Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 9;69(Pt 4):o513. doi: 10.1107/S1600536813006119

3-(4-Nitro­benz­yl)-4H-chromen-4-one

Kaalin Gopaul a, Neil Anthony Koorbanally a,*, Mahidansha M Shaikh a, Deresh Ramjugernath b, Hong Su c
PMCID: PMC3629541  PMID: 23634059

Abstract

In the title compound, C16H11NO4, the dihedral angle between the ten-membered chromen-4-one ring system (r.m.s. deviation = 0.0095 Å) and the benzene ring is 86.16 (5)°. In the crystal, mol­ecules are linked into a three-dimensional network by weak C—H⋯O hydrogen bonds. The crystal studied was a non-merohedral twin, with the minor twin component refining to 0.093 (1).

Related literature  

For the preparation, see: Desideri et al. (2011); Valkonen et al. (2012). For related structures, see: Valkonen et al. (2012); Gopaul et al. (2013). For the biological activity of homoisoflavonoids, see: Abegaz et al. (2007).graphic file with name e-69-0o513-scheme1.jpg

Experimental  

Crystal data  

  • C16H11NO4

  • M r = 281.26

  • Monoclinic, Inline graphic

  • a = 4.9246 (9) Å

  • b = 10.0160 (19) Å

  • c = 25.907 (5) Å

  • β = 92.845 (4)°

  • V = 1276.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.35 × 0.09 × 0.08 mm

Data collection  

  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 1997) T min = 0.964, T max = 0.992

  • 87638 measured reflections

  • 3303 independent reflections

  • 2887 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.154

  • S = 1.09

  • 3303 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006119/fj2618sup1.cif

e-69-0o513-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006119/fj2618Isup2.hkl

e-69-0o513-Isup2.hkl (162KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006119/fj2618Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.38 3.322 (3) 170
C7—H7⋯O3ii 0.95 2.56 3.491 (3) 166
C9—H9⋯O4iii 0.95 2.42 3.355 (3) 167
C13—H13⋯O3iv 0.95 2.53 3.382 (3) 149
C16—H16⋯O2v 0.95 2.46 3.378 (3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank the University of KwaZulu-Natal and the South Africa Research Chairs initiative of the Department of Science and Technology for financial support and the National Research Foundation of South Africa for a bursary for KG.

supplementary crystallographic information

Comment

Homoisoflavonoids are a group of naturally occurring oxygen heterocyclic compounds, related to the flavonoids, which consists of a chromone skeleton with a benzyl or benzylidene group at C-3. In the 3-benzyl-4-chromonanone class of homoisoflavonoid, an extra methylene group exists between the phenyl group and the chromone skeleton. They are commonly synthesized by either the acid or base catalysed condensation of an aromatic aldehyde with chromanone (Desideri et al., 2011, Valkonen et al., 2012). Naturally occurring homoisoflavonoids are normally oxygenated and have shown a wide range of biological activities (Abegaz et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the 10-membered co-planar chromone ring and the nitrated phenyl ring is 86.16 (5)°. In the crystal, the inter-moclecular weak hydrogen bonds C—H···O link the molecules into a three dimentional network, as shown in Fig.2. The details of the hydrogen bonds are shown in Table 1.

Experimental

A mixture of chroman-4-one (1.02 g, 6.749 mmol), 4-nitrobenzaldehyde (1.22 g, 8.099 mmol) and 10–15 drops of piperidine was heated at 80°C for 12 hrs. The reaction mixture was monitored for completion by thin layer chromatography. Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. To the viscous reaction mixture, 20 ml of ethyl acetate was added. Upon the addition of hexane to the reaction mixture, the homoisoflavonoid precipitated out. The powdered product was filtered, washed with hexane and dried under vacuum. Upon slow evaporation of chloroform, the crystals of the homoisoflavonoid were obtained. (m.p. of 179–180 °C).

1H NMR (400 MHz, CDCl3) δ: 3.87 (2H, s, H-9), 7.38 (1H, t, J=7.54 Hz, H-6), 7.41 (1H, d, J=8.60 Hz, H-8), 7.45 (1H, d, J=8.48 Hz, H-2'/6'), 7.65 (1H, td, J=8.32, 1.10 Hz, H-7), 7.79 (1H, s, H-2), 8.12 (1H, d, J=8.56 Hz, H-3'/5'), 8.18 (1H, dd, J=7.98, 0.66 Hz, H-5).

13C NMR (100 MHz, CDCl3) δ: 31.89 (C-9), 118.15 (C-8), 123.06 (C-3/1'), 123.79 (C-3'/5'), 123.83 (C-4a), 125.32 (C-6), 125.92 (C-5), 129.65 (C-2'/6'), 133.84 (C-7), 146.76 (C-4'), 153.14 (C-2), 156.52 (C-8a), 177.18 (C-4).

Refinement

The crystal was a non-merohedral twin. Two domains were indexed using CELL_NOW1 and the intensity data for each domain was then integrated, reduced using the program SAINT. The combined data were scaled and absorption correction performed using TWINABS. The structure was solved by direct methods using SHELXS97 and refined by full-matrix least-squares methods based on F2 using SHELXL97. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions and refined with geometrical constraints. The structure was refined to R factor = 0.0504, BASF = 0.093 (1) for HKLF5.

Figures

Fig. 1.

Fig. 1.

: A view of the molecule with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as circles of arbitary size.

Fig. 2.

Fig. 2.

: Projection viewed along the a axis, showing the inter-molecular C—H···O hydrogen bonding network. The H-bond involving H atoms on the molecule of the asymmetric unit were marked for identification. The other H atoms were omitted for clarity. The H-bonds are shown as dotted lines.

Crystal data

C16H11NO4 F(000) = 584
Mr = 281.26 Dx = 1.464 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3303 reflections
a = 4.9246 (9) Å θ = 1.6–27.4°
b = 10.0160 (19) Å µ = 0.11 mm1
c = 25.907 (5) Å T = 173 K
β = 92.845 (4)° Needle, colourless
V = 1276.3 (4) Å3 0.35 × 0.09 × 0.08 mm
Z = 4

Data collection

Bruker Kappa DUO APEXII diffractometer 3303 independent reflections
Radiation source: fine-focus sealed tube 2887 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
0.5° φ scans and ω scans θmax = 27.4°, θmin = 1.6°
Absorption correction: multi-scan (TWINABS; Sheldrick, 1997) h = −6→6
Tmin = 0.964, Tmax = 0.992 k = 0→12
87638 measured reflections l = 0→33

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.7278P] where P = (Fo2 + 2Fc2)/3
3303 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9485 (3) 0.30392 (15) 0.16095 (6) 0.0339 (4)
O2 0.3498 (3) 0.50967 (15) 0.23136 (6) 0.0355 (4)
O3 0.8175 (4) 0.63590 (18) 0.49727 (6) 0.0449 (4)
O4 1.1513 (4) 0.7098 (2) 0.45470 (7) 0.0522 (5)
N1 0.9499 (4) 0.63878 (18) 0.45839 (7) 0.0328 (4)
C1 0.8059 (4) 0.4022 (2) 0.13399 (8) 0.0282 (4)
C2 0.8774 (5) 0.2756 (2) 0.20963 (8) 0.0323 (4)
H2 0.9747 0.2063 0.2275 0.039*
C3 0.6800 (4) 0.33749 (19) 0.23490 (7) 0.0281 (4)
C4 0.5276 (4) 0.44552 (19) 0.20968 (7) 0.0264 (4)
C5 0.5991 (4) 0.47384 (19) 0.15623 (7) 0.0260 (4)
C6 0.4653 (5) 0.5734 (2) 0.12658 (8) 0.0333 (5)
H6 0.3235 0.6233 0.1410 0.040*
C7 0.5368 (5) 0.6000 (2) 0.07681 (9) 0.0383 (5)
H7 0.4457 0.6681 0.0572 0.046*
C8 0.7441 (5) 0.5262 (3) 0.05552 (8) 0.0402 (5)
H8 0.7927 0.5445 0.0212 0.048*
C9 0.8801 (5) 0.4268 (2) 0.08354 (8) 0.0364 (5)
H9 1.0205 0.3767 0.0688 0.044*
C10 0.6125 (5) 0.2953 (2) 0.28877 (8) 0.0343 (5)
H10A 0.6971 0.2072 0.2960 0.041*
H10B 0.4131 0.2836 0.2895 0.041*
C11 0.7026 (4) 0.39038 (19) 0.33199 (7) 0.0273 (4)
C12 0.5763 (5) 0.3825 (2) 0.37937 (8) 0.0347 (5)
H12 0.4330 0.3203 0.3831 0.042*
C13 0.6553 (5) 0.4630 (2) 0.42049 (8) 0.0341 (5)
H13 0.5682 0.4569 0.4523 0.041*
C14 0.8652 (4) 0.55301 (19) 0.41435 (7) 0.0273 (4)
C15 0.9971 (4) 0.5640 (2) 0.36858 (8) 0.0313 (4)
H15 1.1411 0.6261 0.3653 0.038*
C16 0.9136 (4) 0.4816 (2) 0.32739 (8) 0.0309 (4)
H16 1.0018 0.4879 0.2957 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0369 (8) 0.0348 (7) 0.0303 (7) 0.0077 (7) 0.0045 (6) −0.0026 (6)
O2 0.0400 (8) 0.0371 (8) 0.0303 (8) 0.0037 (7) 0.0105 (6) −0.0019 (6)
O3 0.0529 (10) 0.0535 (10) 0.0290 (8) −0.0090 (8) 0.0089 (7) −0.0110 (7)
O4 0.0546 (11) 0.0583 (11) 0.0440 (10) −0.0286 (9) 0.0047 (8) −0.0118 (8)
N1 0.0365 (9) 0.0334 (9) 0.0284 (9) −0.0030 (8) 0.0001 (7) −0.0015 (7)
C1 0.0308 (9) 0.0287 (9) 0.0250 (9) −0.0015 (8) 0.0003 (8) −0.0025 (7)
C2 0.0409 (11) 0.0274 (9) 0.0282 (10) 0.0017 (9) −0.0023 (9) −0.0006 (8)
C3 0.0368 (10) 0.0251 (9) 0.0222 (9) −0.0056 (8) 0.0003 (8) −0.0022 (7)
C4 0.0315 (9) 0.0242 (8) 0.0237 (9) −0.0051 (8) 0.0034 (8) −0.0030 (7)
C5 0.0282 (9) 0.0256 (9) 0.0243 (9) −0.0035 (7) 0.0019 (8) −0.0025 (7)
C6 0.0362 (10) 0.0321 (10) 0.0316 (10) 0.0035 (9) 0.0018 (9) 0.0024 (8)
C7 0.0425 (12) 0.0404 (11) 0.0318 (11) 0.0005 (10) −0.0014 (9) 0.0089 (9)
C8 0.0433 (12) 0.0524 (13) 0.0251 (10) −0.0064 (11) 0.0037 (9) 0.0058 (9)
C9 0.0358 (11) 0.0461 (12) 0.0278 (10) −0.0012 (10) 0.0067 (9) −0.0044 (9)
C10 0.0513 (13) 0.0276 (9) 0.0239 (10) −0.0063 (9) 0.0009 (9) 0.0014 (8)
C11 0.0334 (10) 0.0260 (9) 0.0222 (9) 0.0002 (8) −0.0005 (8) 0.0026 (7)
C12 0.0384 (11) 0.0375 (11) 0.0286 (10) −0.0126 (9) 0.0042 (9) 0.0005 (8)
C13 0.0365 (11) 0.0414 (11) 0.0249 (9) −0.0062 (9) 0.0065 (9) −0.0004 (8)
C14 0.0290 (9) 0.0290 (9) 0.0238 (9) 0.0007 (8) −0.0001 (7) −0.0001 (7)
C15 0.0320 (10) 0.0334 (10) 0.0285 (10) −0.0060 (8) 0.0017 (8) 0.0022 (8)
C16 0.0337 (10) 0.0340 (10) 0.0253 (9) −0.0029 (9) 0.0054 (8) 0.0017 (8)

Geometric parameters (Å, º)

O1—C2 1.356 (3) C7—H7 0.9500
O1—C1 1.379 (3) C8—C9 1.385 (3)
O2—C4 1.243 (2) C8—H8 0.9500
O3—N1 1.227 (2) C9—H9 0.9500
O4—N1 1.228 (2) C10—C11 1.519 (3)
N1—C14 1.472 (3) C10—H10A 0.9900
C1—C5 1.394 (3) C10—H10B 0.9900
C1—C9 1.397 (3) C11—C16 1.393 (3)
C2—C3 1.350 (3) C11—C12 1.406 (3)
C2—H2 0.9500 C12—C13 1.376 (3)
C3—C4 1.453 (3) C12—H12 0.9500
C3—C10 1.511 (3) C13—C14 1.387 (3)
C4—C5 1.473 (3) C13—H13 0.9500
C5—C6 1.403 (3) C14—C15 1.385 (3)
C6—C7 1.379 (3) C15—C16 1.394 (3)
C6—H6 0.9500 C15—H15 0.9500
C7—C8 1.396 (3) C16—H16 0.9500
C2—O1—C1 118.18 (16) C8—C9—C1 118.4 (2)
O3—N1—O4 122.80 (18) C8—C9—H9 120.8
O3—N1—C14 118.74 (17) C1—C9—H9 120.8
O4—N1—C14 118.46 (18) C3—C10—C11 115.84 (17)
O1—C1—C5 121.51 (18) C3—C10—H10A 108.3
O1—C1—C9 116.75 (18) C11—C10—H10A 108.3
C5—C1—C9 121.74 (19) C3—C10—H10B 108.3
C3—C2—O1 125.48 (19) C11—C10—H10B 108.3
C3—C2—H2 117.3 H10A—C10—H10B 107.4
O1—C2—H2 117.3 C16—C11—C12 118.41 (18)
C2—C3—C4 119.50 (18) C16—C11—C10 122.68 (18)
C2—C3—C10 121.08 (19) C12—C11—C10 118.86 (18)
C4—C3—C10 119.42 (18) C13—C12—C11 121.51 (19)
O2—C4—C3 122.79 (18) C13—C12—H12 119.2
O2—C4—C5 122.13 (18) C11—C12—H12 119.2
C3—C4—C5 115.08 (17) C12—C13—C14 118.41 (18)
C1—C5—C6 118.21 (18) C12—C13—H13 120.8
C1—C5—C4 120.18 (18) C14—C13—H13 120.8
C6—C5—C4 121.60 (18) C15—C14—C13 122.27 (19)
C7—C6—C5 121.0 (2) C15—C14—N1 119.37 (18)
C7—C6—H6 119.5 C13—C14—N1 118.35 (17)
C5—C6—H6 119.5 C14—C15—C16 118.37 (19)
C6—C7—C8 119.5 (2) C14—C15—H15 120.8
C6—C7—H7 120.2 C16—C15—H15 120.8
C8—C7—H7 120.2 C11—C16—C15 121.03 (18)
C9—C8—C7 121.2 (2) C11—C16—H16 119.5
C9—C8—H8 119.4 C15—C16—H16 119.5
C7—C8—H8 119.4
C2—O1—C1—C5 1.8 (3) C7—C8—C9—C1 −0.3 (4)
C2—O1—C1—C9 −178.58 (19) O1—C1—C9—C8 −179.1 (2)
C1—O1—C2—C3 −1.4 (3) C5—C1—C9—C8 0.5 (3)
O1—C2—C3—C4 −0.9 (3) C2—C3—C10—C11 107.3 (2)
O1—C2—C3—C10 178.39 (19) C4—C3—C10—C11 −73.4 (3)
C2—C3—C4—O2 −177.5 (2) C3—C10—C11—C16 −23.1 (3)
C10—C3—C4—O2 3.2 (3) C3—C10—C11—C12 159.7 (2)
C2—C3—C4—C5 2.6 (3) C16—C11—C12—C13 0.4 (3)
C10—C3—C4—C5 −176.76 (17) C10—C11—C12—C13 177.8 (2)
O1—C1—C5—C6 179.24 (18) C11—C12—C13—C14 −0.1 (3)
C9—C1—C5—C6 −0.3 (3) C12—C13—C14—C15 −0.3 (3)
O1—C1—C5—C4 −0.1 (3) C12—C13—C14—N1 −179.9 (2)
C9—C1—C5—C4 −179.63 (19) O3—N1—C14—C15 174.2 (2)
O2—C4—C5—C1 177.96 (19) O4—N1—C14—C15 −6.2 (3)
C3—C4—C5—C1 −2.1 (3) O3—N1—C14—C13 −6.2 (3)
O2—C4—C5—C6 −1.3 (3) O4—N1—C14—C13 173.4 (2)
C3—C4—C5—C6 178.63 (18) C13—C14—C15—C16 0.4 (3)
C1—C5—C6—C7 −0.1 (3) N1—C14—C15—C16 179.96 (19)
C4—C5—C6—C7 179.1 (2) C12—C11—C16—C15 −0.3 (3)
C5—C6—C7—C8 0.4 (3) C10—C11—C16—C15 −177.6 (2)
C6—C7—C8—C9 −0.2 (4) C14—C15—C16—C11 0.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2i 0.95 2.38 3.322 (3) 170
C7—H7···O3ii 0.95 2.56 3.491 (3) 166
C9—H9···O4iii 0.95 2.42 3.355 (3) 167
C13—H13···O3iv 0.95 2.53 3.382 (3) 149
C16—H16···O2v 0.95 2.46 3.378 (3) 163

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+5/2, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2618).

References

  1. Abegaz, B. M., Mutanyatta-Comar, J. & Nindi, M. (2007). Nat. Prod. Commun. 2, 475–498.
  2. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Desideri, N., Bolasco, A., Fioravanti, R., Proietti Monaco, L., Orallo, F., Yáñez, M., Ortuso, F. & Alcaro, S. (2011). J. Med. Chem. 54, 2155–2164. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Gopaul, K., Koorbanally, N. A., Shaikh, M., Su, H. & Ramjugernath, D. (2013). Acta Cryst. E69, o364. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1997). TWINABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Valkonen, A., Laihia, K., Kolehmainen, E., Kauppinen, R. & Perjési, P. (2012). Struct. Chem. 23, 209–217.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006119/fj2618sup1.cif

e-69-0o513-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006119/fj2618Isup2.hkl

e-69-0o513-Isup2.hkl (162KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006119/fj2618Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES