Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 9;69(Pt 4):o514. doi: 10.1107/S1600536813006302

(E)-3-(3,5-Dimeth­oxy­phen­yl)-1-(2-meth­oxy­phen­yl)prop-2-en-1-one

Yoongho Lim a, Dongsoo Koh b,*
PMCID: PMC3629573  PMID: 23634060

Abstract

In the title mol­ecule, C18H18O4, the dihedral angle between the benzene rings is 52.52 (7)°. The C=C bond of the central enone group adopts a trans conformation. The relative conformation of the two double bonds in the enone group is s-transoid. In the crystal, mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds, forming inversion dimers.

Related literature  

For the synthesis and biological properties of chalcone derivatives, see: Shin et al. (2012); Hwang et al. (2011). For related structures, see: Fun et al. (2012); Lee et al. (2012); Prasath et al. (2010).graphic file with name e-69-0o514-scheme1.jpg

Experimental  

Crystal data  

  • C18H18O4

  • M r = 298.32

  • Monoclinic, Inline graphic

  • a = 12.0925 (18) Å

  • b = 8.4460 (12) Å

  • c = 15.109 (2) Å

  • β = 92.340 (3)°

  • V = 1541.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.24 × 0.14 × 0.10 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • 11328 measured reflections

  • 3865 independent reflections

  • 1544 reflections with I > 2σ(I)

  • R int = 0.053

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.132

  • S = 0.81

  • 3865 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006302/lh5589sup1.cif

e-69-0o514-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006302/lh5589Isup2.hkl

e-69-0o514-Isup2.hkl (189.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006302/lh5589Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.51 3.457 (3) 172

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Chalcones have an α,β-unsaturated carbonyl (enone) group which connects two aromatic rings at the 1,3-positions. Typically, the conformation of enone system is s-cisoid, in which the C═C and C═O double bonds are cis with respect to each other. Few examples of s-transoid conformations have been reported in the literature (Fun et al., 2012; Prasath et al., 2010). As a part of our studies on the substituent effects of chalcones on structures and biological activities (Shin et al., 2012; Hwang et al., 2011), the crystal structure of title compound has been determined.

The molecular structure of the title compound is shown in Fig. 1. The relative conformation of two double bonds of the central enone group is s-transoid. The trans configuration at the C1═C2 bond is reflected in the O1-C1-C2-C3 torsion angle of -168.7 (2)° compared to the value of -1.1 (5)° in a structure with an s-cisoid configuration (Lee et al., 2012). The dihedral angle between the benzene rings is 52.52 (7)°. Two methoxy groups at meta positions of the C4-C6/C8/C9/C11 ring are essentially co-planar with the ring [C8—C6—O2—C7 = -2.4 (3)° and C11—C9—O3—C10 = -1.2 (3)°]. However, the methoxy group at the ortho position of the C12-C17 ring is slightly twisted with respect to the benzene ring [C16—C17—O4—C18 = 21.6 (3)°]. In the crystal, molecules are linked by a pair of weak C—H···O hydrogen bonds to form inversion dimers (Table 1, Fig. 2).

Experimental

To a solution of 3,5-dimethoxybenzaldehyde (415 mg, 2.5 mmol) in 30 ml of ethanol was added 2-methoxyacetophenone (300 mg, 2 mmol) and the temperature was adjusted to around 276 K in an ice-bath. To the cooled reaction mixture was added 2 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 5 h. This mixture was poured into iced water (50 ml) was acidified (pH = 3) with 3 N HCl solution to give a precipitate. Filtration and washing with water afforded crude solid of the title compound (560 mg, 94%). Recrystallization of the solid in ethanol gave single crystals (mp: 353–355 K).

Refinement

H atoms were placed in calculated positions and refined as riding with C—H = 0.95–0.98 Å, and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure showing an inversion dimer formed via a pair of weak intermolecular C—H···O hydrogen bonds shown as dashed lines.

Crystal data

C18H18O4 F(000) = 632
Mr = 298.32 Dx = 1.285 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2539 reflections
a = 12.0925 (18) Å θ = 2.7–28.1°
b = 8.4460 (12) Å µ = 0.09 mm1
c = 15.109 (2) Å T = 200 K
β = 92.340 (3)° Block, colorless
V = 1541.9 (4) Å3 0.24 × 0.14 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 1544 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.053
Graphite monochromator θmax = 28.5°, θmin = 1.7°
φ and ω scans h = −16→14
11328 measured reflections k = −11→10
3865 independent reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0575P)2] where P = (Fo2 + 2Fc2)/3
3865 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.40664 (18) 0.2012 (2) 0.41632 (14) 0.0370 (5)
O1 0.35034 (13) 0.11209 (19) 0.46017 (11) 0.0569 (5)
C2 0.52596 (18) 0.2050 (2) 0.43027 (13) 0.0366 (5)
H2 0.5597 0.1242 0.4658 0.044*
C3 0.59125 (17) 0.3144 (2) 0.39646 (13) 0.0359 (5)
H3 0.5557 0.3937 0.3609 0.043*
C4 0.71093 (17) 0.3259 (2) 0.40791 (14) 0.0352 (5)
C5 0.77006 (18) 0.2441 (2) 0.47412 (14) 0.0371 (5)
H5 0.7322 0.1807 0.5151 0.045*
C6 0.88426 (18) 0.2553 (2) 0.48006 (14) 0.0378 (5)
O2 0.93429 (13) 0.17546 (17) 0.54903 (10) 0.0498 (4)
C7 1.05199 (19) 0.1787 (3) 0.55712 (17) 0.0562 (7)
H7A 1.0827 0.1313 0.5043 0.084*
H7B 1.0770 0.1186 0.6097 0.084*
H7C 1.0773 0.2886 0.5630 0.084*
C8 0.94020 (17) 0.3433 (2) 0.41983 (14) 0.0384 (5)
H8 1.0187 0.3496 0.4239 0.046*
C9 0.88069 (18) 0.4234 (2) 0.35258 (15) 0.0379 (5)
O3 0.94471 (12) 0.50354 (18) 0.29569 (11) 0.0518 (5)
C10 0.8906 (2) 0.5865 (3) 0.22476 (16) 0.0587 (7)
H10A 0.8456 0.5124 0.1887 0.088*
H10B 0.9459 0.6359 0.1880 0.088*
H10C 0.8427 0.6685 0.2485 0.088*
C11 0.76750 (17) 0.4184 (2) 0.34780 (14) 0.0359 (5)
H11 0.7275 0.4778 0.3037 0.043*
C12 0.34924 (17) 0.3117 (2) 0.35221 (13) 0.0341 (5)
C13 0.26908 (18) 0.4123 (2) 0.38312 (14) 0.0392 (5)
H13 0.2521 0.4093 0.4439 0.047*
C14 0.21334 (18) 0.5168 (2) 0.32693 (15) 0.0427 (6)
H14 0.1595 0.5868 0.3490 0.051*
C15 0.23697 (18) 0.5181 (2) 0.23841 (15) 0.0426 (6)
H15 0.1986 0.5893 0.1994 0.051*
C16 0.31528 (18) 0.4178 (2) 0.20554 (14) 0.0399 (6)
H16 0.3303 0.4193 0.1443 0.048*
C17 0.37188 (17) 0.3148 (2) 0.26260 (14) 0.0351 (5)
O4 0.44767 (12) 0.20606 (17) 0.23581 (9) 0.0440 (4)
C18 0.4977 (2) 0.2339 (3) 0.15387 (16) 0.0613 (8)
H18A 0.4430 0.2171 0.1051 0.092*
H18B 0.5597 0.1605 0.1477 0.092*
H18C 0.5249 0.3431 0.1522 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0341 (13) 0.0409 (13) 0.0364 (12) −0.0028 (10) 0.0042 (10) 0.0045 (10)
O1 0.0405 (10) 0.0666 (11) 0.0637 (11) −0.0077 (8) 0.0019 (8) 0.0290 (9)
C2 0.0336 (13) 0.0404 (13) 0.0357 (12) 0.0040 (10) 0.0005 (10) 0.0056 (10)
C3 0.0343 (13) 0.0366 (12) 0.0369 (12) 0.0016 (9) 0.0009 (10) 0.0009 (10)
C4 0.0357 (13) 0.0331 (11) 0.0371 (12) 0.0008 (10) 0.0051 (10) −0.0023 (10)
C5 0.0377 (14) 0.0385 (12) 0.0350 (12) 0.0012 (10) −0.0012 (10) 0.0049 (10)
C6 0.0405 (14) 0.0335 (12) 0.0388 (13) 0.0078 (10) −0.0064 (11) 0.0005 (10)
O2 0.0446 (10) 0.0522 (10) 0.0517 (10) 0.0050 (8) −0.0108 (8) 0.0071 (8)
C7 0.0429 (16) 0.0523 (15) 0.0717 (18) 0.0036 (12) −0.0198 (13) 0.0017 (13)
C8 0.0283 (12) 0.0369 (12) 0.0497 (14) 0.0034 (10) −0.0019 (10) −0.0016 (11)
C9 0.0355 (13) 0.0327 (12) 0.0460 (14) −0.0014 (10) 0.0087 (11) 0.0003 (10)
O3 0.0360 (10) 0.0558 (10) 0.0642 (11) 0.0011 (8) 0.0085 (8) 0.0177 (9)
C10 0.0510 (17) 0.0658 (17) 0.0600 (17) 0.0020 (13) 0.0098 (14) 0.0228 (14)
C11 0.0307 (13) 0.0341 (12) 0.0428 (13) 0.0019 (9) 0.0014 (10) 0.0018 (10)
C12 0.0317 (12) 0.0335 (11) 0.0374 (12) −0.0039 (9) 0.0030 (10) 0.0025 (10)
C13 0.0375 (13) 0.0433 (13) 0.0370 (12) −0.0041 (10) 0.0044 (10) 0.0006 (11)
C14 0.0348 (13) 0.0378 (13) 0.0555 (16) 0.0000 (10) 0.0036 (11) −0.0028 (12)
C15 0.0350 (13) 0.0393 (13) 0.0530 (15) −0.0023 (10) −0.0050 (11) 0.0091 (11)
C16 0.0413 (14) 0.0417 (13) 0.0364 (13) −0.0043 (11) 0.0002 (11) 0.0060 (11)
C17 0.0318 (12) 0.0348 (12) 0.0389 (13) −0.0020 (10) 0.0040 (10) −0.0005 (10)
O4 0.0471 (10) 0.0489 (9) 0.0363 (9) 0.0096 (7) 0.0061 (7) 0.0007 (7)
C18 0.0630 (19) 0.0699 (17) 0.0529 (16) 0.0118 (14) 0.0248 (14) 0.0074 (14)

Geometric parameters (Å, º)

C1—O1 1.227 (2) O3—C10 1.418 (3)
C1—C2 1.450 (3) C10—H10A 0.9800
C1—C12 1.496 (3) C10—H10B 0.9800
C2—C3 1.331 (3) C10—H10C 0.9800
C2—H2 0.9500 C11—H11 0.9500
C3—C4 1.454 (3) C12—C13 1.384 (3)
C3—H3 0.9500 C12—C17 1.392 (3)
C4—C5 1.390 (3) C13—C14 1.381 (3)
C4—C11 1.398 (3) C13—H13 0.9500
C5—C6 1.384 (3) C14—C15 1.379 (3)
C5—H5 0.9500 C14—H14 0.9500
C6—O2 1.362 (2) C15—C16 1.378 (3)
C6—C8 1.374 (3) C15—H15 0.9500
O2—C7 1.424 (3) C16—C17 1.386 (3)
C7—H7A 0.9800 C16—H16 0.9500
C7—H7B 0.9800 C17—O4 1.370 (2)
C7—H7C 0.9800 O4—C18 1.420 (2)
C8—C9 1.396 (3) C18—H18A 0.9800
C8—H8 0.9500 C18—H18B 0.9800
C9—O3 1.361 (2) C18—H18C 0.9800
C9—C11 1.368 (3)
O1—C1—C2 120.4 (2) O3—C10—H10B 109.5
O1—C1—C12 118.7 (2) H10A—C10—H10B 109.5
C2—C1—C12 120.86 (18) O3—C10—H10C 109.5
C3—C2—C1 124.2 (2) H10A—C10—H10C 109.5
C3—C2—H2 117.9 H10B—C10—H10C 109.5
C1—C2—H2 117.9 C9—C11—C4 119.8 (2)
C2—C3—C4 127.2 (2) C9—C11—H11 120.1
C2—C3—H3 116.4 C4—C11—H11 120.1
C4—C3—H3 116.4 C13—C12—C17 119.01 (19)
C5—C4—C11 119.6 (2) C13—C12—C1 118.51 (18)
C5—C4—C3 122.21 (19) C17—C12—C1 122.46 (18)
C11—C4—C3 118.11 (19) C14—C13—C12 121.0 (2)
C6—C5—C4 119.7 (2) C14—C13—H13 119.5
C6—C5—H5 120.1 C12—C13—H13 119.5
C4—C5—H5 120.1 C15—C14—C13 119.1 (2)
O2—C6—C8 124.0 (2) C15—C14—H14 120.5
O2—C6—C5 115.25 (19) C13—C14—H14 120.5
C8—C6—C5 120.7 (2) C16—C15—C14 121.1 (2)
C6—O2—C7 117.86 (18) C16—C15—H15 119.4
O2—C7—H7A 109.5 C14—C15—H15 119.4
O2—C7—H7B 109.5 C15—C16—C17 119.4 (2)
H7A—C7—H7B 109.5 C15—C16—H16 120.3
O2—C7—H7C 109.5 C17—C16—H16 120.3
H7A—C7—H7C 109.5 O4—C17—C16 123.80 (18)
H7B—C7—H7C 109.5 O4—C17—C12 115.80 (18)
C6—C8—C9 119.4 (2) C16—C17—C12 120.32 (19)
C6—C8—H8 120.3 C17—O4—C18 117.45 (17)
C9—C8—H8 120.3 O4—C18—H18A 109.5
O3—C9—C11 125.1 (2) O4—C18—H18B 109.5
O3—C9—C8 114.3 (2) H18A—C18—H18B 109.5
C11—C9—C8 120.6 (2) O4—C18—H18C 109.5
C9—O3—C10 117.80 (18) H18A—C18—H18C 109.5
O3—C10—H10A 109.5 H18B—C18—H18C 109.5
O1—C1—C2—C3 −168.7 (2) C5—C4—C11—C9 2.3 (3)
C12—C1—C2—C3 7.7 (3) C3—C4—C11—C9 −175.44 (19)
C1—C2—C3—C4 179.76 (19) O1—C1—C12—C13 54.6 (3)
C2—C3—C4—C5 −16.2 (3) C2—C1—C12—C13 −121.9 (2)
C2—C3—C4—C11 161.5 (2) O1—C1—C12—C17 −124.0 (2)
C11—C4—C5—C6 0.2 (3) C2—C1—C12—C17 59.4 (3)
C3—C4—C5—C6 177.85 (19) C17—C12—C13—C14 −1.3 (3)
C4—C5—C6—O2 177.74 (18) C1—C12—C13—C14 −180.0 (2)
C4—C5—C6—C8 −1.7 (3) C12—C13—C14—C15 1.2 (3)
C8—C6—O2—C7 −2.4 (3) C13—C14—C15—C16 −0.3 (3)
C5—C6—O2—C7 178.19 (18) C14—C15—C16—C17 −0.5 (3)
O2—C6—C8—C9 −178.67 (19) C15—C16—C17—O4 177.12 (19)
C5—C6—C8—C9 0.7 (3) C15—C16—C17—C12 0.5 (3)
C6—C8—C9—O3 −178.56 (18) C13—C12—C17—O4 −176.49 (17)
C6—C8—C9—C11 1.9 (3) C1—C12—C17—O4 2.1 (3)
C11—C9—O3—C10 −1.2 (3) C13—C12—C17—C16 0.4 (3)
C8—C9—O3—C10 179.24 (19) C1—C12—C17—C16 179.03 (19)
O3—C9—C11—C4 177.11 (18) C16—C17—O4—C18 21.6 (3)
C8—C9—C11—C4 −3.4 (3) C12—C17—O4—C18 −161.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.95 2.51 3.457 (3) 172

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5589).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1560–o1561. [DOI] [PMC free article] [PubMed]
  3. Hwang, D., Hyun, J., Jo, G., Koh, D. & Lim, Y. (2011). Magn. Reson. Chem. 49, 41–45. [DOI] [PubMed]
  4. Lee, H.-J., Lim, Y. & Koh, D. (2012). Acta Cryst. E68, o3403. [DOI] [PMC free article] [PubMed]
  5. Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shin, S. Y., Ahn, S., Park, M. J., Yoon, H., Kim, M., Ji, S. Y., Koh, D., Lee, Y. H. & Lim, Y. (2012). J. Korean Soc. Appl. Biol. Chem. 55, 669–675.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006302/lh5589sup1.cif

e-69-0o514-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006302/lh5589Isup2.hkl

e-69-0o514-Isup2.hkl (189.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006302/lh5589Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES