Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 23;69(Pt 4):o569. doi: 10.1107/S1600536813007459

2,2-Bis(pyridin-2-yl)-1,3-diazinane

Salim F Haddad a,*, Ismail Warad b, Shehdeh Jodeh b, Taibi Ben Hadda c
PMCID: PMC3629617  PMID: 23634104

Abstract

In the title compound, C14H16N4, the six-membered hexa­hydro­pyrimidine ring adopts a chair conformation. In the crystal, one of the two pyrimidine N atoms engages in N—H⋯N hydrogen bonding with one of the pyridine N atoms, generating a helical chain running along the c axis. The helical pitch is the length of the c axis.

Related literature  

For related structures, see: Song et al. (2010); Jayaratna & Norman (2010); Fun & Kia (2008); Warad et al. (2012). For competition between cyclization and bis­imine formation, see: Locke et al. (2009). For the use of hexa­hydro­pyrimidines as polydentate ligands for the synthesis of transition metal coordination complexes, see: Schmidt et al. (2011). graphic file with name e-69-0o569-scheme1.jpg

Experimental  

Crystal data  

  • C14H16N4

  • M r = 240.31

  • Monoclinic, Inline graphic

  • a = 14.2372 (14) Å

  • b = 8.0302 (8) Å

  • c = 11.3277 (9) Å

  • β = 103.075 (8)°

  • V = 1261.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.15 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.98, T max = 0.99

  • 4640 measured reflections

  • 2238 independent reflections

  • 1656 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.108

  • S = 1.05

  • 2238 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007459/nk2200sup1.cif

e-69-0o569-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007459/nk2200Isup2.hkl

e-69-0o569-Isup2.hkl (110KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007459/nk2200Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.878 (17) 2.425 (18) 3.2845 (19) 166.4 (15)

Symmetry code: (i) Inline graphic.

Acknowledgments

The X-ray structural work was done at Hamdi Mango Center for Scientific research at The University of Jordan, Amman 11942, Jordan.

supplementary crystallographic information

Comment

Condensation of 1,3-diamines with 2-dipyridlketone is a well documented reaction for two potential products, hexahydropyrimidine and classical Schiff bases compounds (Warad et al., 2012; Song et al., 2010; Jayaratna & Norman, 2010; Fun & Kia, 2008). Both of these products are extensively utilized as polydentate ligands to synthesize coordination metal complexes. The title compound was obtained during our attempt to synthesize novel ligands in order to study their coordination chemistry.

The pyrimidine ring in the molecule assumes a chair configuration allowing better disposition for H-bonding. The molecular units are connected via hydrogen bonding between one pyrimidine nitrogen atom, N3 and one pyridinic nitrogen atom, N2 in adjacent molecule as shown in Fig. 2. Hydrogen bond values are tabulated.

Experimental

A solution of 2-dipyridlketone (0.25 g, 1.45 mmol) in anhydrous ethanol (20 ml) was mixed with 1,3-propanediamine (0.16 ml, 1.5 mmoL) and allowed to reflux for about four hours. The resulting mixture was concentrated under reduced pressure and the title compound was precipitated by the addition of 40 ml of ice cool distilled water. The precipitate was filtered off, washed three times with 40 ml of distilled water, recrystallized in ethanol and allowed to stand at room temperature. After three days, colourless crystals suitable for single-crystal X-ray data collection were obtained (0.24 g, yield 77%).

Refinement

All nonhydrogen atoms were refined anisotropically. H atoms attached to C were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq. The two H atoms attched to the pyrimidinic N atoms were located in a difference Fourier map and refined fully to values of 0.88 (2) Å for the H atom involved in intermolecular H-bonding, and 0.92 (2) Å for the H atom involved in the biforcatd intramolecular hydrogen bonding. Highest difference peak and hole are 0.14 and -0.15 e/Å3 .

Figures

Fig. 1.

Fig. 1.

An ORTEP (Burnett & Johnson, 1996) view of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

View approximately down b axis showing helical chains extending along c axis formed by intermolecular N—H···N hydrogen bonds joining one pyrimidinic nitrogen, N3, and one pyridinic nitrogen, N2 in adjacent molecule.

Crystal data

C14H16N4 F(000) = 512
Mr = 240.31 Dx = 1.265 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1403 reflections
a = 14.2372 (14) Å θ = 3.1–29.1°
b = 8.0302 (8) Å µ = 0.08 mm1
c = 11.3277 (9) Å T = 293 K
β = 103.075 (8)° Parallelpiped, colourless
V = 1261.5 (2) Å3 0.3 × 0.2 × 0.15 mm
Z = 4

Data collection

Agilent Xcalibur Eos diffractometer 2238 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1656 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 16.0534 pixels mm-1 θmax = 25.0°, θmin = 3.1°
ω scans h = −16→15
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −9→9
Tmin = 0.98, Tmax = 0.99 l = −13→13
4640 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.061P] where P = (Fo2 + 2Fc2)/3
2238 reflections (Δ/σ)max < 0.001
171 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N3 0.79810 (10) 0.13990 (18) 0.07018 (11) 0.0369 (4)
N2 0.79269 (10) 0.05042 (18) −0.24206 (10) 0.0406 (4)
N4 0.82606 (10) 0.32537 (17) −0.08565 (12) 0.0377 (4)
C14 0.76709 (11) 0.18825 (19) −0.05728 (12) 0.0315 (4)
C10 0.76853 (11) 0.03058 (19) −0.13524 (12) 0.0306 (4)
C5 0.66284 (12) 0.2490 (2) −0.08265 (13) 0.0356 (4)
C11 0.90172 (13) 0.1041 (2) 0.10491 (14) 0.0456 (5)
H11A 0.9148 0.0036 0.0640 0.055*
H11B 0.9198 0.0835 0.1915 0.055*
C9 0.74371 (12) −0.1230 (2) −0.09704 (14) 0.0412 (4)
H9A 0.7238 −0.1323 −0.0246 0.049*
N1 0.63469 (11) 0.3400 (2) −0.18294 (12) 0.0511 (4)
C6 0.79561 (13) −0.0872 (2) −0.30852 (15) 0.0506 (5)
H6A 0.8117 −0.0751 −0.3832 0.061*
C13 0.92964 (13) 0.2875 (2) −0.05846 (14) 0.0474 (5)
H13A 0.9651 0.3833 −0.0774 0.057*
H13B 0.9417 0.1947 −0.1078 0.057*
C12 0.96337 (13) 0.2441 (3) 0.07420 (15) 0.0532 (5)
H12A 0.9582 0.3410 0.1235 0.064*
H12B 1.0304 0.2098 0.0911 0.064*
C1 0.54414 (16) 0.3966 (3) −0.20904 (18) 0.0639 (6)
H1A 0.5240 0.4598 −0.2790 0.077*
C7 0.77636 (14) −0.2439 (2) −0.27331 (15) 0.0520 (5)
H7A 0.7821 −0.3359 −0.3210 0.062*
C4 0.60138 (14) 0.2111 (3) −0.00797 (16) 0.0539 (5)
H4A 0.6222 0.1458 0.0608 0.065*
C8 0.74829 (13) −0.2622 (2) −0.16589 (15) 0.0503 (5)
H8A 0.7327 −0.3666 −0.1403 0.060*
C2 0.47951 (15) 0.3674 (3) −0.13943 (19) 0.0647 (6)
H2A 0.4174 0.4109 −0.1607 0.078*
C3 0.50821 (15) 0.2726 (3) −0.03762 (19) 0.0685 (6)
H3A 0.4655 0.2496 0.0114 0.082*
H4 0.8042 (12) 0.352 (2) −0.1662 (16) 0.052 (5)*
H3 0.7859 (12) 0.224 (2) 0.1143 (14) 0.050 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N3 0.0487 (9) 0.0332 (8) 0.0296 (7) 0.0036 (7) 0.0108 (6) −0.0032 (6)
N2 0.0533 (10) 0.0376 (9) 0.0329 (7) −0.0027 (7) 0.0141 (6) −0.0042 (6)
N4 0.0455 (9) 0.0288 (8) 0.0398 (8) −0.0039 (7) 0.0120 (6) −0.0006 (6)
C14 0.0390 (10) 0.0265 (9) 0.0301 (8) 0.0004 (7) 0.0102 (6) −0.0010 (6)
C10 0.0353 (9) 0.0274 (9) 0.0286 (7) 0.0023 (7) 0.0059 (6) −0.0010 (6)
C5 0.0408 (10) 0.0297 (9) 0.0368 (9) −0.0001 (7) 0.0099 (7) −0.0050 (7)
C11 0.0493 (12) 0.0495 (11) 0.0348 (9) 0.0080 (9) 0.0030 (7) −0.0025 (8)
C9 0.0557 (12) 0.0320 (10) 0.0350 (9) −0.0030 (8) 0.0087 (7) 0.0008 (7)
N1 0.0506 (10) 0.0521 (10) 0.0490 (9) 0.0117 (8) 0.0078 (7) 0.0072 (7)
C6 0.0613 (13) 0.0550 (13) 0.0374 (9) 0.0009 (10) 0.0154 (8) −0.0131 (9)
C13 0.0426 (11) 0.0482 (12) 0.0529 (10) −0.0101 (9) 0.0139 (8) −0.0064 (8)
C12 0.0451 (12) 0.0599 (14) 0.0512 (10) −0.0036 (10) 0.0039 (8) −0.0127 (9)
C1 0.0583 (14) 0.0653 (15) 0.0618 (12) 0.0154 (11) −0.0001 (10) 0.0046 (10)
C7 0.0639 (13) 0.0400 (12) 0.0462 (10) 0.0107 (10) 0.0004 (9) −0.0178 (9)
C4 0.0487 (12) 0.0639 (14) 0.0528 (11) 0.0017 (10) 0.0190 (9) 0.0024 (9)
C8 0.0639 (13) 0.0279 (10) 0.0518 (11) −0.0024 (9) −0.0024 (9) −0.0018 (8)
C2 0.0448 (13) 0.0705 (16) 0.0731 (14) 0.0124 (11) 0.0012 (10) −0.0182 (12)
C3 0.0452 (13) 0.0887 (18) 0.0779 (15) 0.0000 (12) 0.0269 (10) −0.0126 (13)

Geometric parameters (Å, º)

N3—C14 1.4635 (18) N1—C1 1.336 (2)
N3—C11 1.467 (2) C6—C7 1.367 (3)
N3—H3 0.878 (17) C6—H6A 0.9300
N2—C10 1.3401 (18) C13—C12 1.511 (2)
N2—C6 1.343 (2) C13—H13A 0.9700
N4—C14 1.4638 (19) C13—H13B 0.9700
N4—C13 1.468 (2) C12—H12A 0.9700
N4—H4 0.921 (17) C12—H12B 0.9700
C14—C5 1.527 (2) C1—C2 1.361 (3)
C14—C10 1.546 (2) C1—H1A 0.9300
C10—C9 1.379 (2) C7—C8 1.372 (2)
C5—N1 1.334 (2) C7—H7A 0.9300
C5—C4 1.381 (2) C4—C3 1.384 (3)
C11—C12 1.514 (2) C4—H4A 0.9300
C11—H11A 0.9700 C8—H8A 0.9300
C11—H11B 0.9700 C2—C3 1.365 (3)
C9—C8 1.373 (2) C2—H2A 0.9300
C9—H9A 0.9300 C3—H3A 0.9300
C14—N3—C11 112.16 (12) C7—C6—H6A 118.0
C14—N3—H3 107.7 (11) N4—C13—C12 109.54 (14)
C11—N3—H3 108.3 (11) N4—C13—H13A 109.8
C10—N2—C6 117.07 (15) C12—C13—H13A 109.8
C14—N4—C13 113.39 (13) N4—C13—H13B 109.8
C14—N4—H4 108.1 (11) C12—C13—H13B 109.8
C13—N4—H4 110.8 (11) H13A—C13—H13B 108.2
N3—C14—N4 110.86 (12) C13—C12—C11 109.23 (14)
N3—C14—C5 109.51 (12) C13—C12—H12A 109.8
N4—C14—C5 107.45 (13) C11—C12—H12A 109.8
N3—C14—C10 107.83 (12) C13—C12—H12B 109.8
N4—C14—C10 114.09 (12) C11—C12—H12B 109.8
C5—C14—C10 106.97 (12) H12A—C12—H12B 108.3
N2—C10—C9 121.72 (14) N1—C1—C2 123.9 (2)
N2—C10—C14 117.23 (13) N1—C1—H1A 118.0
C9—C10—C14 121.03 (13) C2—C1—H1A 118.0
N1—C5—C4 122.15 (17) C6—C7—C8 118.39 (16)
N1—C5—C14 115.30 (14) C6—C7—H7A 120.8
C4—C5—C14 122.55 (15) C8—C7—H7A 120.8
N3—C11—C12 113.15 (15) C5—C4—C3 118.56 (19)
N3—C11—H11A 108.9 C5—C4—H4A 120.7
C12—C11—H11A 108.9 C3—C4—H4A 120.7
N3—C11—H11B 108.9 C7—C8—C9 118.52 (17)
C12—C11—H11B 108.9 C7—C8—H8A 120.7
H11A—C11—H11B 107.8 C9—C8—H8A 120.7
C8—C9—C10 120.09 (15) C1—C2—C3 118.3 (2)
C8—C9—H9A 120.0 C1—C2—H2A 120.9
C10—C9—H9A 120.0 C3—C2—H2A 120.9
C5—N1—C1 117.65 (17) C2—C3—C4 119.4 (2)
N2—C6—C7 124.09 (16) C2—C3—H3A 120.3
N2—C6—H6A 118.0 C4—C3—H3A 120.3
C11—N3—C14—N4 −53.05 (17) C10—C14—C5—C4 97.46 (17)
C11—N3—C14—C5 −171.44 (13) C14—N3—C11—C12 53.15 (17)
C11—N3—C14—C10 72.50 (16) N2—C10—C9—C8 3.5 (2)
C13—N4—C14—N3 56.96 (16) C14—C10—C9—C8 −178.02 (15)
C13—N4—C14—C5 176.59 (11) C4—C5—N1—C1 0.9 (3)
C13—N4—C14—C10 −65.00 (16) C14—C5—N1—C1 −179.79 (15)
C6—N2—C10—C9 −2.7 (2) C10—N2—C6—C7 −0.5 (3)
C6—N2—C10—C14 178.80 (14) C14—N4—C13—C12 −58.22 (17)
N3—C14—C10—N2 −145.84 (13) N4—C13—C12—C11 54.63 (19)
N4—C14—C10—N2 −22.22 (19) N3—C11—C12—C13 −53.6 (2)
C5—C14—C10—N2 96.46 (16) C5—N1—C1—C2 0.2 (3)
N3—C14—C10—C9 35.63 (19) N2—C6—C7—C8 2.9 (3)
N4—C14—C10—C9 159.24 (14) N1—C5—C4—C3 −1.2 (3)
C5—C14—C10—C9 −82.08 (17) C14—C5—C4—C3 179.54 (16)
N3—C14—C5—N1 161.53 (13) C6—C7—C8—C9 −2.0 (3)
N4—C14—C5—N1 41.03 (17) C10—C9—C8—C7 −1.0 (2)
C10—C14—C5—N1 −81.87 (16) N1—C1—C2—C3 −1.0 (3)
N3—C14—C5—C4 −19.1 (2) C1—C2—C3—C4 0.6 (3)
N4—C14—C5—C4 −139.63 (16) C5—C4—C3—C2 0.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···N2i 0.878 (17) 2.425 (18) 3.2845 (19) 166.4 (15)
N4—H4···N1 0.921 (17) 2.379 (17) 2.701 (2) 100.3 (12)
N4—H4···N2 0.921 (17) 2.564 (17) 2.8034 (19) 95.3 (12)

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2200).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies UK Ltd, Yarnton, Enngland.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1840–o1841. [DOI] [PMC free article] [PubMed]
  4. Jayaratna, N. B. & Norman, R. E. (2010). Acta Cryst. E66, o3149. [DOI] [PMC free article] [PubMed]
  5. Locke, J., Griffith, R., Bailey, T. & Crumbie, R. (2009). Tetrahedron, 65, 10685–10692.
  6. Schmidt, M., Wiedemann, D. & Grohmann, A. (2011). Inorg. Chim. Acta, 374, 514–520.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Song, X.-P., Li, G.-C., Wu, C.-Z. & Yang, F.-L. (2010). Acta Cryst. E66, o1083. [DOI] [PMC free article] [PubMed]
  9. Warad, I., Alruwaili, A., Al-Resayes, S. I., Choudhary, M. I. & Yousuf, S. (2012). Acta Cryst. E68, o1786. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007459/nk2200sup1.cif

e-69-0o569-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007459/nk2200Isup2.hkl

e-69-0o569-Isup2.hkl (110KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007459/nk2200Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES