Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 9;69(Pt 4):o526. doi: 10.1107/S1600536813006132

N-(4-Hy­droxy­phen­yl)-4-nitro­benzamide

Ghulam Waris a, Humaira Masood Siddiqi a,*, Ulrich Flörke b, Shaukat Saeed c, M Saeed Butt a
PMCID: PMC3629581  PMID: 23634068

Abstract

The mol­ecular structure of the title compound, C13H10N2O4, shows an almost planar conformation as the benzene rings make a dihedral angle of 2.31 (7)°. The nitro group lies in plane with the benzamide ring, with a C—C—N—O torsion angle of 0.6 (2)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link mol­ecules into sheets stacked along [10-1].

Related literature  

For background to aromatic polyimides, see: Sheng et al. (2009). For the solubilizing role of ether and amide groups in polyimides, see: Litvinov et al. (2010). For a related structure, see: Raza et al. (2010).graphic file with name e-69-0o526-scheme1.jpg

Experimental  

Crystal data  

  • C13H10N2O4

  • M r = 258.23

  • Monoclinic, Inline graphic

  • a = 7.5187 (5) Å

  • b = 12.5695 (9) Å

  • c = 11.7932 (8) Å

  • β = 90.033 (2)°

  • V = 1114.53 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 130 K

  • 0.50 × 0.16 × 0.12 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.944, T max = 0.986

  • 10323 measured reflections

  • 2657 independent reflections

  • 2255 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.122

  • S = 1.12

  • 2657 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006132/tk5203sup1.cif

e-69-0o526-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006132/tk5203Isup2.hkl

e-69-0o526-Isup2.hkl (130.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006132/tk5203Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.84 1.94 2.7803 (17) 175
N1—H1A⋯O3ii 0.88 2.33 3.1664 (18) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The contribution to this project of the Higher Education Commission of Pakistan by providing financial assistance through the Inter­national Research Support Initiative Programme (IRSIP) is acknowledged by the authors.

supplementary crystallographic information

Comment

Fairly high thermooxidative and outstanding thermal stability, exceptional mechanical and electrical properties and upright chemical resistance are some distinctions of aromatic polyimides that make them documented as high performance polymeric materials (Sheng et al., 2009). The reported title compound, (I), containing ether and amide groups, serve multiple purposes, such as a boost in solubility and upsurge thermal stability of the resulting polyimide (Litvinov et al., 2010). In this connection, the title compound was investigated.

The molecular structure of (I), Fig. 1, is approximately planar with the dihedral angle between the two benzene rings being 2.31 (7)°. Intermolecular N—H···O and O—H···O hydrogen bonds, Table 1, link molecules into sheets stacked approximately along [1 0 1], Fig. 2. The structure of the isomeric 2-hydroxy-N-(3-nitrophenyl)benzamide compound is known (Raza et al., 2010).

Experimental

Reagent grade quality chemicals were used in this preparation. 4-Aminophenol (0.94 g, 8.6 mmol) in dry dichloromethane (30 ml), a few drops of N, N-dimethylformamide (DMF) and triethylamine (1.25 ml, 8.6 mmol) were placed in a 100 ml, three necked, round bottomed flask, equipped with a condenser, a nitrogen gas inlet tube, a thermometer and a magnetic stirrer. The mixture was stirred at 273–278 K for 30–45 minutes. A solution of 4-nitrobenzoyl chloride (1.59 g, 8.6 mmol) in dichloromethane (20 ml) was added drop-wise via a dropping funnel along with continuous stirring. The reaction mixture was then refluxed for 45 minutes. The flask contents were cooled to room temperature, poured into water and let to stand for 24 h. The resulting bright-yellow precipitate was filtered, washed with hot water and 5% NaOH solution. Finally, product was washed with hot water and dried under vacuum at 350 K. The crude product was recrystallized from ethanol and dichloromethane (2:1, v/v). Yield: 91%; m.p. 406–407 K.

Refinement

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the parent atoms with C—H 0.95, N—H 0.88 and O—H 0.84 Å, and with Uĩso(H) = 1.2Ueq(C,N,O)

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewed along c axis with hydrogen bonds as dotted lines. H-atoms not involved are omitted.

Crystal data

C13H10N2O4 F(000) = 536
Mr = 258.23 Dx = 1.539 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2515 reflections
a = 7.5187 (5) Å θ = 3.2–28.1°
b = 12.5695 (9) Å µ = 0.12 mm1
c = 11.7932 (8) Å T = 130 K
β = 90.033 (2)° Prism, yellow
V = 1114.53 (13) Å3 0.50 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 2657 independent reflections
Radiation source: sealed tube 2255 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −9→9
Tmin = 0.944, Tmax = 0.986 k = −16→16
10323 measured reflections l = −15→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: difference Fourier map
wR(F2) = 0.122 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.8505P] where P = (Fo2 + 2Fc2)/3
2657 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.39417 (17) 0.43715 (9) 0.63125 (11) 0.0247 (3)
O2 0.0650 (2) 0.00255 (10) 0.33969 (12) 0.0320 (3)
O3 −0.01095 (17) 0.10678 (10) 0.20187 (10) 0.0239 (3)
O4 0.41630 (19) 0.95533 (9) 0.66718 (11) 0.0284 (3)
H4 0.4704 0.9534 0.7295 0.043*
N1 0.23878 (18) 0.54813 (10) 0.51520 (12) 0.0176 (3)
H1A 0.1612 0.5484 0.4593 0.021*
N2 0.05435 (19) 0.09059 (11) 0.29598 (12) 0.0195 (3)
C1 0.2983 (2) 0.45176 (13) 0.54794 (13) 0.0166 (3)
C2 0.2378 (2) 0.35909 (12) 0.47682 (14) 0.0166 (3)
C3 0.1658 (2) 0.37062 (13) 0.36841 (14) 0.0190 (3)
H3A 0.1579 0.4393 0.3351 0.023*
C4 0.1057 (2) 0.28251 (13) 0.30913 (14) 0.0182 (3)
H4A 0.0541 0.2901 0.2360 0.022*
C5 0.1225 (2) 0.18327 (12) 0.35856 (14) 0.0176 (3)
C6 0.1982 (2) 0.16825 (13) 0.46470 (15) 0.0197 (3)
H6A 0.2098 0.0991 0.4962 0.024*
C7 0.2562 (2) 0.25726 (13) 0.52325 (14) 0.0186 (3)
H7A 0.3091 0.2491 0.5959 0.022*
C8 0.2858 (2) 0.64971 (12) 0.55977 (14) 0.0166 (3)
C9 0.2564 (2) 0.73771 (13) 0.49077 (14) 0.0188 (3)
H9A 0.2055 0.7280 0.4177 0.023*
C10 0.3001 (2) 0.83960 (13) 0.52705 (15) 0.0209 (4)
H10A 0.2796 0.8991 0.4791 0.025*
C11 0.3742 (2) 0.85379 (13) 0.63415 (14) 0.0193 (3)
C12 0.4006 (2) 0.76651 (13) 0.70399 (14) 0.0190 (3)
H12A 0.4498 0.7764 0.7774 0.023*
C13 0.3560 (2) 0.66451 (13) 0.66782 (14) 0.0189 (3)
H13A 0.3734 0.6053 0.7167 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0316 (7) 0.0198 (6) 0.0226 (6) 0.0025 (5) −0.0140 (5) −0.0023 (5)
O2 0.0488 (9) 0.0149 (6) 0.0323 (8) −0.0020 (5) −0.0158 (6) 0.0000 (5)
O3 0.0293 (7) 0.0230 (6) 0.0194 (6) −0.0011 (5) −0.0082 (5) −0.0039 (5)
O4 0.0435 (8) 0.0158 (6) 0.0258 (7) −0.0030 (5) −0.0152 (6) −0.0019 (5)
N1 0.0214 (7) 0.0149 (6) 0.0163 (7) −0.0002 (5) −0.0078 (5) −0.0012 (5)
N2 0.0219 (7) 0.0166 (7) 0.0201 (7) 0.0015 (5) −0.0043 (6) −0.0023 (5)
C1 0.0172 (8) 0.0168 (8) 0.0157 (7) −0.0005 (6) −0.0017 (6) −0.0007 (6)
C2 0.0159 (8) 0.0166 (8) 0.0173 (8) 0.0006 (6) −0.0023 (6) −0.0019 (6)
C3 0.0222 (8) 0.0154 (7) 0.0194 (8) 0.0014 (6) −0.0039 (6) 0.0012 (6)
C4 0.0197 (8) 0.0189 (8) 0.0160 (8) 0.0011 (6) −0.0037 (6) −0.0017 (6)
C5 0.0181 (8) 0.0155 (7) 0.0193 (8) 0.0005 (6) −0.0025 (6) −0.0035 (6)
C6 0.0229 (8) 0.0157 (8) 0.0204 (8) 0.0007 (6) −0.0038 (6) 0.0018 (6)
C7 0.0215 (8) 0.0189 (8) 0.0153 (8) 0.0011 (6) −0.0049 (6) 0.0012 (6)
C8 0.0166 (8) 0.0153 (7) 0.0180 (8) −0.0002 (6) −0.0018 (6) −0.0038 (6)
C9 0.0215 (8) 0.0194 (8) 0.0154 (8) 0.0000 (6) −0.0053 (6) −0.0014 (6)
C10 0.0265 (9) 0.0158 (8) 0.0203 (8) 0.0001 (6) −0.0061 (7) 0.0017 (6)
C11 0.0209 (8) 0.0164 (8) 0.0206 (8) −0.0003 (6) −0.0040 (6) −0.0031 (6)
C12 0.0208 (8) 0.0204 (8) 0.0159 (8) −0.0001 (6) −0.0051 (6) −0.0031 (6)
C13 0.0227 (8) 0.0175 (8) 0.0167 (8) 0.0004 (6) −0.0042 (6) 0.0015 (6)

Geometric parameters (Å, º)

O1—C1 1.232 (2) C4—H4A 0.9500
O2—N2 1.2234 (19) C5—C6 1.388 (2)
O3—N2 1.2303 (18) C6—C7 1.385 (2)
O4—C11 1.3715 (19) C6—H6A 0.9500
O4—H4 0.8400 C7—H7A 0.9500
N1—C1 1.348 (2) C8—C9 1.391 (2)
N1—C8 1.4252 (19) C8—C13 1.391 (2)
N1—H1A 0.8800 C9—C10 1.390 (2)
N2—C5 1.471 (2) C9—H9A 0.9500
C1—C2 1.505 (2) C10—C11 1.392 (2)
C2—C3 1.396 (2) C10—H10A 0.9500
C2—C7 1.399 (2) C11—C12 1.386 (2)
C3—C4 1.385 (2) C12—C13 1.392 (2)
C3—H3A 0.9500 C12—H12A 0.9500
C4—C5 1.383 (2) C13—H13A 0.9500
C11—O4—H4 109.5 C7—C6—H6A 121.0
C1—N1—C8 128.11 (13) C5—C6—H6A 121.0
C1—N1—H1A 115.9 C6—C7—C2 120.87 (15)
C8—N1—H1A 115.9 C6—C7—H7A 119.6
O2—N2—O3 123.76 (14) C2—C7—H7A 119.6
O2—N2—C5 118.84 (14) C9—C8—C13 119.32 (15)
O3—N2—C5 117.40 (14) C9—C8—N1 117.21 (14)
O1—C1—N1 123.81 (15) C13—C8—N1 123.47 (14)
O1—C1—C2 120.35 (14) C10—C9—C8 121.01 (15)
N1—C1—C2 115.83 (14) C10—C9—H9A 119.5
C3—C2—C7 119.45 (14) C8—C9—H9A 119.5
C3—C2—C1 123.16 (14) C9—C10—C11 119.47 (15)
C7—C2—C1 117.40 (14) C9—C10—H10A 120.3
C4—C3—C2 120.36 (15) C11—C10—H10A 120.3
C4—C3—H3A 119.8 O4—C11—C12 122.33 (15)
C2—C3—H3A 119.8 O4—C11—C10 117.98 (14)
C5—C4—C3 118.63 (15) C12—C11—C10 119.68 (15)
C5—C4—H4A 120.7 C11—C12—C13 120.82 (15)
C3—C4—H4A 120.7 C11—C12—H12A 119.6
C4—C5—C6 122.69 (15) C13—C12—H12A 119.6
C4—C5—N2 118.13 (14) C8—C13—C12 119.67 (15)
C6—C5—N2 119.17 (14) C8—C13—H13A 120.2
C7—C6—C5 117.95 (15) C12—C13—H13A 120.2
C8—N1—C1—O1 6.9 (3) N2—C5—C6—C7 −178.04 (15)
C8—N1—C1—C2 −174.10 (15) C5—C6—C7—C2 0.4 (3)
O1—C1—C2—C3 −164.50 (16) C3—C2—C7—C6 −2.3 (3)
N1—C1—C2—C3 16.5 (2) C1—C2—C7—C6 177.81 (15)
O1—C1—C2—C7 15.4 (2) C1—N1—C8—C9 158.93 (17)
N1—C1—C2—C7 −163.60 (15) C1—N1—C8—C13 −22.1 (3)
C7—C2—C3—C4 2.8 (2) C13—C8—C9—C10 1.7 (3)
C1—C2—C3—C4 −177.28 (15) N1—C8—C9—C10 −179.33 (16)
C2—C3—C4—C5 −1.4 (2) C8—C9—C10—C11 −0.1 (3)
C3—C4—C5—C6 −0.5 (3) C9—C10—C11—O4 179.79 (16)
C3—C4—C5—N2 178.57 (15) C9—C10—C11—C12 −1.1 (3)
O2—N2—C5—C4 −178.54 (16) O4—C11—C12—C13 179.87 (16)
O3—N2—C5—C4 1.3 (2) C10—C11—C12—C13 0.8 (3)
O2—N2—C5—C6 0.6 (2) C9—C8—C13—C12 −1.9 (3)
O3—N2—C5—C6 −179.59 (15) N1—C8—C13—C12 179.11 (15)
C4—C5—C6—C7 1.0 (3) C11—C12—C13—C8 0.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O1i 0.84 1.94 2.7803 (17) 175
N1—H1A···O3ii 0.88 2.33 3.1664 (18) 159

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5203).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Litvinov, V. M., Persyn, O., Miri, V. & Lefebvre, J. M. (2010). Macromolecules, 43, 7668–7679.
  3. Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o2435. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheng, S.-R., Pei, X.-L., Huang, Z.-Z., Liu, X.-L. & Song, C.-S. (2009). Eur. Polym. J. 45, 230–236.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006132/tk5203sup1.cif

e-69-0o526-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006132/tk5203Isup2.hkl

e-69-0o526-Isup2.hkl (130.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006132/tk5203Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES