Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 16;69(Pt 4):o544. doi: 10.1107/S1600536813006788

1,8-Bis(4-fluoro­benzo­yl)naphthalen-2,7-diyl dimethane­sulfonate

Daichi Hijikata a, Rei Sakamoto a, Katsuhiro Isozaki b, Noriyuki Yonezawa a, Akiko Okamoto a,*
PMCID: PMC3629596  PMID: 23634083

Abstract

The mol­ecule of the title compound, C26H18F2O8S2, lies across a crystallographic twofold rotation axis. The benzene rings of the 4-fluorobenzoyl groups make dihedral angles of 78.93 (12)° with the naphthalene ring system. An intra­molecular C—H⋯π inter­action occurs. In the crystal, a number of C—H⋯O inter­actions link the mol­ecules, forming a three-dimensional structure.

Related literature  

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the crystal structures of closely related compounds, see: Watanabe et al. (2010); Tsumuki et al. (2011); Hijikata et al. (2010, 2012); Sasagawa et al. (2013).graphic file with name e-69-0o544-scheme1.jpg

Experimental  

Crystal data  

  • C26H18F2O8S2

  • M r = 560.52

  • Monoclinic, Inline graphic

  • a = 7.376 (3) Å

  • b = 16.468 (7) Å

  • c = 20.075 (9) Å

  • β = 96.123 (6)°

  • V = 2424.4 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.10 × 0.10 × 0.05 mm

Data collection  

  • Rigaku Saturn70 diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.945, T max = 0.945

  • 8755 measured reflections

  • 2360 independent reflections

  • 1617 reflections with I > 2σ(I)

  • R int = 0.074

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.120

  • S = 1.03

  • 2360 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006788/su2570sup1.cif

e-69-0o544-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006788/su2570Isup2.hkl

e-69-0o544-Isup2.hkl (116.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006788/su2570Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACg 0.98 2.87 3.805 (4) 160
C14—H14B⋯O1i 0.98 2.45 3.399 (4) 163
C14—H14C⋯O4ii 0.98 2.46 3.304 (4) 144
C12—H12⋯O4iii 0.95 2.50 3.285 (4) 140
C4—H4⋯O1iv 0.95 2.54 3.415 (4) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors express their gratitude to Associate Professor Hikaru Takaya and Professor Masaharu Nakamura, Institute for Chemical Research, Kyoto University, for their kind advice. This work was partially supported by the Collaborative Research Program of the Institute for Chemical Research, Kyoto University (grant No. 2012–72).

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Under these circumstances, the authors have stimulated the X-ray crystal structural study of 1,8-diaroylated 2,7-dimethoxynaphthalene analogues exemplified by 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene [(2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone; Watanabe et al., 2010] and 2,7-dimethoxy-1,8-bis(2-naphthoyl)naphthalene {[2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone; Tsumuki et al., 2011}.

Accordingly, to the best of our knowledge, these molecules have essentially the same non-coplanar features, namely: The aroyl groups at the 1,8-positions of the naphthalene ring are bonded in an almost perpendicular fashion and oriented in opposite directions (anti-orientation), but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene ring. Recently, the authors have described the crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene analogues, in which the two aroyl groups are situated in the same direction (syn-orientation), that is, 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) and 2,7-dimethoxy-1,8-bis(4-isopropoxybenzoyl)naphthalene [{2,7-dimethoxy-8-[4-(propan-2-yloxy)benzoyl]naphthalen-1-yl}[4-(propan-2-yloxy)phenyl]methanone; Sasagawa et al., 2013].

The authors then investigated the correlation between the aroyl groups and the neighbouring groups in the spatial organization of 1,8-diaroylnaphthalenes. In the crystal structure of 1,8-bis(4-fluorobenzoyl)-2,7-diphenoxynaphthalene [(4-fluorophenyl)[8-(4-fluorobenzoyl)-2,7-diphenoxynaphthalen-1-yl]methanone; Hijikata et al., 2012], two phenoxy groups are asymmetrically situated with respect to the adjacent aroyl groups. One phenoxy group is horizontal to the aroyl group, whereas another phenoxy group leans toward the naphthalene ring. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the crystal structure of title compound is presented herein.

The molecule of the title compound lies across a crystallographic 2-fold axis, Fig. 1, so that the asymmetric unit contains one-half of the molecule. Thus, the two aroyl groups are situated in an anti orientation and twisted away from the naphthalene ring. The benzene ring of the aroyl group make a dihedral angle of 78.93 (12) ° with the naphthalene ring. The dihedral angle between the benzene rings of the aroyl groups is 21.55 (15) °. There are two intramolecular C—H···π interactions in the molecule involving one methyl H atom (H14A) of the methanesulfonyl group and the phenyl ring of the 4-fluorobenzoyl group (Fig. 1 and Table 1).

In the crystal, the ketonic carbonyl oxygen atom (O1) and the sulfonyl oxygen atom (O4) are involved in C—H···O interactions (Fig. 2 and Table 1). These interactions contribute to the stabilization of the packing and lead to the formation a three-dimensional structure (Fig. 2 and Table 1).

Experimental

1,8-bis(4-fluorobenzoyl)-2,7-dihydroxynaphthalene (1.0 mmol, 404 mg), methanesulfonyl chloride (2.4 mmol, 487 mg), pyridine (10.0 mmol, 791 mg), and methylene chloride (2.5 ml) were placed in a 10 ml flask. The mixture was stirred at room temperature for 24 h. After the reaction, the mixture was extracted with CHCl3. The combined extracts were washed with 2 M aqueous HCl followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from AcOEt–hexane (v/v= 2:1) [55% isolated yield; M.p. 507.4 K], giving colourless block-like crystals. Spectroscopic data for the title compound are available in the archived CIF.

Refinement

All H atoms were placed in calculated positions and treated as riding on their parent atoms: C—H = 0.95 (aromatic C—H), 0.98 (methyl) and Uiso(H) = 1.2Ueq (aromatic C, methyl C). The positions of methyl H atoms were rotationally optimized.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title molecule, with atom labelling. showing The displacement ellipsoids are drawn at the 50% probability level. The intramolecular C—H···π interactions are shown as a dashed lines (see Table 1 for details; symmetry code: (i) -x+1, y, -z+1/2).

Fig. 2.

Fig. 2.

A partial crystal packing diagram of title compound. The C—H···O interactions are shown as dashed lines (see Table 1 for details).

Crystal data

C26H18F2O8S2 F(000) = 1152
Mr = 560.52 Dx = 1.536 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2yc Cell parameters from 2840 reflections
a = 7.376 (3) Å θ = 2.7–31.5°
b = 16.468 (7) Å µ = 0.29 mm1
c = 20.075 (9) Å T = 173 K
β = 96.123 (6)° Block, colorless
V = 2424.4 (19) Å3 0.10 × 0.10 × 0.05 mm
Z = 4

Data collection

Rigaku Saturn70 diffractometer 2360 independent reflections
Radiation source: rotating anode 1617 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.074
Detector resolution: 7.314 pixels mm-1 θmax = 26.0°, θmin = 3.0°
ω scans h = −9→9
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −20→16
Tmin = 0.945, Tmax = 0.945 l = −17→24
8755 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 1.1088P] where P = (Fo2 + 2Fc2)/3
2360 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Experimental. Spectroscopic data for the title compound:1H NMR δ (500 MHz, DMSO-d6, 373 K): 3.05(6H, s), 7.16(4H, dd, JH—H = 8.6 Hz, JH—F = 8.6 Hz, Ar), 7.58(4H, dd, JH—H = 8.6 Hz, JH—F = 5.7 Hz, Ar), 7.78(2H, d, J = 9.2 Hz) 8.41(2H, d, J = 9.2 Hz) p.p.m.13C NMR δ (125 MHz, DMSO-d6, 373 K): 38.27, 114.98(d, 2JC—F = 22.7 Hz), 120.49 127.19, 127.87, 130.29, 131.66(d, 3JC—F = 9.5 Hz), 132.46, 133.68(d, 4JC—F = 2.3 Hz), 145.61, 164.88(d, 1JC—F = 253.1 Hz), 191.08 p.p.m.IR (KBr): 1673 (C=O), 1594, 1505 (Ar, naphthalene), 1354, 1169 (–SO2–) cm-1.HRMS (m/z): [M + H]+ calcd for C26H19F2O8S2, 561.0489 found, 561.0459
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.00621 (10) 1.00592 (5) 0.39209 (3) 0.0260 (2)
F1 0.5336 (3) 0.76896 (12) 0.54084 (9) 0.0563 (6)
O1 0.2861 (3) 0.85653 (12) 0.23844 (9) 0.0294 (5)
O2 0.0714 (2) 0.99090 (12) 0.32145 (9) 0.0256 (5)
O3 −0.1713 (3) 1.05050 (13) 0.38002 (10) 0.0373 (6)
O4 0.1377 (3) 1.03864 (14) 0.43763 (10) 0.0374 (6)
C1 0.3544 (4) 0.99010 (16) 0.27833 (12) 0.0195 (6)
C2 0.2189 (4) 1.03558 (17) 0.30114 (12) 0.0223 (6)
C3 0.2174 (4) 1.12042 (17) 0.30137 (13) 0.0270 (7)
H3 0.1209 1.1497 0.3181 0.032*
C4 0.3583 (4) 1.15977 (17) 0.27698 (13) 0.0270 (7)
H4 0.3617 1.2174 0.2781 0.032*
C5 0.5000 1.1169 (2) 0.2500 0.0226 (9)
C6 0.5000 1.0305 (2) 0.2500 0.0195 (8)
C7 0.3417 (4) 0.89907 (17) 0.28618 (13) 0.0219 (6)
C8 0.3937 (4) 0.86527 (16) 0.35419 (13) 0.0213 (6)
C9 0.3690 (4) 0.78286 (17) 0.36579 (14) 0.0304 (7)
H9 0.3199 0.7488 0.3301 0.036*
C10 0.4155 (5) 0.75000 (19) 0.42896 (15) 0.0388 (8)
H10 0.3986 0.6938 0.4372 0.047*
C11 0.4865 (4) 0.8008 (2) 0.47904 (15) 0.0351 (8)
C12 0.5127 (4) 0.88178 (19) 0.46988 (14) 0.0299 (7)
H12 0.5618 0.9151 0.5060 0.036*
C13 0.4663 (4) 0.91447 (17) 0.40671 (13) 0.0247 (6)
H13 0.4841 0.9707 0.3993 0.030*
C14 −0.0504 (4) 0.90554 (19) 0.41094 (15) 0.0326 (7)
H14A 0.0650 0.8761 0.4204 0.039*
H14B −0.1230 0.8803 0.3727 0.039*
H14C −0.1182 0.9034 0.4503 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0244 (4) 0.0338 (4) 0.0201 (4) −0.0002 (3) 0.0045 (3) −0.0043 (3)
F1 0.0860 (17) 0.0496 (13) 0.0301 (11) −0.0009 (11) −0.0096 (10) 0.0191 (9)
O1 0.0402 (13) 0.0252 (11) 0.0221 (11) −0.0055 (9) 0.0005 (9) −0.0037 (9)
O2 0.0245 (11) 0.0340 (12) 0.0192 (10) −0.0037 (9) 0.0057 (8) −0.0036 (8)
O3 0.0278 (12) 0.0429 (14) 0.0423 (13) 0.0088 (10) 0.0089 (10) −0.0026 (10)
O4 0.0337 (13) 0.0553 (15) 0.0230 (11) −0.0083 (11) 0.0018 (9) −0.0107 (10)
C1 0.0243 (14) 0.0216 (14) 0.0119 (13) −0.0008 (12) −0.0008 (10) −0.0005 (10)
C2 0.0225 (15) 0.0302 (16) 0.0147 (14) 0.0001 (12) 0.0039 (11) 0.0012 (11)
C3 0.0312 (17) 0.0274 (16) 0.0225 (15) 0.0098 (13) 0.0027 (12) −0.0010 (12)
C4 0.0344 (17) 0.0197 (15) 0.0256 (16) 0.0048 (13) −0.0027 (13) 0.0013 (12)
C5 0.029 (2) 0.019 (2) 0.018 (2) 0.000 −0.0023 (16) 0.000
C6 0.023 (2) 0.019 (2) 0.0150 (19) 0.000 −0.0042 (15) 0.000
C7 0.0201 (15) 0.0236 (15) 0.0227 (15) −0.0013 (12) 0.0054 (11) −0.0005 (12)
C8 0.0215 (15) 0.0227 (15) 0.0204 (14) −0.0007 (12) 0.0052 (11) −0.0015 (11)
C9 0.0402 (19) 0.0229 (16) 0.0277 (17) −0.0020 (14) 0.0019 (14) −0.0018 (12)
C10 0.058 (2) 0.0225 (17) 0.0354 (19) 0.0004 (16) 0.0031 (16) 0.0061 (14)
C11 0.040 (2) 0.040 (2) 0.0248 (17) 0.0024 (15) 0.0031 (14) 0.0109 (14)
C12 0.0302 (17) 0.0371 (19) 0.0215 (15) −0.0033 (14) −0.0021 (12) −0.0007 (13)
C13 0.0252 (16) 0.0214 (15) 0.0271 (16) −0.0017 (12) 0.0014 (12) 0.0023 (12)
C14 0.0346 (18) 0.0398 (19) 0.0246 (16) 0.0004 (14) 0.0076 (13) 0.0011 (13)

Geometric parameters (Å, º)

S1—O3 1.421 (2) C5—C6 1.422 (5)
S1—O4 1.430 (2) C6—C1i 1.432 (3)
S1—O2 1.6040 (19) C7—C8 1.486 (4)
S1—C14 1.735 (3) C8—C13 1.391 (4)
F1—C11 1.357 (3) C8—C9 1.392 (4)
O1—C7 1.222 (3) C9—C10 1.388 (4)
O2—C2 1.409 (3) C9—H9 0.9500
C1—C2 1.366 (4) C10—C11 1.368 (4)
C1—C6 1.432 (3) C10—H10 0.9500
C1—C7 1.511 (4) C11—C12 1.363 (4)
C2—C3 1.397 (4) C12—C13 1.387 (4)
C3—C4 1.359 (4) C12—H12 0.9500
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.416 (3) C14—H14A 0.9800
C4—H4 0.9500 C14—H14B 0.9800
C5—C4i 1.416 (3) C14—H14C 0.9800
O3—S1—O4 118.60 (14) O1—C7—C1 120.4 (2)
O3—S1—O2 108.01 (12) C8—C7—C1 117.0 (2)
O4—S1—O2 108.22 (12) C13—C8—C9 119.2 (2)
O3—S1—C14 110.61 (15) C13—C8—C7 121.3 (2)
O4—S1—C14 111.33 (14) C9—C8—C7 119.5 (2)
O2—S1—C14 97.98 (12) C10—C9—C8 120.6 (3)
C2—O2—S1 122.32 (16) C10—C9—H9 119.7
C2—C1—C6 119.0 (3) C8—C9—H9 119.7
C2—C1—C7 116.9 (2) C11—C10—C9 118.1 (3)
C6—C1—C7 124.1 (2) C11—C10—H10 120.9
C1—C2—C3 123.8 (3) C9—C10—H10 120.9
C1—C2—O2 115.2 (2) F1—C11—C12 118.3 (3)
C3—C2—O2 121.0 (2) F1—C11—C10 118.5 (3)
C4—C3—C2 118.0 (3) C12—C11—C10 123.2 (3)
C4—C3—H3 121.0 C11—C12—C13 118.6 (3)
C2—C3—H3 121.0 C11—C12—H12 120.7
C3—C4—C5 121.6 (3) C13—C12—H12 120.7
C3—C4—H4 119.2 C12—C13—C8 120.3 (3)
C5—C4—H4 119.2 C12—C13—H13 119.8
C4—C5—C4i 120.2 (4) C8—C13—H13 119.8
C4—C5—C6 119.90 (18) S1—C14—H14A 109.5
C4i—C5—C6 119.90 (18) S1—C14—H14B 109.5
C5—C6—C1 117.70 (17) H14A—C14—H14B 109.5
C5—C6—C1i 117.70 (17) S1—C14—H14C 109.5
C1—C6—C1i 124.6 (3) H14A—C14—H14C 109.5
O1—C7—C8 122.5 (2) H14B—C14—H14C 109.5
O3—S1—O2—C2 103.7 (2) C2—C1—C6—C1i −177.1 (3)
O4—S1—O2—C2 −25.9 (2) C7—C1—C6—C1i 4.16 (18)
C14—S1—O2—C2 −141.5 (2) C2—C1—C7—O1 101.4 (3)
C6—C1—C2—C3 −3.0 (4) C6—C1—C7—O1 −79.9 (3)
C7—C1—C2—C3 175.8 (2) C2—C1—C7—C8 −76.7 (3)
C6—C1—C2—O2 173.41 (18) C6—C1—C7—C8 102.0 (3)
C7—C1—C2—O2 −7.8 (3) O1—C7—C8—C13 176.3 (3)
S1—O2—C2—C1 130.4 (2) C1—C7—C8—C13 −5.6 (4)
S1—O2—C2—C3 −53.0 (3) O1—C7—C8—C9 −3.9 (4)
C1—C2—C3—C4 0.5 (4) C1—C7—C8—C9 174.2 (3)
O2—C2—C3—C4 −175.7 (2) C13—C8—C9—C10 0.2 (4)
C2—C3—C4—C5 2.0 (4) C7—C8—C9—C10 −179.6 (3)
C3—C4—C5—C4i 178.0 (3) C8—C9—C10—C11 −0.2 (5)
C3—C4—C5—C6 −2.0 (3) C9—C10—C11—F1 −179.5 (3)
C4—C5—C6—C1 −0.47 (16) C9—C10—C11—C12 0.3 (5)
C4i—C5—C6—C1 179.53 (16) F1—C11—C12—C13 179.5 (3)
C4—C5—C6—C1i 179.53 (16) C10—C11—C12—C13 −0.4 (5)
C4i—C5—C6—C1i −0.47 (16) C11—C12—C13—C8 0.3 (4)
C2—C1—C6—C5 2.9 (3) C9—C8—C13—C12 −0.3 (4)
C7—C1—C6—C5 −175.84 (18) C7—C8—C13—C12 179.6 (2)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C8–C13 ring.

D—H···A D—H H···A D···A D—H···A
C14—H14A···Cg 0.98 2.87 3.805 (4) 160
C14—H14B···O1ii 0.98 2.45 3.399 (4) 163
C14—H14C···O4iii 0.98 2.46 3.304 (4) 144
C12—H12···O4iv 0.95 2.50 3.285 (4) 140
C4—H4···O1v 0.95 2.54 3.415 (4) 153

Symmetry codes: (ii) −x, y, −z+1/2; (iii) −x, −y+2, −z+1; (iv) −x+1, −y+2, −z+1; (v) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2570).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3246. [DOI] [PMC free article] [PubMed]
  5. Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. [DOI] [PMC free article] [PubMed]
  6. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  7. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  8. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  9. Sasagawa, K., Takeuchi, R., Kusakabe, T., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o444–o445. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095. [DOI] [PMC free article] [PubMed]
  12. Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813006788/su2570sup1.cif

e-69-0o544-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006788/su2570Isup2.hkl

e-69-0o544-Isup2.hkl (116.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813006788/su2570Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES