Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 16;69(Pt 4):o541. doi: 10.1107/S1600536813006739

Ethyl 4-(5-bromo-2-hy­droxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

Malahat M Kurbanova a, Elnur Z Huseynov a, Atash V Gurbanov a,*, Abel M Maharramov a, Reza Kia b,c
PMCID: PMC3629593  PMID: 23634080

Abstract

In the title compound, C21H24BrNO4, the dihedral angle between the heterocyclic ring and the pendant aromatic ring is 80.20 (13)°. The hexahydroquinone [i.e. the one with the C=O group] ring adopts a sofa conformation. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. The ethyl group is disordered over two sets of sites with a refined site occupancy ratio of 0.633 (10):0.366 (10). In the crystal, mol­ecules are linked by N—H⋯O inter­actions, forming chains parallel to [101]. There are no significant C—H⋯π or π–π inter­actions in the crystal structure.

Related literature  

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to hexa­hydro­quinoline compounds and their applications, see: Sausins & Duburs (1988); Nakayama & Kasoaka (1996); Klusa (1995). For the synthesis of related compounds, see: Kumar et al. (2008); Song et al. (2012).graphic file with name e-69-0o541-scheme1.jpg

Experimental  

Crystal data  

  • C21H24BrNO4

  • M r = 434.32

  • Monoclinic, Inline graphic

  • a = 9.5969 (3) Å

  • b = 19.0805 (5) Å

  • c = 11.0678 (3) Å

  • β = 97.387 (1)°

  • V = 2009.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.07 mm−1

  • T = 294 K

  • 0.24 × 0.22 × 0.18 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.636, T max = 0.707

  • 23241 measured reflections

  • 5008 independent reflections

  • 3604 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.136

  • S = 1.05

  • 5008 reflections

  • 266 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −1.02 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813006739/rz5051sup1.cif

e-69-0o541-sup1.cif (29.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006739/rz5051Isup2.hkl

e-69-0o541-Isup2.hkl (245.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006739/rz5051Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1 0.88 1.75 2.625 (3) 171
N1—H1⋯O2i 0.86 2.05 2.866 (3) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Chemistry Department, Baku State University, for providing the X-ray diffraction facility.

supplementary crystallographic information

Comment

Hexahydroquinoline derivatives possess a variety of biological activities, such as vasodilatory, bronchodilatory, antiatherosclerotic, hepatoprotective, and antidiabetic activity (Sausins et al., 1988), and some of them have been used as calcium channel modulators and curatives for cardiovascular diseases (Nakayama et al., 1996). In past years, their uses as neuroprotectants, platelet anti-aggregatory agents, and cerebral anti-ischemic agents in the treatment of Alzheimer's disease and as chemosensitizers in tumor therapy have been also reported (Klusa, 1995).

The asymmetric unit of the title compound, Fig. 1, comprises a substituted hexahydroquinoline compound. Both six-membered rings of the hexahydroquinoline ring system adopt a half-boat conformation. Bond lengths (Allen et al., 1987) and angles are within normal ranges. An intramolecular O—H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). In the crystal structure, molecules are linked together by intermolecular N—H···O hydrogen interactions (Table 1, Fig. 2) forming chains parallel to the [101] direction. The ethyl group is disordered over two sets of sites with a refined site occupancy ratio of 0.633 (10):0.366 (10). The compound contains one chiral center but the space group is centrosymmetric, so the molecule exists as a racemate.

Experimental

5-Bromsalicylaldehyde (0.201 g, 1 mmol), ethyl acetoacetate (0.25 ml, 1 mmol), dimedone (0.14 g, 1 mmol), ammonium acetate (0.116 g, 1.5 mmol) and ethanol (15 ml) were charged in a round bottom flask. Then the reaction mixture was stirred at room temperature for 12 hours, then the product was separated by filtration. Recrystallization was effected by using ethanol as solvent. Yield 86%. M. p. 520 K.

Refinement

The O- and N-bound H atoms were located in a difference Fourier map and constrained to ride on their parent atoms with O–H = 0.88 Å, N–H = 0.86 Å and Uiso (H) = 1.5 Ueq(O, N). The C-bound H-atoms were included in calculated positions and treated as riding atoms with C–H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. Distance restraints were applied to the components of the disordered ethyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 40% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the b axis, showing the linkage of molecules through N—H···O hydrogen interactions (dashed lines). Only H atoms involved in hydrogen bonding are shown.

Crystal data

C21H24BrNO4 F(000) = 896
Mr = 434.32 Dx = 1.435 Mg m3
Monoclinic, P21/n Melting point: 520 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 9.5969 (3) Å Cell parameters from 2045 reflections
b = 19.0805 (5) Å θ = 3.3–27.5°
c = 11.0678 (3) Å µ = 2.07 mm1
β = 97.387 (1)° T = 294 K
V = 2009.84 (10) Å3 Block, colourless
Z = 4 0.24 × 0.22 × 0.18 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5008 independent reflections
Radiation source: fine-focus sealed tube 3604 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
φ and ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −12→12
Tmin = 0.636, Tmax = 0.707 k = −25→25
23241 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0542P)2 + 1.4854P] where P = (Fo2 + 2Fc2)/3
5008 reflections (Δ/σ)max = 0.001
266 parameters Δρmax = 1.10 e Å3
3 restraints Δρmin = −1.02 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.91668 (4) 0.11235 (2) 0.50601 (4) 0.09330 (19)
O1 0.4895 (3) 0.41833 (11) 0.5435 (2) 0.0719 (6)
O2 0.3062 (2) 0.18500 (11) 0.61555 (16) 0.0577 (5)
O3 0.3634 (2) 0.13165 (11) 0.79229 (19) 0.0597 (5)
O4 0.4398 (2) 0.31539 (12) 0.38649 (17) 0.0657 (6)
H4 0.4496 0.3478 0.4434 0.099*
N1 0.6847 (2) 0.28211 (11) 0.87199 (18) 0.0436 (5)
H1 0.7348 0.2820 0.9422 0.052*
C1 0.6826 (2) 0.34138 (12) 0.8040 (2) 0.0392 (5)
C2 0.7744 (3) 0.40011 (14) 0.8550 (2) 0.0487 (6)
H2A 0.8640 0.3812 0.8910 0.058*
H2B 0.7312 0.4228 0.9193 0.058*
C3 0.8001 (3) 0.45464 (14) 0.7599 (3) 0.0507 (6)
C4 0.6576 (3) 0.47395 (14) 0.6893 (3) 0.0584 (7)
H4A 0.6025 0.4986 0.7434 0.070*
H4B 0.6726 0.5057 0.6238 0.070*
C5 0.5754 (3) 0.41168 (14) 0.6362 (3) 0.0494 (6)
C6 0.5958 (2) 0.34543 (12) 0.6974 (2) 0.0385 (5)
C7 0.5182 (2) 0.28168 (12) 0.64397 (19) 0.0372 (5)
H7A 0.4239 0.2969 0.6095 0.045*
C8 0.5009 (2) 0.22835 (12) 0.74306 (19) 0.0350 (5)
C9 0.5861 (2) 0.22942 (13) 0.85029 (19) 0.0379 (5)
C10 0.5868 (3) 0.17973 (17) 0.9557 (2) 0.0576 (7)
H10A 0.5907 0.1324 0.9270 0.086*
H10B 0.5028 0.1862 0.9930 0.086*
H10C 0.6674 0.1889 1.0144 0.086*
C11 0.8970 (3) 0.42483 (18) 0.6729 (3) 0.0673 (8)
H11A 0.8543 0.3841 0.6329 0.101*
H11B 0.9855 0.4121 0.7182 0.101*
H11C 0.9120 0.4596 0.6132 0.101*
C12 0.8689 (4) 0.51939 (17) 0.8232 (4) 0.0734 (9)
H12A 0.8085 0.5383 0.8779 0.110*
H12B 0.8840 0.5540 0.7633 0.110*
H12C 0.9574 0.5065 0.8684 0.110*
C13 0.3830 (2) 0.18055 (13) 0.7107 (2) 0.0407 (5)
C14 0.2502 (7) 0.0825 (4) 0.7444 (6) 0.0617 (18) 0.633 (10)
H14A 0.2704 0.0612 0.6690 0.074* 0.633 (10)
H14B 0.1606 0.1066 0.7295 0.074* 0.633 (10)
C15 0.2477 (6) 0.0278 (4) 0.8428 (7) 0.080 (2) 0.633 (10)
H15A 0.1797 −0.0076 0.8157 0.120* 0.633 (10)
H15B 0.2229 0.0495 0.9154 0.120* 0.633 (10)
H15C 0.3389 0.0067 0.8599 0.120* 0.633 (10)
C14' 0.2263 (8) 0.0963 (5) 0.7967 (10) 0.051 (3) 0.367 (10)
H14C 0.1501 0.1219 0.7502 0.061* 0.367 (10)
H14D 0.2062 0.0910 0.8799 0.061* 0.367 (10)
C15' 0.2497 (11) 0.0255 (6) 0.7387 (15) 0.094 (5) 0.367 (10)
H15D 0.1635 −0.0007 0.7296 0.141* 0.367 (10)
H15E 0.3205 −0.0001 0.7899 0.141* 0.367 (10)
H15F 0.2798 0.0326 0.6602 0.141* 0.367 (10)
C16 0.5888 (3) 0.25025 (13) 0.5398 (2) 0.0407 (5)
C17 0.6996 (3) 0.20358 (14) 0.5642 (2) 0.0459 (6)
H17A 0.7331 0.1922 0.6444 0.055*
C18 0.7603 (3) 0.17389 (15) 0.4702 (3) 0.0561 (7)
C19 0.7115 (4) 0.18797 (18) 0.3507 (3) 0.0662 (9)
H19A 0.7507 0.1661 0.2881 0.079*
C20 0.6038 (4) 0.23495 (18) 0.3256 (2) 0.0643 (9)
H20A 0.5706 0.2451 0.2448 0.077*
C21 0.5431 (3) 0.26783 (15) 0.4182 (2) 0.0499 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0748 (3) 0.1056 (3) 0.1086 (4) 0.0222 (2) 0.0469 (2) 0.0037 (2)
O1 0.0849 (15) 0.0519 (12) 0.0703 (14) 0.0074 (11) −0.0226 (12) 0.0177 (10)
O2 0.0550 (11) 0.0705 (13) 0.0419 (10) −0.0123 (9) −0.0152 (8) 0.0044 (9)
O3 0.0498 (11) 0.0594 (11) 0.0645 (12) −0.0181 (9) −0.0140 (9) 0.0208 (10)
O4 0.0744 (14) 0.0777 (14) 0.0404 (10) −0.0011 (11) −0.0102 (9) 0.0150 (10)
N1 0.0421 (10) 0.0523 (12) 0.0332 (9) −0.0084 (9) −0.0066 (8) 0.0074 (9)
C1 0.0378 (11) 0.0429 (12) 0.0373 (11) −0.0015 (9) 0.0062 (9) 0.0009 (10)
C2 0.0483 (14) 0.0512 (15) 0.0459 (14) −0.0081 (11) 0.0028 (11) −0.0035 (11)
C3 0.0509 (14) 0.0430 (14) 0.0595 (16) −0.0037 (11) 0.0123 (12) −0.0006 (12)
C4 0.0626 (17) 0.0386 (14) 0.0738 (19) 0.0055 (12) 0.0078 (14) 0.0038 (13)
C5 0.0514 (15) 0.0432 (14) 0.0526 (15) 0.0085 (11) 0.0036 (12) 0.0053 (11)
C6 0.0399 (12) 0.0405 (12) 0.0349 (11) 0.0032 (9) 0.0040 (9) 0.0039 (9)
C7 0.0373 (11) 0.0447 (13) 0.0280 (10) 0.0021 (9) −0.0024 (8) 0.0054 (9)
C8 0.0337 (10) 0.0426 (12) 0.0284 (10) 0.0016 (9) 0.0032 (8) 0.0042 (9)
C9 0.0373 (11) 0.0463 (13) 0.0298 (10) −0.0021 (10) 0.0031 (8) 0.0047 (9)
C10 0.0631 (17) 0.0708 (18) 0.0352 (12) −0.0208 (14) −0.0084 (11) 0.0165 (12)
C11 0.0628 (18) 0.070 (2) 0.074 (2) −0.0017 (15) 0.0281 (16) 0.0055 (16)
C12 0.075 (2) 0.0544 (18) 0.092 (2) −0.0175 (16) 0.0133 (18) −0.0061 (17)
C13 0.0382 (11) 0.0438 (13) 0.0388 (12) 0.0019 (10) 0.0002 (9) 0.0021 (10)
C14 0.061 (3) 0.065 (4) 0.055 (4) −0.022 (3) −0.004 (3) 0.005 (3)
C15 0.065 (3) 0.084 (4) 0.093 (5) −0.018 (3) 0.012 (3) 0.028 (4)
C14' 0.047 (4) 0.062 (6) 0.044 (6) −0.012 (4) 0.003 (4) 0.006 (4)
C15' 0.053 (5) 0.064 (7) 0.169 (16) −0.009 (5) 0.025 (7) −0.002 (8)
C16 0.0462 (13) 0.0448 (13) 0.0311 (11) −0.0106 (10) 0.0046 (9) 0.0024 (10)
C17 0.0461 (13) 0.0529 (14) 0.0398 (12) −0.0080 (11) 0.0102 (10) 0.0020 (11)
C18 0.0559 (15) 0.0575 (16) 0.0594 (17) −0.0096 (13) 0.0248 (13) −0.0029 (13)
C19 0.081 (2) 0.073 (2) 0.0509 (16) −0.0240 (18) 0.0309 (15) −0.0138 (15)
C20 0.081 (2) 0.083 (2) 0.0298 (12) −0.0262 (18) 0.0102 (13) −0.0010 (13)
C21 0.0578 (15) 0.0581 (16) 0.0328 (12) −0.0163 (13) 0.0022 (10) 0.0049 (11)

Geometric parameters (Å, º)

Br1—C18 1.907 (3) C10—H10A 0.9600
O1—C5 1.238 (3) C10—H10B 0.9600
O2—C13 1.208 (3) C10—H10C 0.9600
O3—C13 1.329 (3) C11—H11A 0.9600
O3—C14 1.481 (5) C11—H11B 0.9600
O3—C14' 1.485 (7) C11—H11C 0.9600
O4—C21 1.357 (4) C12—H12A 0.9600
O4—H4 0.8798 C12—H12B 0.9600
N1—C1 1.357 (3) C12—H12C 0.9600
N1—C9 1.381 (3) C14—C15 1.512 (4)
N1—H1 0.8600 C14—H14A 0.9700
C1—C6 1.356 (3) C14—H14B 0.9700
C1—C2 1.491 (3) C15—H15A 0.9600
C2—C3 1.523 (4) C15—H15B 0.9600
C2—H2A 0.9700 C15—H15C 0.9600
C2—H2B 0.9700 C14'—C15' 1.526 (5)
C3—C12 1.528 (4) C14'—H14C 0.9700
C3—C4 1.530 (4) C14'—H14D 0.9700
C3—C11 1.531 (4) C15'—H15D 0.9600
C4—C5 1.503 (4) C15'—H15E 0.9600
C4—H4A 0.9700 C15'—H15F 0.9600
C4—H4B 0.9700 C16—C17 1.386 (4)
C5—C6 1.436 (3) C16—C21 1.402 (3)
C6—C7 1.507 (3) C17—C18 1.378 (4)
C7—C8 1.521 (3) C17—H17A 0.9300
C7—C16 1.532 (3) C18—C19 1.371 (4)
C7—H7A 0.9800 C19—C20 1.369 (5)
C8—C9 1.352 (3) C19—H19A 0.9300
C8—C13 1.461 (3) C20—C21 1.392 (4)
C9—C10 1.503 (3) C20—H20A 0.9300
C13—O3—C14 111.3 (3) C3—C11—H11A 109.5
C13—O3—C14' 123.0 (5) C3—C11—H11B 109.5
C21—O4—H4 106.1 H11A—C11—H11B 109.5
C1—N1—C9 123.33 (19) C3—C11—H11C 109.5
C1—N1—H1 118.0 H11A—C11—H11C 109.5
C9—N1—H1 116.5 H11B—C11—H11C 109.5
C6—C1—N1 119.6 (2) C3—C12—H12A 109.5
C6—C1—C2 123.6 (2) C3—C12—H12B 109.5
N1—C1—C2 116.8 (2) H12A—C12—H12B 109.5
C1—C2—C3 113.1 (2) C3—C12—H12C 109.5
C1—C2—H2A 109.0 H12A—C12—H12C 109.5
C3—C2—H2A 109.0 H12B—C12—H12C 109.5
C1—C2—H2B 109.0 O2—C13—O3 121.2 (2)
C3—C2—H2B 109.0 O2—C13—C8 122.4 (2)
H2A—C2—H2B 107.8 O3—C13—C8 116.37 (19)
C2—C3—C12 109.5 (2) O3—C14—C15 105.0 (4)
C2—C3—C4 107.7 (2) O3—C14—H14A 110.8
C12—C3—C4 110.2 (2) C15—C14—H14A 110.8
C2—C3—C11 110.2 (2) O3—C14—H14B 110.8
C12—C3—C11 109.1 (3) C15—C14—H14B 110.8
C4—C3—C11 110.1 (3) H14A—C14—H14B 108.8
C5—C4—C3 113.5 (2) O3—C14'—C15' 102.1 (6)
C5—C4—H4A 108.9 O3—C14'—H14C 111.4
C3—C4—H4A 108.9 C15'—C14'—H14C 111.4
C5—C4—H4B 108.9 O3—C14'—H14D 111.4
C3—C4—H4B 108.9 C15'—C14'—H14D 111.4
H4A—C4—H4B 107.7 H14C—C14'—H14D 109.2
O1—C5—C6 121.2 (3) C14'—C15'—H15D 109.5
O1—C5—C4 120.2 (2) C14'—C15'—H15E 109.5
C6—C5—C4 118.6 (2) H15D—C15'—H15E 109.5
C1—C6—C5 119.5 (2) C14'—C15'—H15F 109.5
C1—C6—C7 120.9 (2) H15D—C15'—H15F 109.5
C5—C6—C7 119.7 (2) H15E—C15'—H15F 109.5
C6—C7—C8 110.56 (18) C17—C16—C21 118.5 (2)
C6—C7—C16 111.54 (19) C17—C16—C7 120.5 (2)
C8—C7—C16 112.36 (19) C21—C16—C7 121.0 (2)
C6—C7—H7A 107.4 C18—C17—C16 120.4 (2)
C8—C7—H7A 107.4 C18—C17—H17A 119.8
C16—C7—H7A 107.4 C16—C17—H17A 119.8
C9—C8—C13 125.9 (2) C19—C18—C17 121.5 (3)
C9—C8—C7 120.9 (2) C19—C18—Br1 118.9 (2)
C13—C8—C7 113.17 (18) C17—C18—Br1 119.6 (2)
C8—C9—N1 119.2 (2) C20—C19—C18 118.7 (3)
C8—C9—C10 127.9 (2) C20—C19—H19A 120.7
N1—C9—C10 112.93 (19) C18—C19—H19A 120.7
C9—C10—H10A 109.5 C19—C20—C21 121.5 (3)
C9—C10—H10B 109.5 C19—C20—H20A 119.3
H10A—C10—H10B 109.5 C21—C20—H20A 119.3
C9—C10—H10C 109.5 O4—C21—C20 118.2 (2)
H10A—C10—H10C 109.5 O4—C21—C16 122.4 (2)
H10B—C10—H10C 109.5 C20—C21—C16 119.4 (3)
C9—N1—C1—C6 −11.6 (4) C1—N1—C9—C8 14.5 (4)
C9—N1—C1—C2 166.2 (2) C1—N1—C9—C10 −164.2 (2)
C6—C1—C2—C3 −19.6 (4) C14—O3—C13—O2 6.0 (5)
N1—C1—C2—C3 162.7 (2) C14'—O3—C13—O2 −21.9 (6)
C1—C2—C3—C12 168.6 (2) C14—O3—C13—C8 −174.5 (4)
C1—C2—C3—C4 48.8 (3) C14'—O3—C13—C8 157.6 (5)
C1—C2—C3—C11 −71.4 (3) C9—C8—C13—O2 175.8 (2)
C2—C3—C4—C5 −53.9 (3) C7—C8—C13—O2 −1.8 (3)
C12—C3—C4—C5 −173.3 (3) C9—C8—C13—O3 −3.7 (4)
C11—C3—C4—C5 66.4 (3) C7—C8—C13—O3 178.8 (2)
C3—C4—C5—O1 −152.6 (3) C13—O3—C14—C15 176.1 (5)
C3—C4—C5—C6 29.2 (4) C14'—O3—C14—C15 −62.6 (10)
N1—C1—C6—C5 169.3 (2) C13—O3—C14'—C15' 102.7 (10)
C2—C1—C6—C5 −8.3 (4) C14—O3—C14'—C15' 31.1 (9)
N1—C1—C6—C7 −9.4 (3) C6—C7—C16—C17 84.8 (3)
C2—C1—C6—C7 173.0 (2) C8—C7—C16—C17 −40.0 (3)
O1—C5—C6—C1 −174.8 (3) C6—C7—C16—C21 −95.2 (3)
C4—C5—C6—C1 3.3 (4) C8—C7—C16—C21 140.0 (2)
O1—C5—C6—C7 3.9 (4) C21—C16—C17—C18 −1.8 (4)
C4—C5—C6—C7 −178.0 (2) C7—C16—C17—C18 178.2 (2)
C1—C6—C7—C8 24.1 (3) C16—C17—C18—C19 −1.6 (4)
C5—C6—C7—C8 −154.6 (2) C16—C17—C18—Br1 177.85 (19)
C1—C6—C7—C16 −101.7 (2) C17—C18—C19—C20 2.8 (4)
C5—C6—C7—C16 79.6 (3) Br1—C18—C19—C20 −176.7 (2)
C6—C7—C8—C9 −21.1 (3) C18—C19—C20—C21 −0.5 (5)
C16—C7—C8—C9 104.2 (2) C19—C20—C21—O4 178.0 (3)
C6—C7—C8—C13 156.56 (19) C19—C20—C21—C16 −2.8 (4)
C16—C7—C8—C13 −78.1 (2) C17—C16—C21—O4 −177.0 (2)
C13—C8—C9—N1 −173.8 (2) C7—C16—C21—O4 3.1 (4)
C7—C8—C9—N1 3.6 (3) C17—C16—C21—C20 3.9 (4)
C13—C8—C9—C10 4.8 (4) C7—C16—C21—C20 −176.0 (2)
C7—C8—C9—C10 −177.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O1 0.88 1.75 2.625 (3) 171
N1—H1···O2i 0.86 2.05 2.866 (3) 158

Symmetry code: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5051).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Klusa, V. (1995). Drugs Future, 20, 135–138.
  5. Kumar, S., Sharma, P., Kapoor, K. K. & Hundal, M. S. (2008). Tetrahedron, 64, 536–542.
  6. Nakayama, H. & Kasoaka, Y. (1996). Heterocycles, 42, 901–909.
  7. Sausins, A. & Duburs, G. (1988). Heterocycles, 27, 269–289.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Song, S. J., Shan, Z. X. & Jin, J. (2012). Synth. Commun 40, 3067–3077.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813006739/rz5051sup1.cif

e-69-0o541-sup1.cif (29.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006739/rz5051Isup2.hkl

e-69-0o541-Isup2.hkl (245.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006739/rz5051Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES