Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 9;69(Pt 4):o518–o519. doi: 10.1107/S1600536813006296

2-(4-Bromo­anilino)-6-(4-chloro­phen­yl)-5-meth­oxy­carbonyl-4-methyl-3,6-dihydro­pyrimidin-1-ium chloride

K N Venugopala a,*, Susanta K Nayak b,*, Bharti Odhav a
PMCID: PMC3629576  PMID: 23634063

Abstract

In the title molecular salt, C19H18BrClN3O2 +·Cl, the dihedral angles between the pyrimidine ring and the chlorobenzene and bromobenzene rings are 72.4 (2) and 45.5 (2)°, respectively. The dihedral angle between the chlorobenzene and bromobenzene rings is 27.5 (2)°. The conformation of the mol­ecule is stabilized by an intra­molecular C—H⋯O inter­action. In the crystal, the anion and cation are linked by an N—H⋯Cl hydrogen bond. Pairs of weak C—H⋯O and C—H⋯Cl hydrogen bonds form inversion dimers. Further N—H⋯Cl hydrogen bonds form R 2 1(6) motifs and link the dimers into chains along [101]. Br⋯Cl short contacts [3.482 (2) Å] inter­link the hydrogen-bonded chains along the b-axis direction.

Related literature  

For a study of chloride salts of dihydro­pyrimidine derivatives and their anti-tubercular activity, see: Venugopala, Nayak, Pillay et al. (2012). For the crystal structures of dihydro­pyrimidine derivatives, see: Venugopala, Nayak & Odhav (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-0o518-scheme1.jpg

Experimental  

Crystal data  

  • C19H18BrClN3O2 +·Cl

  • M r = 471.17

  • Monoclinic, Inline graphic

  • a = 13.2691 (15) Å

  • b = 11.0965 (12) Å

  • c = 14.9545 (17) Å

  • β = 114.181 (3)°

  • V = 2008.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 100 K

  • 0.08 × 0.05 × 0.03 mm

Data collection  

  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.835, T max = 0.933

  • 10242 measured reflections

  • 3919 independent reflections

  • 2511 reflections with I > 2σ(I)

  • R int = 0.067

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.096

  • S = 0.95

  • 3919 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813006296/pv2621sup1.cif

e-69-0o518-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006296/pv2621Isup2.hkl

e-69-0o518-Isup2.hkl (188.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006296/pv2621Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.88 2.34 3.136 (3) 151
N2—H2⋯Cl2i 0.88 2.41 3.179 (3) 146
N3—H3⋯Cl2i 0.88 2.39 3.191 (3) 151
C5—H5A⋯O2 0.98 2.22 2.897 (5) 125
C15—H15⋯O2ii 0.95 2.42 3.197 (5) 139
C18—H18⋯Cl2iii 0.95 2.81 3.702 (4) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

supplementary crystallographic information

Comment

We have recently reported that the chloride salts of dihydropyrimidine derivatives exhibit anti-tubercular activity (Venugopala, Nayak, Pillay et al. 2012). In continuation of our work in this field and on the crystal structures of dihydropyrimidine derivatives (Venugopala, Nayak & Odhav, 2012), we now report in this article, the crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Venugopala, Nayak &Odhav, 2012).The dihedral angles between the planes of 4-chlorophenyl and 4-bromophenyl rings with the plane of the six-membered pyrimidine ring are 72.4 (2)° and 45.5 (2)°, respectively. The conformation of the title molecule is stabilized by intramolecular C5—H5···O2 interactions. The crystal structure is stabilized by the N—H···Cl hydrogen bonds and further consolidated by weak C—H···O and C—H···Cl hydrogen bonding interactions (Table 1 & Fig. 2).

In the crystal structure, Cl2 is hydrogen bonded to N2 and N3 forming six membered rings in R21(6) motif (Bernstein et al.,1995). This Cl2 is also involved in a hydrogen bond (C18—H18···Cl2) with a molecule lying about an inversion center thus resulting in dimers. In addition, N1—H1···Cl2 interactions link the dimers into chains in the (1 0 1) direction. C15—H15···O2 interactions also result in macrocyclic rings about inversion centers resulting in dimers. Finally, a Br1···Cl1* short contact (3.482 (2) Å, symmetry code *: x - 1/2, -y + 1/2, z + 1/2) interlinks the hydrogen bonded chains along the b axis.

Experimental

A mixture of methyl-2-chloro-4-(4-chlorophenyl)-6-methyl-1,4- dihydropyrimidine-5-carboxylate (1 mmol) and 4-bromoaniline (1 mmol) in 2-propanol (5 mL) was refluxed for 16 h. The reaction was monitored by TLC. The reaction medium was cooled to room temperature and the product was filtered, washed with cold 2-propanol and dried to obtain the crude product. The product was purified by recrystallization using ethanol to yield 66% yield of product which was pale yellow amorphous solid (m.p. 500 (2) K). Crystals suitable for single-crystal X-ray analysis were obtained using acetone as a solvent using slow evaporation at room temperature.

Refinement

All H atoms were positioned geometrically with N—H = 0.88 Å, C—H = 0.95–1.00 Å and refined using a riding model with Uiso(H) = 1.2 Ueq(C/N)except for the methyl group where Uiso(H) = 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atom numbering scheme and displacement ellipsoids for non-H atoms drawn at the 50% probability level. The intramolecular interactions are shown as dashed lines.

Fig. 2.

Fig. 2.

Intermolecular N—H···Cl hydrogen-bonding interactions form infinite chains which are linked by Br···Cl short contacts along the b axis.

Crystal data

C19H18BrClN3O2+·Cl F(000) = 952
Mr = 471.17 Dx = 1.558 Mg m3
Monoclinic, P21/n Melting point: 500(2) K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 13.2691 (15) Å Cell parameters from 650 reflections
b = 11.0965 (12) Å θ = 1.7–27.9°
c = 14.9545 (17) Å µ = 2.33 mm1
β = 114.181 (3)° T = 100 K
V = 2008.7 (4) Å3 Block, colorless
Z = 4 0.08 × 0.05 × 0.03 mm

Data collection

Bruker Kappa DUO APEXII diffractometer 3919 independent reflections
Radiation source: fine-focus sealed tube 2511 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.067
0.5° φ scans and ω scans θmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −16→16
Tmin = 0.835, Tmax = 0.933 k = −13→13
10242 measured reflections l = −18→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0403P)2] where P = (Fo2 + 2Fc2)/3
3919 reflections (Δ/σ)max < 0.001
246 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.13690 (4) 0.30575 (4) 0.48412 (3) 0.03906 (15)
Cl1 0.62679 (9) 0.43238 (11) 0.13181 (9) 0.0497 (3)
Cl2 0.18134 (7) 0.73567 (10) 0.24229 (7) 0.0366 (3)
O1 0.4928 (2) 1.0157 (2) 0.21182 (19) 0.0336 (7)
O2 0.6208 (2) 1.1174 (3) 0.3359 (2) 0.0391 (7)
N1 0.4274 (2) 0.7807 (3) 0.3884 (2) 0.0220 (7)
H1 0.3580 0.7579 0.3678 0.026*
N2 0.5907 (2) 0.8308 (3) 0.5160 (2) 0.0244 (7)
H2 0.6422 0.8109 0.5736 0.029*
N3 0.4682 (2) 0.7087 (3) 0.5462 (2) 0.0236 (7)
H3 0.5075 0.7251 0.6085 0.028*
C1 0.4941 (4) 1.1104 (4) 0.1460 (3) 0.0420 (11)
H1A 0.5703 1.1363 0.1632 0.063*
H1B 0.4503 1.1788 0.1515 0.063*
H1C 0.4624 1.0801 0.0785 0.063*
C2 0.5598 (3) 1.0312 (3) 0.3065 (3) 0.0266 (9)
C3 0.5487 (3) 0.9312 (3) 0.3668 (3) 0.0213 (8)
C4 0.6119 (3) 0.9232 (3) 0.4638 (3) 0.0239 (9)
C5 0.7060 (3) 1.0023 (3) 0.5265 (3) 0.0320 (10)
H5A 0.6981 1.0819 0.4961 0.048*
H5B 0.7760 0.9660 0.5329 0.048*
H5C 0.7056 1.0105 0.5916 0.048*
C6 0.4680 (3) 0.8309 (3) 0.3176 (3) 0.0217 (8)
H6 0.4033 0.8674 0.2625 0.026*
C7 0.5126 (3) 0.7297 (3) 0.2746 (2) 0.0232 (8)
C8 0.6080 (3) 0.7427 (4) 0.2584 (3) 0.0282 (9)
H8 0.6504 0.8145 0.2791 0.034*
C9 0.6427 (3) 0.6536 (4) 0.2129 (3) 0.0308 (9)
H9 0.7070 0.6643 0.2008 0.037*
C10 0.5819 (3) 0.5490 (4) 0.1855 (3) 0.0308 (10)
C11 0.4875 (3) 0.5316 (4) 0.2014 (3) 0.0305 (10)
H11 0.4475 0.4581 0.1833 0.037*
C12 0.4528 (3) 0.6233 (4) 0.2441 (3) 0.0268 (9)
H12 0.3863 0.6137 0.2529 0.032*
C13 0.4936 (3) 0.7697 (3) 0.4817 (3) 0.0202 (8)
C14 0.3842 (3) 0.6193 (3) 0.5253 (3) 0.0230 (8)
C15 0.3303 (3) 0.6112 (4) 0.5866 (3) 0.0284 (9)
H15 0.3441 0.6692 0.6370 0.034*
C16 0.2553 (3) 0.5180 (4) 0.5747 (3) 0.0301 (9)
H16 0.2184 0.5112 0.6170 0.036*
C17 0.2358 (3) 0.4357 (3) 0.5001 (3) 0.0277 (9)
C18 0.2874 (3) 0.4450 (3) 0.4374 (3) 0.0246 (9)
H18 0.2711 0.3889 0.3853 0.029*
C19 0.3625 (3) 0.5356 (3) 0.4501 (3) 0.0237 (8)
H19 0.3996 0.5412 0.4078 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0491 (3) 0.0302 (2) 0.0386 (3) −0.0145 (2) 0.0188 (2) −0.0051 (2)
Cl1 0.0502 (7) 0.0405 (7) 0.0635 (8) 0.0083 (5) 0.0285 (6) −0.0154 (6)
Cl2 0.0226 (5) 0.0571 (7) 0.0259 (5) −0.0006 (5) 0.0058 (4) 0.0065 (5)
O1 0.0401 (16) 0.0293 (17) 0.0292 (16) −0.0082 (13) 0.0117 (13) 0.0027 (12)
O2 0.0433 (17) 0.0265 (16) 0.0440 (18) −0.0114 (14) 0.0144 (14) −0.0019 (14)
N1 0.0136 (14) 0.0266 (19) 0.0221 (17) −0.0004 (12) 0.0036 (13) 0.0000 (13)
N2 0.0169 (16) 0.0249 (19) 0.0239 (17) −0.0012 (13) 0.0007 (13) 0.0002 (13)
N3 0.0243 (16) 0.0268 (19) 0.0173 (16) −0.0040 (14) 0.0060 (13) −0.0026 (14)
C1 0.052 (3) 0.040 (3) 0.038 (3) −0.009 (2) 0.022 (2) 0.007 (2)
C2 0.027 (2) 0.023 (2) 0.034 (2) −0.0016 (17) 0.0166 (19) −0.0060 (18)
C3 0.0227 (19) 0.017 (2) 0.026 (2) −0.0006 (15) 0.0112 (17) −0.0029 (16)
C4 0.022 (2) 0.017 (2) 0.032 (2) −0.0007 (15) 0.0109 (18) −0.0044 (16)
C5 0.026 (2) 0.024 (2) 0.038 (2) −0.0018 (17) 0.0033 (18) −0.0081 (19)
C6 0.0198 (18) 0.023 (2) 0.0206 (19) −0.0013 (15) 0.0063 (16) 0.0009 (15)
C7 0.026 (2) 0.023 (2) 0.0172 (19) 0.0028 (16) 0.0063 (16) 0.0027 (15)
C8 0.024 (2) 0.028 (2) 0.031 (2) −0.0029 (17) 0.0097 (17) −0.0013 (18)
C9 0.028 (2) 0.032 (2) 0.038 (2) 0.0020 (18) 0.0194 (19) −0.0010 (19)
C10 0.033 (2) 0.025 (2) 0.032 (2) 0.0083 (18) 0.0110 (19) −0.0031 (18)
C11 0.028 (2) 0.026 (2) 0.031 (2) −0.0031 (17) 0.0042 (18) −0.0004 (18)
C12 0.024 (2) 0.030 (2) 0.025 (2) 0.0034 (17) 0.0092 (17) 0.0019 (18)
C13 0.0185 (18) 0.019 (2) 0.025 (2) 0.0029 (15) 0.0107 (17) −0.0035 (16)
C14 0.025 (2) 0.019 (2) 0.021 (2) 0.0047 (15) 0.0052 (17) 0.0040 (16)
C15 0.038 (2) 0.024 (2) 0.024 (2) −0.0020 (18) 0.0140 (19) −0.0055 (17)
C16 0.037 (2) 0.030 (2) 0.029 (2) −0.0050 (18) 0.0176 (19) −0.0007 (18)
C17 0.034 (2) 0.018 (2) 0.027 (2) −0.0033 (16) 0.0074 (18) −0.0001 (17)
C18 0.030 (2) 0.022 (2) 0.021 (2) −0.0001 (16) 0.0093 (17) −0.0026 (16)
C19 0.025 (2) 0.022 (2) 0.024 (2) 0.0063 (16) 0.0098 (17) 0.0028 (17)

Geometric parameters (Å, º)

Br1—C17 1.898 (4) C5—H5C 0.9800
Cl1—C10 1.751 (4) C6—C7 1.529 (5)
O1—C2 1.339 (4) C6—H6 1.0000
O1—C1 1.445 (5) C7—C8 1.390 (5)
O2—C2 1.214 (4) C7—C12 1.391 (5)
N1—C13 1.315 (4) C8—C9 1.382 (5)
N1—C6 1.479 (4) C8—H8 0.9500
N1—H1 0.8800 C9—C10 1.377 (5)
N2—C13 1.357 (4) C9—H9 0.9500
N2—C4 1.386 (5) C10—C11 1.381 (5)
N2—H2 0.8800 C11—C12 1.377 (5)
N3—C13 1.330 (4) C11—H11 0.9500
N3—C14 1.428 (4) C12—H12 0.9500
N3—H3 0.8800 C14—C15 1.377 (5)
C1—H1A 0.9800 C14—C19 1.395 (5)
C1—H1B 0.9800 C15—C16 1.395 (5)
C1—H1C 0.9800 C15—H15 0.9500
C2—C3 1.475 (5) C16—C17 1.381 (5)
C3—C4 1.349 (5) C16—H16 0.9500
C3—C6 1.510 (5) C17—C18 1.373 (5)
C4—C5 1.500 (5) C18—C19 1.374 (5)
C5—H5A 0.9800 C18—H18 0.9500
C5—H5B 0.9800 C19—H19 0.9500
C2—O1—C1 116.1 (3) C8—C7—C6 122.3 (3)
C13—N1—C6 120.9 (3) C12—C7—C6 119.6 (3)
C13—N1—H1 119.6 C9—C8—C7 121.5 (4)
C6—N1—H1 119.6 C9—C8—H8 119.3
C13—N2—C4 122.4 (3) C7—C8—H8 119.3
C13—N2—H2 118.8 C10—C9—C8 118.5 (4)
C4—N2—H2 118.8 C10—C9—H9 120.7
C13—N3—C14 127.0 (3) C8—C9—H9 120.7
C13—N3—H3 116.5 C9—C10—C11 121.9 (4)
C14—N3—H3 116.5 C9—C10—Cl1 119.5 (3)
O1—C1—H1A 109.5 C11—C10—Cl1 118.6 (3)
O1—C1—H1B 109.5 C12—C11—C10 118.4 (4)
H1A—C1—H1B 109.5 C12—C11—H11 120.8
O1—C1—H1C 109.5 C10—C11—H11 120.8
H1A—C1—H1C 109.5 C11—C12—C7 121.6 (4)
H1B—C1—H1C 109.5 C11—C12—H12 119.2
O2—C2—O1 122.6 (4) C7—C12—H12 119.2
O2—C2—C3 126.2 (4) N1—C13—N3 124.0 (3)
O1—C2—C3 111.1 (3) N1—C13—N2 118.3 (3)
C4—C3—C2 122.2 (3) N3—C13—N2 117.6 (3)
C4—C3—C6 118.7 (3) C15—C14—C19 120.1 (3)
C2—C3—C6 119.0 (3) C15—C14—N3 118.2 (3)
C3—C4—N2 118.3 (3) C19—C14—N3 121.6 (3)
C3—C4—C5 128.8 (4) C14—C15—C16 120.1 (4)
N2—C4—C5 112.9 (3) C14—C15—H15 120.0
C4—C5—H5A 109.5 C16—C15—H15 120.0
C4—C5—H5B 109.5 C17—C16—C15 118.8 (4)
H5A—C5—H5B 109.5 C17—C16—H16 120.6
C4—C5—H5C 109.5 C15—C16—H16 120.6
H5A—C5—H5C 109.5 C18—C17—C16 121.4 (4)
H5B—C5—H5C 109.5 C18—C17—Br1 118.9 (3)
N1—C6—C3 108.8 (3) C16—C17—Br1 119.7 (3)
N1—C6—C7 110.0 (3) C17—C18—C19 119.8 (3)
C3—C6—C7 115.3 (3) C17—C18—H18 120.1
N1—C6—H6 107.5 C19—C18—H18 120.1
C3—C6—H6 107.5 C18—C19—C14 119.9 (3)
C7—C6—H6 107.5 C18—C19—H19 120.1
C8—C7—C12 118.0 (4) C14—C19—H19 120.1
C1—O1—C2—O2 −2.1 (5) C8—C9—C10—C11 0.6 (6)
C1—O1—C2—C3 178.1 (3) C8—C9—C10—Cl1 −177.6 (3)
O2—C2—C3—C4 −3.4 (6) C9—C10—C11—C12 1.4 (6)
O1—C2—C3—C4 176.4 (3) Cl1—C10—C11—C12 179.7 (3)
O2—C2—C3—C6 179.9 (4) C10—C11—C12—C7 −2.6 (6)
O1—C2—C3—C6 −0.3 (5) C8—C7—C12—C11 1.6 (5)
C2—C3—C4—N2 175.7 (3) C6—C7—C12—C11 177.4 (3)
C6—C3—C4—N2 −7.6 (5) C6—N1—C13—N3 −168.9 (3)
C2—C3—C4—C5 −4.6 (6) C6—N1—C13—N2 15.6 (5)
C6—C3—C4—C5 172.2 (3) C14—N3—C13—N1 18.7 (6)
C13—N2—C4—C3 −18.5 (5) C14—N3—C13—N2 −165.8 (3)
C13—N2—C4—C5 161.7 (3) C4—N2—C13—N1 14.7 (5)
C13—N1—C6—C3 −37.3 (4) C4—N2—C13—N3 −161.0 (3)
C13—N1—C6—C7 89.8 (4) C13—N3—C14—C15 −146.4 (4)
C4—C3—C6—N1 32.5 (4) C13—N3—C14—C19 38.7 (5)
C2—C3—C6—N1 −150.7 (3) C19—C14—C15—C16 1.2 (5)
C4—C3—C6—C7 −91.6 (4) N3—C14—C15—C16 −173.8 (3)
C2—C3—C6—C7 85.3 (4) C14—C15—C16—C17 −0.7 (6)
N1—C6—C7—C8 −139.6 (3) C15—C16—C17—C18 −0.9 (6)
C3—C6—C7—C8 −16.2 (5) C15—C16—C17—Br1 178.5 (3)
N1—C6—C7—C12 44.8 (4) C16—C17—C18—C19 1.9 (6)
C3—C6—C7—C12 168.2 (3) Br1—C17—C18—C19 −177.4 (3)
C12—C7—C8—C9 0.5 (5) C17—C18—C19—C14 −1.4 (5)
C6—C7—C8—C9 −175.2 (3) C15—C14—C19—C18 −0.1 (5)
C7—C8—C9—C10 −1.5 (6) N3—C14—C19—C18 174.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl2 0.88 2.34 3.136 (3) 151
N2—H2···Cl2i 0.88 2.41 3.179 (3) 146
N3—H3···Cl2i 0.88 2.39 3.191 (3) 151
C5—H5A···O2 0.98 2.22 2.897 (5) 125
C15—H15···O2ii 0.95 2.42 3.197 (5) 139
C18—H18···Cl2iii 0.95 2.81 3.702 (4) 156

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2621).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Venugopala, K. N., Nayak, S. K. & Odhav, B. (2012). Acta Cryst. E68, o2977–o2978. [DOI] [PMC free article] [PubMed]
  9. Venugopala, K. N., Nayak, S. K., Pillay, M., Renuka, P., Coovadia, Y. M. & Odhav, B. (2012). Chem. Biol. Drug Des. 81, 219–227. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813006296/pv2621sup1.cif

e-69-0o518-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006296/pv2621Isup2.hkl

e-69-0o518-Isup2.hkl (188.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006296/pv2621Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES