Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 20;69(Pt 4):o557. doi: 10.1107/S1600536813007186

Bis(1-benzoyl-7-meth­oxy­naphthalen-2-yl) terephthalate

Rei Sakamoto a, Daichi Hijikata a, Katsuhiro Isozaki b, Noriyuki Yonezawa a, Akiko Okamoto a,*
PMCID: PMC3629609  PMID: 23634096

Abstract

The title molecule, C44H30O8, lies about a crystallographic inversion centre located at the centre of the central benzene ring. The benzene rings in the benzoyl and the terephthalate units make dihedral angles of 67.05 (7)° and 57.57 (7)°, respectively, with the naphthalene ring system. There is an intra­molecular C—H⋯O inter­action between the ketonic carbonyl O atom and an H atom on the naphthalene ring system. In the crystal, C—H⋯O inter­action of the benzene ring in the benzoyl group and weak C=O⋯π inter­action [O⋯centroid = 3.375 (2) Å] of the naphthalene ring with the O atom in the ketonic carbonyl group are observed. These inter­actions form layers parallel to the bc plane.

Related literature  

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Kato et al. (2010); Nakaema et al. (2008); Sakamoto et al. (2012, 2013).graphic file with name e-69-0o557-scheme1.jpg

Experimental  

Crystal data  

  • C44H30O8

  • M r = 686.72

  • Monoclinic, Inline graphic

  • a = 9.977 (5) Å

  • b = 14.922 (7) Å

  • c = 11.709 (6) Å

  • β = 106.610 (5)°

  • V = 1670.5 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.16 × 0.13 × 0.03 mm

Data collection  

  • Rigaku Saturn70 diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.985, T max = 0.997

  • 10969 measured reflections

  • 2909 independent reflections

  • 2354 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.122

  • S = 1.04

  • 2909 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813007186/rn2113sup1.cif

e-69-0o557-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007186/rn2113Isup2.hkl

e-69-0o557-Isup2.hkl (142.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007186/rn2113Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.95 2.41 2.965 (3) 117
C16—H16⋯O1i 0.95 2.55 3.258 (3) 132

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors express their gratitude to Associate Professor Hikaru Takaya and Professor Masaharu Nakamura, Institute for Chemical Research, Kyoto University, for their kind advice. This work was partially supported by the Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant No. 2012–72).

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011).

Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dialkoxynaphthalene, e.g., 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). Furthermore, we have also determined the crystal structures of 1-monoaroylated 2,7-dialkoxynaphthalene compounds such as (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone [1-benzoyl-2,7-dimethoxynaphthalene](Kato et al., 2010).

These compounds have non-coplanar structures where the aroyl groups are perpendicularly orientated relative to the naphthalene ring. Crystal structures of the aroylnaphthalene analogues bearing oxybenzoyl groups at the 2,7- positions of the naphthalene ring core namely 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012) and 1-benzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2013), have been previously determined which show the molecules form the tubular arrangements when the benzene ring of the benzoyl group effectively interacts with the carbonyl moiety of the benzoyloxy group and the naphthalene ring through intermolecular C–H···O and C–H···π interactions.

As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound composed of two 1-benzoylnaphthalene units and a terephthalate moiety is reported on herein.

The molecular structure of the title compound is displayed in Fig. 1. The molecule lies on a centre of inversion so that the asymmetric unit contains one-half of the molecules. The benzene rings in the benzoyl group and the terephthalate moiety are twisted away from the naphthalene ring. Two kinds of intramolecular C–H···O interactions, one intramolecular C–H···O interaction between the naphthalene ring and the benzoyl group (C8–H8···O1 = 2.41 Å) and another one between the benzene ring and the ethereal oxygen of the terephthalate moiety (C22–H22···O3 = 2.39 Å), contribute to stabilization of the twisted orientation of each benzene ring against the naphthalene ring (Fig. 1).

The dihedral angles of the benzene ring in the benzoyl group and the terephthalate moiety with the naphthalene ring are 67.05 (7)° [C9–C1–C11–O1 and O1–C11–C12–C17, torsion angles = -45.1 (3) and -26.3 (3)° for benzoyl group] and 57.57 (7)° [O4–C19–C20–C21, O4–C19–O3–C2, and C3–C2–O3–C19, torsion angles = 2.9 (3), 4.0 (5), and -66.8 (9)° for terephthalate moiety].

In the case of the homologous molecule, 1-benzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2013), the corresponding dihedral angles are slightly larger than those of the title compound [80.41 (6)° and 73.62 (5)°].

In the crystal (Fig. 2), the ketonic carbonyl oxygen forms intermolecular C–H···O interaction with the benzene ring of the benzoyl goup [C16–H16···O1i = 2.55 Å; symmetry code: x, 1/2 - y, -1/2 + z] and weak intermolecular C=O···π interaction with the naphthalene ring [C11–O1···Cg1ii = 3.38 Å; Cg1 is the centroids of the C1/C4–C9–C10 rings].

Consequently, the molecules are arranged in laminae along the bc-plane (Fig. 3).

Experimental

The title compound was prepared by treatment of a mixture of (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (0.4 mmol, 111 mg), terephthaloyl dichloride (0.22 mmol, 44.7 mg), and triethylamine (0.44 mmol, 0.062 ml) in dichloromethane (1.0 ml). After the reaction mixture was stirred at rt for 3 h, it was poured into water (30 ml) and the mixture was extracted with chloroform (10 ml×3). The combined extracts were washed with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (yield 63%). The crude product was purified by recrystallization from chloroform and colorless single crystals suitable for X-ray diffraction were obtained.

Spectroscopic data: 1H NMR δ (500 MHz, CDCl3): 3.76 (6H, s), 7.02 (2H, dd, J=9.2, 2.3 Hz), 7.20 (2H, dd, J=9.2, 2.3 Hz), 7.33–7.39 (6H, m), 7.50 (2H, t, J=7.4 Hz), 7.66 (4H, s), 7.81–7.85 (6H, m), 7.96 (2H, d, J=8.6 Hz) p.p.m..

13C NMR δ (75 MHz, CDCl3): 55.30, 103.37, 118.54, 119.32, 126.63, 127.18, 128.68, 129.43, 129.71, 129.83, 130.95, 132.84, 133.75, 137.78, 146.33, 158.99, 163.38, 195.98 p.p.m..

IR (KBr): 1729 (OC=O), 1663 (C=O), 1624,1595, 1510 (Ar) cm-1. m.p. = 484.2–484.8 K.

Anal. Calcd for C44H30O8 3.5H2O: C, 70.49; H, 4.97; Found: C, 70.40; H, 4.73.

Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids at 50% probability for non-H atoms. The dashed lines indicate intramolecular C–H···O bonds.

Fig. 2.

Fig. 2.

C–H···O interaction (dashed line) between phenyl ring and ketonic carbonyl group.

Fig. 3.

Fig. 3.

The crystal packing of the title compound, viewed along the b axis. The molecular layers are expanded along the bc-plane.

Crystal data

C44H30O8 F(000) = 716
Mr = 686.72 Dx = 1.365 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybc Cell parameters from 4873 reflections
a = 9.977 (5) Å θ = 2.1–31.2°
b = 14.922 (7) Å µ = 0.09 mm1
c = 11.709 (6) Å T = 173 K
β = 106.610 (5)° Block, colorless
V = 1670.5 (14) Å3 0.16 × 0.13 × 0.03 mm
Z = 2

Data collection

Rigaku Saturn70 diffractometer 2909 independent reflections
Radiation source: fine-focus sealed tube 2354 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 7.314 pixels mm-1 θmax = 25.0°, θmin = 3.3°
ω scans h = −11→11
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −13→17
Tmin = 0.985, Tmax = 0.997 l = −13→13
10969 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.0599P] where P = (Fo2 + 2Fc2)/3
2909 reflections (Δ/σ)max < 0.001
236 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.89735 (14) 0.10507 (8) 0.99483 (11) 0.0365 (3)
O2 0.58268 (14) 0.02769 (9) 1.24046 (11) 0.0370 (4)
O3 0.88903 (12) −0.06534 (8) 0.75583 (10) 0.0274 (3)
O4 0.71518 (13) −0.10741 (8) 0.59275 (11) 0.0331 (3)
C1 0.78482 (18) −0.02789 (11) 0.90842 (14) 0.0250 (4)
C2 0.81191 (18) −0.09200 (11) 0.83329 (15) 0.0268 (4)
C3 0.78049 (19) −0.18316 (12) 0.83991 (16) 0.0300 (4)
H3 0.8021 −0.2253 0.7870 0.036*
C4 0.71849 (19) −0.20981 (12) 0.92361 (16) 0.0317 (4)
H4 0.6966 −0.2714 0.9288 0.038*
C5 0.6193 (2) −0.17586 (12) 1.08887 (16) 0.0323 (4)
H5 0.5964 −0.2373 1.0932 0.039*
C6 0.58792 (19) −0.11631 (12) 1.16488 (16) 0.0328 (4)
H6 0.5437 −0.1363 1.2221 0.039*
C7 0.62077 (19) −0.02485 (12) 1.15912 (15) 0.0298 (4)
C8 0.68635 (18) 0.00528 (12) 1.07862 (14) 0.0268 (4)
H8 0.7093 0.0670 1.0768 0.032*
C9 0.72028 (18) −0.05563 (11) 0.99763 (15) 0.0263 (4)
C10 0.68584 (18) −0.14785 (11) 1.00309 (15) 0.0286 (4)
C11 0.83238 (18) 0.06688 (11) 0.90305 (15) 0.0273 (4)
C12 0.79951 (18) 0.11478 (11) 0.78599 (15) 0.0272 (4)
C13 0.68449 (19) 0.09267 (11) 0.69170 (16) 0.0295 (4)
H13 0.6248 0.0451 0.7002 0.035*
C14 0.6557 (2) 0.13957 (12) 0.58465 (17) 0.0366 (5)
H14 0.5757 0.1250 0.5208 0.044*
C15 0.7446 (2) 0.20763 (13) 0.57206 (18) 0.0426 (5)
H15 0.7262 0.2393 0.4988 0.051*
C16 0.8603 (2) 0.22994 (13) 0.66549 (19) 0.0425 (5)
H16 0.9210 0.2765 0.6558 0.051*
C17 0.8877 (2) 0.18470 (12) 0.77284 (18) 0.0365 (5)
H17 0.9660 0.2010 0.8374 0.044*
C18 0.6184 (2) 0.12025 (13) 1.24527 (18) 0.0409 (5)
H18A 0.5809 0.1469 1.1661 0.049*
H18B 0.7204 0.1267 1.2711 0.049*
H18C 0.5784 0.1509 1.3020 0.049*
C19 0.82851 (18) −0.07386 (11) 0.63596 (15) 0.0259 (4)
C20 0.91934 (18) −0.03603 (11) 0.56745 (15) 0.0256 (4)
C21 0.87490 (19) −0.04257 (12) 0.44403 (16) 0.0306 (4)
H21 0.7890 −0.0716 0.4059 0.037*
C22 1.04521 (19) 0.00720 (12) 0.62350 (15) 0.0316 (4)
H22 1.0756 0.0122 0.7079 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0435 (8) 0.0394 (8) 0.0269 (7) −0.0090 (6) 0.0105 (6) −0.0069 (6)
O2 0.0448 (8) 0.0425 (8) 0.0294 (7) 0.0008 (6) 0.0198 (6) −0.0037 (5)
O3 0.0321 (7) 0.0316 (7) 0.0211 (6) −0.0011 (5) 0.0120 (5) −0.0004 (5)
O4 0.0366 (8) 0.0359 (7) 0.0287 (7) −0.0071 (6) 0.0124 (6) −0.0030 (5)
C1 0.0281 (9) 0.0274 (9) 0.0202 (9) 0.0003 (7) 0.0080 (7) 0.0017 (7)
C2 0.0286 (9) 0.0326 (10) 0.0206 (9) 0.0002 (7) 0.0092 (7) 0.0035 (7)
C3 0.0372 (10) 0.0271 (10) 0.0281 (10) 0.0013 (7) 0.0130 (8) −0.0007 (7)
C4 0.0399 (11) 0.0252 (9) 0.0319 (10) 0.0005 (8) 0.0133 (8) 0.0024 (7)
C5 0.0364 (10) 0.0310 (10) 0.0311 (10) 0.0000 (8) 0.0122 (8) 0.0063 (8)
C6 0.0346 (10) 0.0403 (11) 0.0267 (10) 0.0005 (8) 0.0140 (8) 0.0073 (8)
C7 0.0298 (10) 0.0399 (11) 0.0211 (9) 0.0052 (8) 0.0097 (7) 0.0006 (7)
C8 0.0291 (9) 0.0303 (9) 0.0213 (9) 0.0016 (7) 0.0074 (7) 0.0012 (7)
C9 0.0268 (9) 0.0304 (10) 0.0211 (9) 0.0016 (7) 0.0059 (7) 0.0036 (7)
C10 0.0307 (10) 0.0301 (10) 0.0253 (9) 0.0000 (7) 0.0086 (8) 0.0046 (7)
C11 0.0283 (9) 0.0301 (10) 0.0262 (9) −0.0003 (7) 0.0125 (8) −0.0014 (7)
C12 0.0316 (10) 0.0254 (9) 0.0275 (10) 0.0023 (7) 0.0131 (8) 0.0004 (7)
C13 0.0327 (10) 0.0269 (9) 0.0314 (10) 0.0016 (7) 0.0134 (8) 0.0002 (7)
C14 0.0411 (11) 0.0342 (11) 0.0329 (11) 0.0030 (9) 0.0079 (9) 0.0040 (8)
C15 0.0561 (13) 0.0356 (11) 0.0366 (12) 0.0030 (10) 0.0143 (10) 0.0131 (8)
C16 0.0475 (12) 0.0329 (11) 0.0503 (13) −0.0046 (9) 0.0191 (10) 0.0111 (9)
C17 0.0382 (11) 0.0331 (10) 0.0395 (11) −0.0045 (8) 0.0131 (9) 0.0029 (8)
C18 0.0505 (13) 0.0428 (12) 0.0333 (11) 0.0048 (9) 0.0182 (10) −0.0040 (8)
C19 0.0325 (10) 0.0227 (9) 0.0240 (9) 0.0024 (7) 0.0105 (8) −0.0018 (7)
C20 0.0300 (9) 0.0240 (9) 0.0253 (9) 0.0027 (7) 0.0121 (7) 0.0007 (7)
C21 0.0307 (10) 0.0370 (10) 0.0261 (10) −0.0051 (8) 0.0110 (8) −0.0023 (7)
C22 0.0366 (10) 0.0392 (10) 0.0190 (9) −0.0029 (8) 0.0078 (8) −0.0016 (8)

Geometric parameters (Å, º)

O1—C11 1.225 (2) C11—C12 1.497 (2)
O2—C7 1.369 (2) C12—C13 1.386 (3)
O2—C18 1.423 (2) C12—C17 1.401 (3)
O3—C19 1.366 (2) C13—C14 1.392 (3)
O3—C2 1.404 (2) C13—H13 0.9500
O4—C19 1.208 (2) C14—C15 1.384 (3)
C1—C2 1.378 (2) C14—H14 0.9500
C1—C9 1.436 (2) C15—C16 1.385 (3)
C1—C11 1.499 (2) C15—H15 0.9500
C2—C3 1.403 (3) C16—C17 1.383 (3)
C3—C4 1.359 (2) C16—H16 0.9500
C3—H3 0.9500 C17—H17 0.9500
C4—C10 1.414 (3) C18—H18A 0.9800
C4—H4 0.9500 C18—H18B 0.9800
C5—C6 1.356 (3) C18—H18C 0.9800
C5—C10 1.416 (2) C19—C20 1.483 (2)
C5—H5 0.9500 C20—C21 1.389 (3)
C6—C7 1.410 (3) C20—C22 1.397 (3)
C6—H6 0.9500 C21—C22i 1.378 (3)
C7—C8 1.368 (2) C21—H21 0.9500
C8—C9 1.422 (2) C22—C21i 1.378 (3)
C8—H8 0.9500 C22—H22 0.9500
C9—C10 1.424 (3)
C7—O2—C18 117.86 (14) C13—C12—C11 122.05 (16)
C19—O3—C2 118.32 (13) C17—C12—C11 118.43 (16)
C2—C1—C9 118.35 (15) C12—C13—C14 120.55 (17)
C2—C1—C11 120.41 (15) C12—C13—H13 119.7
C9—C1—C11 121.05 (15) C14—C13—H13 119.7
C1—C2—C3 123.39 (16) C15—C14—C13 119.44 (18)
C1—C2—O3 117.35 (15) C15—C14—H14 120.3
C3—C2—O3 118.86 (15) C13—C14—H14 120.3
C4—C3—C2 118.58 (16) C14—C15—C16 120.47 (18)
C4—C3—H3 120.7 C14—C15—H15 119.8
C2—C3—H3 120.7 C16—C15—H15 119.8
C3—C4—C10 121.40 (17) C17—C16—C15 120.28 (19)
C3—C4—H4 119.3 C17—C16—H16 119.9
C10—C4—H4 119.3 C15—C16—H16 119.9
C6—C5—C10 121.01 (17) C16—C17—C12 119.72 (19)
C6—C5—H5 119.5 C16—C17—H17 120.1
C10—C5—H5 119.5 C12—C17—H17 120.1
C5—C6—C7 120.15 (16) O2—C18—H18A 109.5
C5—C6—H6 119.9 O2—C18—H18B 109.5
C7—C6—H6 119.9 H18A—C18—H18B 109.5
O2—C7—C8 125.02 (17) O2—C18—H18C 109.5
O2—C7—C6 114.00 (15) H18A—C18—H18C 109.5
C8—C7—C6 120.98 (16) H18B—C18—H18C 109.5
C7—C8—C9 120.07 (17) O4—C19—O3 123.71 (16)
C7—C8—H8 120.0 O4—C19—C20 125.10 (16)
C9—C8—H8 120.0 O3—C19—C20 111.19 (14)
C8—C9—C10 118.76 (15) C21—C20—C22 119.86 (16)
C8—C9—C1 122.84 (16) C21—C20—C19 118.26 (16)
C10—C9—C1 118.38 (15) C22—C20—C19 121.86 (16)
C4—C10—C5 121.11 (16) C22i—C21—C20 120.34 (17)
C4—C10—C9 119.88 (16) C22i—C21—H21 119.8
C5—C10—C9 119.02 (16) C20—C21—H21 119.8
O1—C11—C12 120.23 (16) C21i—C22—C20 119.80 (17)
O1—C11—C1 119.77 (16) C21i—C22—H22 120.1
C12—C11—C1 120.00 (15) C20—C22—H22 120.1
C13—C12—C17 119.52 (17)
C9—C1—C2—C3 −0.4 (3) C8—C9—C10—C5 −0.1 (2)
C11—C1—C2—C3 174.71 (16) C1—C9—C10—C5 −178.62 (16)
C9—C1—C2—O3 −173.00 (14) C2—C1—C11—O1 −129.92 (19)
C11—C1—C2—O3 2.1 (2) C9—C1—C11—O1 45.1 (2)
C19—O3—C2—C1 −120.17 (17) C2—C1—C11—C12 50.6 (2)
C19—O3—C2—C3 66.9 (2) C9—C1—C11—C12 −134.45 (17)
C1—C2—C3—C4 0.9 (3) O1—C11—C12—C13 −152.96 (17)
O3—C2—C3—C4 173.35 (16) C1—C11—C12—C13 26.6 (2)
C2—C3—C4—C10 −0.1 (3) O1—C11—C12—C17 26.3 (2)
C10—C5—C6—C7 0.3 (3) C1—C11—C12—C17 −154.14 (16)
C18—O2—C7—C8 −2.5 (3) C17—C12—C13—C14 −0.3 (3)
C18—O2—C7—C6 176.79 (16) C11—C12—C13—C14 178.96 (16)
C5—C6—C7—O2 179.69 (17) C12—C13—C14—C15 1.2 (3)
C5—C6—C7—C8 −1.0 (3) C13—C14—C15—C16 −0.9 (3)
O2—C7—C8—C9 −179.64 (16) C14—C15—C16—C17 −0.4 (3)
C6—C7—C8—C9 1.1 (3) C15—C16—C17—C12 1.3 (3)
C7—C8—C9—C10 −0.6 (2) C13—C12—C17—C16 −1.0 (3)
C7—C8—C9—C1 177.87 (16) C11—C12—C17—C16 179.72 (17)
C2—C1—C9—C8 −179.22 (16) C2—O3—C19—O4 −4.1 (2)
C11—C1—C9—C8 5.7 (3) C2—O3—C19—C20 175.43 (13)
C2—C1—C9—C10 −0.8 (2) O4—C19—C20—C21 −2.9 (3)
C11—C1—C9—C10 −175.87 (15) O3—C19—C20—C21 177.60 (14)
C3—C4—C10—C5 179.04 (17) O4—C19—C20—C22 175.60 (17)
C3—C4—C10—C9 −1.1 (3) O3—C19—C20—C22 −3.9 (2)
C6—C5—C10—C4 −179.90 (17) C22—C20—C21—C22i 0.5 (3)
C6—C5—C10—C9 0.2 (3) C19—C20—C21—C22i 179.03 (16)
C8—C9—C10—C4 −179.97 (16) C21—C20—C22—C21i −0.5 (3)
C1—C9—C10—C4 1.5 (2) C19—C20—C22—C21i −178.97 (16)

Symmetry code: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1 0.95 2.41 2.965 (3) 117
C16—H16···O1ii 0.95 2.55 3.258 (3) 132
C22—H22···O3 0.95 2.39 2.717 (3) 100

Symmetry code: (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2113).

References

  1. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  2. Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. [DOI] [PMC free article] [PubMed]
  3. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  4. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  5. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  6. Rigaku (2006). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  8. Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454. [DOI] [PMC free article] [PubMed]
  9. Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o210. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813007186/rn2113sup1.cif

e-69-0o557-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007186/rn2113Isup2.hkl

e-69-0o557-Isup2.hkl (142.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007186/rn2113Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES