.362 (8) C10B—C11B 1.389 (8)
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.420 (9) C11B—C12B 1.399 (9)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—C13A 1.384 (8) C12B—C13B 1.374 (9)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—H13A 0.9500 C13B—H13B 0.9500
C7A—O1A—N1A 110.0 (4) C7B—O1B—N1B 110.9 (4)
C1A—N1A—O1A 102.4 (5) C1B—N1B—O1B 104.3 (4)
N1A—C1A—C6A 114.9 (5) N1B—C1B—C6B 112.5 (5)
N1A—C1A—C2A 121.2 (6) N1B—C1B—C2B 126.5 (5)
C6A—C1A—C2A 123.9 (6) C6B—C1B—C2B 121.0 (5)
C3A—C2A—C1A 115.1 (6) C3B—C2B—C1B 118.3 (5)
C3A—C2A—H2A 122.5 C3B—C2B—H2B 120.8
C1A—C2A—H2A 122.5 C1B—C2B—H2B 120.8
C2A—C3A—C4A 121.7 (5) C2B—C3B—C4B 120.4 (5)
C2A—C3A—H3A 119.1 C2B—C3B—H3B 119.8
C4A—C3A—H3A 119.1 C4B—C3B—H3B 119.8
C5A—C4A—C3A 122.9 (5) C5B—C4B—C3B 122.9 (5)
C5A—C4A—I1A 119.7 (4) C5B—C4B—I1B 118.4 (4)
C3A—C4A—I1A 117.4 (4) C3B—C4B—I1B 118.7 (4)
C4A—C5A—C6A 117.1 (5) C4B—C5B—C6B 117.5 (5)
C4A—C5A—H5A 121.4 C4B—C5B—H5B 121.2
C6A—C5A—H5A 121.4 C6B—C5B—H5B 121.2
C1A—C6A—C7A 104.0 (5) C7B—C6B—C5B 136.0 (5)
C1A—C6A—C5A 119.2 (5) C7B—C6B—C1B 104.2 (5)
C7A—C6A—C5A 136.8 (5) C5B—C6B—C1B 119.8 (5)
O1A—C7A—C6A 108.7 (5) O1B—C7B—C6B 108.0 (4)
O1A—C7A—C8A 116.4 (5) O1B—C7B—C8B 116.3 (5)
C6A—C7A—C8A 134.9 (5) C6B—C7B—C8B 135.6 (5)
C9A—C8A—C13A 119.0 (5) C13B—C8B—C9B 119.2 (5)
C9A—C8A—C7A 120.9 (5) C13B—C8B—C7B 120.6 (5)
C13A—C8A—C7A 120.1 (5) C9B—C8B—C7B 120.2 (5)
C10A—C9A—C8A 120.5 (5) C10B—C9B—C8B 119.6 (6)
C10A—C9A—H9A 119.8 C10B—C9B—H9B 120.2
C8A—C9A—H9A 119.8 C8B—C9B—H9B 120.2
C11A—C10A—C9A 121.2 (5) C9B—C10B—C11B 122.1 (6)
C11A—C10A—H10A 119.4 C9B—C10B—H10B 118.9
C9A—C10A—H10A 119.4 C11B—C10B—H10B 118.9
C10A—C11A—C12A 118.9 (5) C10B—C11B—C12B 117.5 (6)
C10A—C11A—H11A 120.5 C10B—C11B—H11B 121.3
C12A—C11A—H11A 120.5 C12B—C11B—H11B 121.3
C13A—C12A—C11A 120.9 (5) C13B—C12B—C11B 121.8 (5)
C13A—C12A—H12A 119.6 C13B—C12B—H12B 119.1
C11A—C12A—H12A 119.6 C11B—C12B—H12B 119.1
C12A—C13A—C8A 119.5 (5) C12B—C13B—C8B 119.8 (5)
C12A—C13A—H13A 120.3 C12B—C13B—H13B 120.1
C8A—C13A—H13A 120.3 C8B—C13B—H13B 120.1

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1B–C6B ring.

D—H···A D—H H···A D···A D—H···A
C3A—H3A···N1Bi 0.95 2.40 3.247 (7) 149
C11A—H11A···N1Aii 0.95 2.47 3.339 (8) 152
C4A—I1A···Cgiii 2.10 (1) 3.62 (1) 5.637 (6) 160 (1)
C4B—I1B···O1A 2.10 (1) 3.34 (1) 5.325 (7) 156 (1)

Symmetry codes: (i) x, y, z−1; (ii) −x−1, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2554).

References

  1. Angibaud, P., Bourdrez, X., Devine, A., End, D. W., Freyne, E., Ligny, Y., Muller, P., Mannens, G., Pilatte, I., Poncelet, V., Skrzat, S., Smets, G., Van Dun, J., Van Remoortere, P., Venet, M. & Wouters, W. (2003). Bioorg. Med. Chem. Lett. 13, 1543–1548. [DOI] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Davis, R. B. & Pizzini, L. C. (1960). J. Org. Chem. 25, 1884–1888.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hester, J. B., Ludens, J. H., Emmert, D. E. & West, B. E. (1989). J. Med. Chem. 32, 1157–1163. [DOI] [PubMed]
  6. McEvoy, F. J., Greenblatt, E. N., Osterrerg, A. C. & Allen, G. R. Jr (1968). J. Med. Chem. 11, 1248–1250. [DOI] [PubMed]
  7. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Wrocław, Poland.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Teslenko, Y., Matiychuk, V., Obushak, M., Kinzhybalo, V. & Ślepokura, K. (2008). Acta Cryst. E64, o2420. [DOI] [PMC free article] [PubMed]
  10. Walsh, D. A., Moran, H. W., Shamblee, D. A. & Welstead, W. J. (1990). J. Med. Chem. 33, 2296–2304. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813005862/gk2554sup1.cif

e-69-0o508-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813005862/gk2554Isup2.hkl

e-69-0o508-Isup2.hkl (294.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813005862/gk2554Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536813005862/gk2554Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES