Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 23;69(Pt 4):o567–o568. doi: 10.1107/S1600536813007265

N-But­oxy­carbonyl-5-oxo-l-proline ethyl ester

P Rajalakshmi a, N Srinivasan a,*, RV Krishnakumar a, Ibrahim Abdul Razak b, Mohd Mustaqim Rosli b
PMCID: PMC3629616  PMID: 23634103

Abstract

The mol­ecular structure of the title compound, C12H19NO5, may be visualized as made up of two nearly perpendicular planes [dihedral angle = 87.39 (12)°] and its crystal structure is a good example of C—H⋯O inter­actions assuming significance in optimizing supra­molecular aggregation in crystals in a mol­ecule which is severely imbalanced in terms of donors to acceptor atoms. The pyrrolidine ring adopts a (3 T 2) twist conformation with puckering parameters Q = 0.2630 (4) Å and ϕ = 59 (9)°. The crystal structure features R 2 4(10) and R 3 4(26) ring motifs formed by four weak C—H⋯O inter­actions, leading to supra­molecular sheets lying parallel to the bc plane.

Related literature  

For general background, see: Holladay et al. (1991); Kayushina & Vainshtein (1966); Wu (2009). For the biological activity of proline derivatives, see: Hayashi et al. (2003); Nishikawa & Murakami (2005). For hydrogen bonding, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-69-0o567-scheme1.jpg

Experimental  

Crystal data  

  • C12H19NO5

  • M r = 257.28

  • Orthorhombic, Inline graphic

  • a = 26.6884 (13) Å

  • b = 5.7650 (3) Å

  • c = 8.7054 (4) Å

  • V = 1339.40 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 100 K

  • 0.44 × 0.21 × 0.11 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.711, T max = 0.914

  • 9641 measured reflections

  • 2184 independent reflections

  • 2144 reflections with I > 2σ(I)

  • R int = 0.049

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.166

  • S = 1.09

  • 2184 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007265/bx2436sup1.cif

e-69-0o567-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007265/bx2436Isup2.hkl

e-69-0o567-Isup2.hkl (105.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007265/bx2436Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 1.00 2.51 3.436 (5) 154
C3—H3B⋯O3ii 0.99 2.46 3.095 (5) 121
C6—H6B⋯O5iii 0.99 2.50 3.344 (5) 143
C12—H12A⋯O5i 0.98 2.55 3.327 (5) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Dr MutharasuDevarajan, Associate Professor, and the staff of the X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, for their help with the data collection.

supplementary crystallographic information

Comment

Proline (Kayushina & Vainshtein, 1966) is a functional amino acid that participates in the regulation of key metabolic pathways essential for maintenance, growth, reproduction and immunity (Wu, 2009). Many substituted proline derivatives are known for their active role in biological functions. For instance, 5-oxo-proline or pyroglutamic acid, found in many proteins including bacteriorhodopsin, acts as a proton pump, captures light energy and uses it to move protons across the membrane out of the cell (Hayashi, et al., 2003; Nishikawa, et al., 2005). Also, N-boc-4-oxo-L-proline ethyl ester is a part of the starting material on stereoselective synthesis of peptide hormone cholecystokinin (Holladay, et al., 1991). The present paper describes the accurate description of the crystal structures of N-boc-5-oxo-L-proline ethyl ester (Fig.1).

The molecular mainframe of the title compound may be visualized as made up of two nearly perpendicular planes (N1/C8/O4/O5) and (O1/C1/O2/C2) with 87.39 (12) °. The orientation of the carbonyl O3 (substituted to the pyrrolidine ring), O4 (ethyl ester carbonyl) and O5 (tert-butyloxycarbonyl) may be described by the torsion angles about the C2—N1 bond which are -171.05 (4) °, -54.37 (6) ° and -170.82 (4) °, respectively. The pyrrolidine adopts the twisted conformation (3T2) with C2 and C3 atoms deviating from the plane defined by the rest of the atoms by about -0.3872 (6) Å and 0.4068 (6) Å, respectively with the associated puckering parameters (Cremer & Pople, 1975) of Q=0.2630 (4) Å, φ= 59 (9) °.

The crystal structure of the title compound is a simple example which demonstrates the importance of weak C–H···O interactions assuming significance in optimizing supramolecular aggregation in crystals. The molecule may be thought of as highly imbalanced in terms of donors to acceptor atoms which has at least three carbonyl O atoms O3, O4 and O5, out of the total five O atoms (O1→O5), available for participation in intermolecular interactions. O1 and O2 of the respective ethyl ester and the tert-butyloxy groups do not participate in the hydrogen-bonding environment owing to unfavourable steric reasons. The intermolecular interaction patterns may be vizualized as molecular chains interconnected to each other to form a sheet. The ethyl C2 and ethyl C3 atoms act as donors to the carbonyl O3 which is a bifurcated acceptor at (x, y - 1, z) and (-x + 2, y - 1/2, -z + 1/2), respectively. The associated graph-set motif (Bernstein et al., 1995) is a R42(10) ring through C2—H2A···O3 and C3—H3A···O3 hydrogen bond leading to chains parallel to the b-axis (Fig.2). The ethyl C6 and ethyl C12 atoms act as donors to the bifurcated acceptor (carbonyl) O5 at (x, y, z + 1) and (x, y - 1, z), respectively, forming a R43 (26) ring motif through a C6—H6B···O5 and C12—H12A···O5 hydrogen bonds forming sheets parallel to the bc-plane (Fig.3).

Experimental

To a solution of oxo proline ethylester (0.5 g,3.26 mmol) in dichloromethane (10 ml), was added triethylamine (0.5 ml, 3.26 mmol), di-tert-butyl-dicarbonate (1.4 g, 6.52 mmol) and 4-(dimethylamino)-pyridine (0.4 g, 3.26 mmol) under N2. The resulting yellow solution was stirred at room temperature for 2 h. The reaction mixture was concentrated. The residue was purified by column chromatography to afford boc-oxo-L-proline ethylester (0.8 g, 95%). Crystals of the title compound were grown from its solution in ethanol by slow evaporation at room temperature.

Refinement

All the hydrogen atoms were placed at geometrically calculated positions. They were allowed to ride on respective parent atoms with Uiso values constrained to 1.2 times Ueq (1.5 times for ethyl H atoms) and the target C—H distance fixed at 0.96 Å for ethyl hydrogen atoms and 0.93 Å for all others.

Figures

Fig. 1.

Fig. 1.

The molecule of title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability.

Fig. 2.

Fig. 2.

Part of the crystal structure of title compound, showing the formation of a R42(10) chain running parallel to the b-axis. Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms are omitted.

Fig. 3.

Fig. 3.

Part of the crystal structure of title compound, showing the formation of supramolecular sheets of R43(26) ring parallel to the bc-plane. Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted

Crystal data

C12H19NO5 F(000) = 552
Mr = 257.28 Dx = 1.276 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 2145 reflections
a = 26.6884 (13) Å θ = 5.2–67.7°
b = 5.7650 (3) Å µ = 0.83 mm1
c = 8.7054 (4) Å T = 100 K
V = 1339.40 (11) Å3 Block, colourless
Z = 4 0.44 × 0.21 × 0.11 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2184 independent reflections
Radiation source: fine-focus sealed tube 2144 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.049
φ and ω scans θmax = 65.0°, θmin = 7.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −31→31
Tmin = 0.711, Tmax = 0.914 k = −5→6
9641 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.9721P] where P = (Fo2 + 2Fc2)/3
2184 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.90408 (10) 0.9206 (5) 0.6629 (3) 0.0370 (7)
O4 0.87203 (9) 0.6029 (5) 0.3651 (3) 0.0363 (6)
O3 0.95830 (10) 1.1864 (5) 0.2879 (3) 0.0385 (6)
O2 0.91287 (10) 0.5496 (5) 0.7415 (3) 0.0418 (7)
O5 0.88646 (10) 0.8660 (5) 0.1762 (3) 0.0390 (7)
N1 0.93969 (11) 0.8201 (6) 0.3819 (3) 0.0322 (7)
C5 0.96730 (14) 1.0270 (7) 0.3731 (4) 0.0336 (8)
C4 1.00831 (15) 1.0151 (7) 0.4918 (4) 0.0386 (9)
H4A 1.0015 1.1235 0.5774 0.046*
H4B 1.0411 1.0549 0.4456 0.046*
C3 1.00806 (15) 0.7635 (7) 0.5485 (4) 0.0378 (9)
H3A 1.0148 0.7561 0.6603 0.045*
H3B 1.0335 0.6700 0.4938 0.045*
C2 0.95504 (14) 0.6769 (7) 0.5120 (4) 0.0346 (8)
H2A 0.9563 0.5103 0.4803 0.042*
C1 0.92075 (14) 0.7041 (7) 0.6499 (4) 0.0362 (9)
C6 0.87505 (15) 0.9735 (8) 0.8004 (4) 0.0412 (9)
H6A 0.8760 1.1427 0.8195 0.049*
H6B 0.8904 0.8948 0.8898 0.049*
C7 0.82162 (16) 0.8971 (8) 0.7847 (5) 0.0473 (10)
H7A 0.8025 0.9492 0.8744 0.071*
H7B 0.8203 0.7276 0.7781 0.071*
H7C 0.8072 0.9647 0.6915 0.071*
C8 0.89734 (14) 0.7707 (7) 0.2939 (4) 0.0351 (9)
C9 0.82710 (14) 0.4960 (7) 0.2939 (5) 0.0414 (9)
C10 0.81499 (16) 0.3074 (8) 0.4085 (6) 0.0484 (11)
H10A 0.8427 0.1963 0.4126 0.073*
H10B 0.7843 0.2271 0.3769 0.073*
H10C 0.8101 0.3764 0.5102 0.073*
C11 0.78525 (15) 0.6769 (8) 0.2898 (6) 0.0510 (11)
H11A 0.7814 0.7463 0.3920 0.077*
H11B 0.7538 0.6023 0.2597 0.077*
H11C 0.7937 0.7981 0.2153 0.077*
C12 0.83972 (17) 0.3976 (8) 0.1365 (5) 0.0483 (11)
H12A 0.8695 0.2986 0.1444 0.072*
H12B 0.8464 0.5251 0.0650 0.072*
H12C 0.8114 0.3056 0.0987 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0497 (15) 0.0307 (15) 0.0307 (14) −0.0008 (11) 0.0045 (11) 0.0004 (11)
O4 0.0413 (14) 0.0347 (15) 0.0327 (14) −0.0024 (11) −0.0049 (11) 0.0012 (11)
O3 0.0514 (15) 0.0343 (15) 0.0299 (13) −0.0023 (12) 0.0013 (11) 0.0055 (13)
O2 0.0514 (16) 0.0403 (17) 0.0337 (14) −0.0004 (12) −0.0029 (12) 0.0086 (13)
O5 0.0558 (16) 0.0319 (15) 0.0292 (14) 0.0016 (12) −0.0065 (11) 0.0035 (11)
N1 0.0416 (16) 0.0317 (17) 0.0233 (14) 0.0021 (13) −0.0015 (13) −0.0043 (14)
C5 0.043 (2) 0.033 (2) 0.0250 (17) 0.0001 (16) 0.0050 (15) −0.0017 (17)
C4 0.044 (2) 0.042 (2) 0.0294 (19) −0.0046 (18) 0.0010 (16) −0.0040 (18)
C3 0.042 (2) 0.043 (2) 0.0288 (19) 0.0037 (17) −0.0004 (15) 0.0043 (17)
C2 0.044 (2) 0.029 (2) 0.0311 (18) 0.0025 (16) −0.0027 (15) 0.0054 (16)
C1 0.0379 (19) 0.041 (2) 0.0293 (19) −0.0021 (16) −0.0072 (15) −0.0011 (18)
C6 0.051 (2) 0.045 (2) 0.0272 (18) 0.0005 (18) 0.0077 (17) −0.0008 (18)
C7 0.052 (2) 0.046 (3) 0.044 (2) 0.0044 (19) 0.0069 (19) −0.002 (2)
C8 0.041 (2) 0.030 (2) 0.034 (2) 0.0048 (15) 0.0007 (16) 0.0002 (16)
C9 0.041 (2) 0.034 (2) 0.048 (2) −0.0004 (17) −0.0083 (17) −0.005 (2)
C10 0.048 (2) 0.037 (3) 0.061 (3) −0.0058 (18) −0.001 (2) 0.004 (2)
C11 0.044 (2) 0.040 (3) 0.069 (3) 0.0004 (18) −0.011 (2) −0.003 (3)
C12 0.064 (3) 0.037 (2) 0.044 (2) −0.002 (2) −0.015 (2) −0.003 (2)

Geometric parameters (Å, º)

O1—C1 1.330 (5) C6—C7 1.499 (6)
O1—C6 1.458 (4) C6—H6A 0.9900
O4—C8 1.332 (5) C6—H6B 0.9900
O4—C9 1.484 (5) C7—H7A 0.9800
O3—C5 1.205 (5) C7—H7B 0.9800
O2—C1 1.214 (5) C7—H7C 0.9800
O5—C8 1.198 (5) C9—C10 1.510 (6)
N1—C8 1.395 (5) C9—C12 1.521 (6)
N1—C5 1.404 (5) C9—C11 1.529 (6)
N1—C2 1.461 (5) C10—H10A 0.9800
C5—C4 1.506 (5) C10—H10B 0.9800
C4—C3 1.533 (6) C10—H10C 0.9800
C4—H4A 0.9900 C11—H11A 0.9800
C4—H4B 0.9900 C11—H11B 0.9800
C3—C2 1.534 (5) C11—H11C 0.9800
C3—H3A 0.9900 C12—H12A 0.9800
C3—H3B 0.9900 C12—H12B 0.9800
C2—C1 1.517 (5) C12—H12C 0.9800
C2—H2A 1.0000
C1—O1—C6 116.4 (3) H6A—C6—H6B 107.9
C8—O4—C9 121.1 (3) C6—C7—H7A 109.5
C8—N1—C5 124.7 (3) C6—C7—H7B 109.5
C8—N1—C2 122.5 (3) H7A—C7—H7B 109.5
C5—N1—C2 112.0 (3) C6—C7—H7C 109.5
O3—C5—N1 125.2 (3) H7A—C7—H7C 109.5
O3—C5—C4 127.0 (4) H7B—C7—H7C 109.5
N1—C5—C4 107.8 (3) O5—C8—O4 127.4 (4)
C5—C4—C3 105.1 (3) O5—C8—N1 124.9 (4)
C5—C4—H4A 110.7 O4—C8—N1 107.7 (3)
C3—C4—H4A 110.7 O4—C9—C10 101.3 (3)
C5—C4—H4B 110.7 O4—C9—C12 110.6 (3)
C3—C4—H4B 110.7 C10—C9—C12 111.9 (4)
H4A—C4—H4B 108.8 O4—C9—C11 108.5 (3)
C4—C3—C2 104.2 (3) C10—C9—C11 110.5 (4)
C4—C3—H3A 110.9 C12—C9—C11 113.3 (4)
C2—C3—H3A 110.9 C9—C10—H10A 109.5
C4—C3—H3B 110.9 C9—C10—H10B 109.5
C2—C3—H3B 110.9 H10A—C10—H10B 109.5
H3A—C3—H3B 108.9 C9—C10—H10C 109.5
N1—C2—C1 112.7 (3) H10A—C10—H10C 109.5
N1—C2—C3 103.6 (3) H10B—C10—H10C 109.5
C1—C2—C3 111.0 (3) C9—C11—H11A 109.5
N1—C2—H2A 109.8 C9—C11—H11B 109.5
C1—C2—H2A 109.8 H11A—C11—H11B 109.5
C3—C2—H2A 109.8 C9—C11—H11C 109.5
O2—C1—O1 125.1 (4) H11A—C11—H11C 109.5
O2—C1—C2 123.3 (4) H11B—C11—H11C 109.5
O1—C1—C2 111.5 (3) C9—C12—H12A 109.5
O1—C6—C7 111.7 (3) C9—C12—H12B 109.5
O1—C6—H6A 109.3 H12A—C12—H12B 109.5
C7—C6—H6A 109.3 C9—C12—H12C 109.5
O1—C6—H6B 109.3 H12A—C12—H12C 109.5
C7—C6—H6B 109.3 H12B—C12—H12C 109.5
C8—N1—C5—O3 −0.8 (6) N1—C2—C1—O2 149.4 (4)
C2—N1—C5—O3 −171.0 (4) C3—C2—C1—O2 −94.8 (4)
C8—N1—C5—C4 177.3 (3) N1—C2—C1—O1 −35.4 (4)
C2—N1—C5—C4 7.1 (4) C3—C2—C1—O1 80.3 (4)
O3—C5—C4—C3 −171.4 (4) C1—O1—C6—C7 −81.1 (4)
N1—C5—C4—C3 10.6 (4) C9—O4—C8—O5 5.8 (6)
C5—C4—C3—C2 −23.0 (4) C9—O4—C8—N1 −174.7 (3)
C8—N1—C2—C1 −72.0 (4) C5—N1—C8—O5 19.8 (6)
C5—N1—C2—C1 98.5 (4) C2—N1—C8—O5 −170.9 (4)
C8—N1—C2—C3 167.9 (3) C5—N1—C8—O4 −159.7 (3)
C5—N1—C2—C3 −21.6 (4) C2—N1—C8—O4 9.5 (5)
C4—C3—C2—N1 26.7 (4) C8—O4—C9—C10 175.3 (3)
C4—C3—C2—C1 −94.6 (4) C8—O4—C9—C12 56.5 (5)
C6—O1—C1—O2 1.3 (5) C8—O4—C9—C11 −68.4 (4)
C6—O1—C1—C2 −173.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O3i 1.00 2.51 3.436 (5) 154
C3—H3B···O3ii 0.99 2.46 3.095 (5) 121
C6—H6B···O5iii 0.99 2.50 3.344 (5) 143
C12—H12A···O5i 0.98 2.55 3.327 (5) 136

Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2436).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Hayashi, S., Tajkhorshid, E. & Schulten, K. (2003). Biophys. J. 85, 1440–1449. [DOI] [PMC free article] [PubMed]
  6. Holladay, M. W., Lin, N., May, C. S., Garvey, D. S., Witte, D. G., Miller, T. G., Wolfram, A. W. & Nadzan, A. M. (1991). J. Med. Chem. 34, 455–457. [DOI] [PubMed]
  7. Kayushina, R. L. & Vainshtein, B. K. (1966). Soviet Phys. Crystallogr. 10, 698–706.
  8. Nishikawa, T. & Murakami, M. (2005). J. Mol. Biol. 352, 319–328. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wu, G. (2009). Amino Acids, 37, 1–17. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007265/bx2436sup1.cif

e-69-0o567-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007265/bx2436Isup2.hkl

e-69-0o567-Isup2.hkl (105.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007265/bx2436Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES