Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 23;69(Pt 4):o581–o582. doi: 10.1107/S1600536813007307

1-{[4-(4-{[(2-Oxidonaphthalen-1-yl)methyl­idene]aza­nium­yl}phen­oxy)phen­yl]iminiumylmeth­yl}naphthalen-2-olate

Djahida Haffar a, Djamel Daoud a, Tahar Douadi a, Leila Bouzidi a, Salah Chafaa a,*
PMCID: PMC3629627  PMID: 23634114

Abstract

The title Schiff base compound, C34H24N2O3, was prepared by a condensation reaction of bifunctional aromatic diamine (4,4′-diamino­diphenyl ether) with hy­droxy­naphtaldehyde. The asymmetric unit contains two independent mol­ecules with similar conformations. The compound contains a central oxygen bridge and two functionalized [(E)-(phenyl­iminio)meth­yl]naphthalen-2-olate units. The dihedral angles between the benzene rings linking to the central O atom are 74.64 (19) and 69.85 (18)° in the two independent mol­ecules. Intra­molecular O—H⋯O hydrogen bonding occurs between the protonated imino N atoms and deprotonated hy­droxy O atoms in both mol­ecules. In the crystal, weak C—H⋯O hydrogen bonds are observed.

Related literature  

For biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005); Chen et al. (2006); Kidwai et al. (2000); de Souza et al. (2005). For their application in water treatments, see: Izatt et al. (1995); Kalcher et al. (1995); Gilmartin & Hart (1995) and as corrosion inhibitors, see: Ahamad et al. (2010); Negm et al. (2010); Zhenlan et al., (2002). For crystallographic studies of related compounds, see: Girija et al. (2004); Djamel et al. (2011); Gowda et al. (2007). For the synthesis, see: Issaadi et al. (2005); Ghames et al. (2006).graphic file with name e-69-0o581-scheme1.jpg

Experimental  

Crystal data  

  • C34H24N2O3

  • M r = 508.55

  • Triclinic, Inline graphic

  • a = 5.292 (1) Å

  • b = 20.203 (1) Å

  • c = 23.863 (1) Å

  • α = 87.853 (10)°

  • β = 86.457 (10)°

  • γ = 85.26 (1)°

  • V = 2536.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.5 × 0.1 × 0.1 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 15547 measured reflections

  • 9159 independent reflections

  • 4705 reflections with I > 2σ(I)

  • R int = 0.053

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.218

  • S = 1.02

  • 9159 reflections

  • 706 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007307/xu5684sup1.cif

e-69-0o581-sup1.cif (33.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007307/xu5684Isup2.hkl

e-69-0o581-Isup2.hkl (438.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 1.83 2.533 (4) 138
N2—H2⋯O3 0.86 1.82 2.530 (4) 138
N3—H3⋯O5 0.86 1.84 2.543 (4) 138
N4—H4A⋯O6 0.86 1.82 2.522 (4) 138
C20—H20⋯O2i 0.93 2.46 3.236 (5) 141
C46—H46⋯O3 0.93 2.37 3.085 (5) 134

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr Lahcene Ouahab for the data collection at the Centre de Diffractométrie de l’Université de Rennes 1 CDiFX.

supplementary crystallographic information

Comment

The most common method for preparation of Schiff base ligands is reacting stoichiometric amounts of a diamine and an aldehyde in various solvents. The reaction is carried out under stirring at reflux as described in the literature. These types of schiff bases with different coordinating sites may have wide application in the field of water treatment as they have a great capacity for complexation of transition metals (Izatt et al., 1995, Kalcher et al., 1995, Gilmartin et al., 1995). They also serve as intermediates in certain enzymatic reactions and are also found in proteins that form the connective tissue (Khandar et al., 2005, Chen et al., 2006) and in the pharmaceutical field (Souza et al., 2005, Kidwai et al., 2000). Their use as corrosion inhibitors (Ahamad et al., 2010, Negm et al., 2010, Zhenlan et al., 2002) reveal their importance. Synthesized the compound,C34H24N2O3 is a condensation product of hydroxynaphtaldehyde with bifunctional aromatic diamine as shown in Fig (1). All the molecule are found in a single assymetric unit although, the oxygene atom is connecting the tow[(E)-(phenyliminio)methyl]naphthalen-2-olate units in (1) have the bond angle (C15—O1—C18) is equal to 116.3 (3)° and the dihedral angle of 75.5° between the planes defined as O(1)—C(18)—C(19)—C(20)—C(21)—C(22)—C(23) and O(1)—C(12)—C(13)—C(14)—C(15)—C(16)—C(17). In molecule (2) the bond angle (C15—O1—C18) is equal to 116.3 (3)° and the dihedral angle of 69.8° is found between the planes defined as O(4)—C(46)—C(47)—C(48)—C(49)—C(50)—C(51) and O(4)—C(52)—C(53)—C(54)—C(55)—C(56)—C(57). The bond angle between each imine phenyl plane and the attached hydroxynaphtaldehyde plane are 125.3 (3)° for C(1)—N(1)—C(12) and 126.0 (3)° for C(24)—N(2)—C(21). The bond lengths C(12)—N(1), C(1)—N(1), C(1)—C(2), C(15)—O(1).. and bond angles C(1)—N(1)—C(12), N(1)—C(1)—C(2), C(1)—C(2)—C(3), N(1)—C(12)—C(13) of one [(E)-(phenyliminio)methyl]naphthalen -2-olate moity are similar to the corresponding ones C(21)—N(2), C(24)—N(2), C(24)—C(25), C(18)—O(1) and C(24)—N(2)—C(21), N(2)—C(24)—C(25), C(24)—C(25)—C(26), N(2)—C(21)—C(22) of the second [(E)-(phenyliminio)methyl]naphthalen-2-olate. The bond distances shown in table 3 indicate that the C(1)—N(1) imine (C=N) bond length of 1.306 (4) Å agree with similar double bond usualy observed in related compounds (Girija et al., 2004, Djamel et al., 2011) but much shorter than single C—N 1.418 (4) Å of C(12)—N(1) (Gowda et al., 2007) and for the molecule (2) the bond lengths C=N C(58)—N(4) is 1.295 (4) Å and bond single C(55)—N(4) is 1.410 (4) Å.

Experimental

4,4'-Iminiomethylnaphthalen-2-olate[(E)-phenoxyphenyl] was prepared in proper literature (Issaadi et al., 2005; Ghames et al., 2006) by a condensation in ethanol (20 mL) of 2-hydroxy-1-naphthaldehyde (0.344 g, 2 mmol) with 4,4'-diaminodiphenyl ether (0.202 g, 1 mmol). The solution was stirred and refluxed for 4 h. The yellow precipitate was filtered, washed by a amount of ethanol and dried in vacuum. A single-crystal suitable for an X-ray structural analysis was obtained by slowly evaporation from dichloromethane-ethanol (1:1) solution at room temperature.

Refinement

H atoms were included in geometric positions C—H = 0.93 Å and N—H = 0.86 Å, and refined by using a riding model with Uiso(H) = 1.2eq(C,N).

Figures

Fig. 1.

Fig. 1.

The title molecule with displacement ellipsoids for non–H atoms drawn at the 15% probability level.

Fig. 2.

Fig. 2.

Packing of the molecules along the a–axis

Crystal data

C34H24N2O3 Z = 4
Mr = 508.55 F(000) = 1064
Triclinic, P1 Dx = 1.332 Mg m3
a = 5.292 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 20.203 (1) Å Cell parameters from 8325 reflections
c = 23.863 (1) Å θ = 1.0–25.4°
α = 87.853 (10)° µ = 0.09 mm1
β = 86.457 (10)° T = 293 K
γ = 85.26 (1)° Prism, yellow
V = 2536.4 (5) Å3 0.5 × 0.1 × 0.1 mm

Data collection

Nonius KappaCCD diffractometer 4705 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590 Rint = 0.053
Graphite monochromator θmax = 25.3°, θmin = 1.7°
Detector resolution: 9 pixels mm-1 h = −5→6
CCD rotation images, thick slices scans k = −23→24
15547 measured reflections l = −27→28
9159 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1115P)2] where P = (Fo2 + 2Fc2)/3
9159 reflections (Δ/σ)max < 0.001
706 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1290 (6) 0.55264 (18) 0.24570 (14) 0.0560 (8)
H1 0.0066 0.5853 0.2344 0.067*
C2 0.3238 (5) 0.52973 (16) 0.20601 (13) 0.0517 (8)
C3 0.5173 (6) 0.48181 (18) 0.22321 (15) 0.0584 (9)
C4 0.7215 (6) 0.46177 (18) 0.18409 (17) 0.0650 (10)
H4 0.8517 0.4315 0.1956 0.078*
C5 0.7285 (6) 0.48602 (19) 0.13074 (16) 0.0648 (10)
H5 0.8643 0.4719 0.1063 0.078*
C6 0.5354 (6) 0.53258 (17) 0.11036 (14) 0.0563 (9)
C7 0.3319 (5) 0.55482 (16) 0.14811 (13) 0.0506 (8)
C8 0.5407 (7) 0.5556 (2) 0.05415 (15) 0.0681 (10)
H8 0.6765 0.5413 0.0298 0.082*
C9 0.3524 (7) 0.5983 (2) 0.03446 (15) 0.0694 (10)
H9 0.3582 0.6124 −0.0031 0.083*
C10 0.1510 (6) 0.62095 (19) 0.07083 (14) 0.0643 (9)
H10 0.0226 0.6507 0.0577 0.077*
C11 0.1418 (6) 0.59934 (18) 0.12612 (14) 0.0581 (9)
H11 0.0051 0.6147 0.1498 0.07*
C12 −0.0632 (6) 0.55183 (18) 0.34053 (14) 0.0571 (9)
C13 −0.2802 (6) 0.59254 (19) 0.33162 (14) 0.0635 (9)
H13 −0.3191 0.6059 0.2952 0.076*
C14 −0.4405 (6) 0.6136 (2) 0.37675 (15) 0.0661 (10)
H14 −0.586 0.6413 0.3706 0.079*
C15 −0.3852 (6) 0.5937 (2) 0.43027 (15) 0.0659 (10)
C16 −0.1728 (7) 0.5518 (2) 0.43944 (15) 0.0850 (13)
H16 −0.1371 0.5376 0.4758 0.102*
C17 −0.0130 (7) 0.5309 (2) 0.39481 (16) 0.0773 (12)
H17 0.1304 0.5025 0.4012 0.093*
C18 −0.4462 (6) 0.6394 (2) 0.52076 (14) 0.0619 (9)
C19 −0.5430 (6) 0.6228 (2) 0.57295 (15) 0.0661 (10)
H19 −0.6739 0.5946 0.5771 0.079*
C20 −0.4471 (7) 0.6476 (2) 0.62007 (14) 0.0681 (10)
H20 −0.5167 0.6369 0.6557 0.082*
C21 −0.2479 (6) 0.68824 (18) 0.61417 (13) 0.0567 (9)
C22 −0.1582 (7) 0.7059 (2) 0.56113 (16) 0.0826 (13)
H22 −0.0294 0.7347 0.5563 0.099*
C23 −0.2587 (8) 0.6812 (3) 0.51488 (16) 0.0941 (15)
H23 −0.1963 0.6936 0.479 0.113*
C24 −0.1706 (6) 0.69730 (17) 0.71287 (14) 0.0566 (8)
H24 −0.2942 0.6683 0.7232 0.068*
C25 −0.0345 (6) 0.72262 (17) 0.75547 (14) 0.0533 (8)
C26 0.1549 (6) 0.76727 (18) 0.73981 (16) 0.0648 (10)
C27 0.2941 (6) 0.79275 (19) 0.78256 (17) 0.0691 (10)
H27 0.418 0.8218 0.7727 0.083*
C28 0.2477 (6) 0.77516 (19) 0.83696 (17) 0.0667 (10)
H28 0.3404 0.7929 0.8638 0.08*
C29 0.0632 (6) 0.73074 (17) 0.85489 (14) 0.0570 (9)
C30 −0.0812 (5) 0.70443 (16) 0.81407 (13) 0.0499 (8)
C31 −0.2635 (6) 0.66099 (18) 0.83365 (14) 0.0586 (9)
H31 −0.3635 0.6435 0.808 0.07*
C32 −0.2978 (6) 0.6436 (2) 0.88968 (15) 0.0673 (10)
H32 −0.4174 0.6139 0.9013 0.081*
C33 −0.1559 (7) 0.6699 (2) 0.92902 (15) 0.0759 (11)
H33 −0.182 0.6587 0.967 0.091*
C34 0.0216 (7) 0.7123 (2) 0.91173 (15) 0.0725 (11)
H34 0.1177 0.7295 0.9382 0.087*
N1 0.1154 (5) 0.52958 (15) 0.29725 (11) 0.0598 (7)
H1A 0.2254 0.4977 0.3059 0.072*
N2 −0.1302 (5) 0.71287 (15) 0.65981 (12) 0.0633 (8)
H2 −0.02 0.7412 0.6517 0.076*
O1 −0.5535 (4) 0.61490 (15) 0.47444 (9) 0.0788 (8)
O2 0.5137 (5) 0.45506 (13) 0.27369 (11) 0.0779 (8)
O3 0.2058 (5) 0.78523 (16) 0.68792 (12) 0.0928 (9)
C35 −0.4454 (6) 0.97036 (17) 0.69937 (14) 0.0551 (8)
C36 −0.6474 (6) 1.01138 (18) 0.67549 (16) 0.0617 (9)
C37 −0.8385 (6) 1.04351 (19) 0.71295 (18) 0.0698 (10)
H37 −0.9717 1.0701 0.6982 0.084*
C38 −0.8282 (6) 1.03579 (19) 0.76865 (17) 0.0696 (10)
H38 −0.955 1.0575 0.7915 0.084*
C39 −0.6313 (6) 0.99574 (18) 0.79435 (15) 0.0601 (9)
C40 −0.4386 (6) 0.96220 (16) 0.75985 (14) 0.0544 (8)
C41 −0.6260 (7) 0.9884 (2) 0.85341 (17) 0.0782 (11)
H41 −0.7514 1.0112 0.8759 0.094*
C42 −0.4421 (7) 0.9487 (2) 0.87806 (17) 0.0773 (11)
H42 −0.4423 0.9441 0.917 0.093*
C43 −0.2549 (7) 0.9155 (2) 0.84464 (16) 0.0718 (10)
H43 −0.1292 0.8881 0.8614 0.086*
C44 −0.2506 (6) 0.92227 (18) 0.78699 (15) 0.0613 (9)
H44 −0.1202 0.8999 0.7656 0.074*
C45 −0.2545 (6) 0.93931 (18) 0.66293 (15) 0.0589 (9)
H45 −0.1244 0.9123 0.6785 0.071*
C46 0.1470 (6) 0.87987 (19) 0.58422 (14) 0.0613 (9)
H46 0.185 0.8755 0.6218 0.074*
C47 0.3075 (6) 0.85007 (19) 0.54427 (14) 0.0622 (9)
H47 0.4526 0.8247 0.5548 0.075*
C48 0.2560 (6) 0.85735 (19) 0.48808 (14) 0.0612 (9)
C49 0.0444 (7) 0.8959 (2) 0.47208 (14) 0.0689 (10)
H49 0.0122 0.902 0.4343 0.083*
C50 −0.1196 (6) 0.9252 (2) 0.51279 (14) 0.0647 (10)
H50 −0.2635 0.9511 0.5022 0.078*
C51 −0.0731 (6) 0.91681 (17) 0.56932 (13) 0.0558 (8)
C52 0.3438 (6) 0.80954 (19) 0.39941 (14) 0.0603 (9)
C53 0.4631 (6) 0.83115 (18) 0.35055 (15) 0.0614 (9)
H53 0.6016 0.8565 0.3517 0.074*
C54 0.3795 (6) 0.81564 (19) 0.29991 (15) 0.0634 (9)
H54 0.4628 0.8301 0.2668 0.076*
C55 0.1723 (6) 0.77871 (17) 0.29765 (14) 0.0563 (9)
C56 0.0620 (7) 0.7547 (2) 0.34709 (16) 0.0701 (10)
H56 −0.0708 0.7274 0.3463 0.084*
C57 0.1468 (7) 0.7707 (2) 0.39782 (16) 0.0802 (12)
H57 0.0691 0.7549 0.4311 0.096*
C58 0.0878 (6) 0.79893 (18) 0.20050 (15) 0.0596 (9)
H58 0.2089 0.8299 0.1969 0.072*
C59 −0.0568 (6) 0.78884 (18) 0.15345 (14) 0.0570 (8)
C60 −0.2439 (6) 0.74143 (19) 0.15925 (16) 0.0635 (9)
C61 −0.3907 (6) 0.7320 (2) 0.11311 (17) 0.0702 (10)
H61 −0.5122 0.7011 0.1166 0.084*
C62 −0.3588 (7) 0.7667 (2) 0.06417 (17) 0.0723 (11)
H62 −0.4582 0.759 0.0347 0.087*
C63 −0.1774 (6) 0.81475 (19) 0.05649 (15) 0.0644 (10)
C64 −0.0245 (6) 0.82639 (18) 0.10117 (14) 0.0579 (9)
C65 0.1517 (6) 0.87515 (19) 0.09202 (16) 0.0674 (10)
H65 0.2552 0.8838 0.1206 0.081*
C66 0.1723 (7) 0.9098 (2) 0.04183 (18) 0.0778 (11)
H66 0.2881 0.9421 0.037 0.093*
C67 0.0239 (9) 0.8978 (2) −0.00217 (18) 0.0876 (13)
H67 0.0411 0.9213 −0.0363 0.105*
C68 −0.1480 (8) 0.8509 (2) 0.00554 (17) 0.0831 (12)
H68 −0.2479 0.8428 −0.0238 0.1*
N3 −0.2527 (5) 0.94693 (14) 0.60848 (11) 0.0608 (7)
H3 −0.373 0.9729 0.5951 0.073*
N4 0.0568 (5) 0.76660 (15) 0.24782 (12) 0.0613 (7)
H4A −0.043 0.735 0.249 0.074*
O4 0.4340 (4) 0.82707 (15) 0.44986 (10) 0.0769 (8)
O5 −0.6624 (5) 1.02115 (13) 0.62214 (11) 0.0781 (8)
O6 −0.2816 (5) 0.70620 (13) 0.20612 (11) 0.0746 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0578 (18) 0.057 (2) 0.053 (2) −0.0109 (15) −0.0014 (15) 0.0001 (17)
C2 0.0541 (18) 0.047 (2) 0.053 (2) −0.0073 (14) 0.0025 (14) −0.0028 (16)
C3 0.062 (2) 0.052 (2) 0.060 (2) −0.0048 (16) −0.0047 (16) −0.0001 (18)
C4 0.0572 (19) 0.053 (2) 0.083 (3) −0.0002 (16) 0.0002 (17) −0.005 (2)
C5 0.058 (2) 0.062 (2) 0.073 (3) −0.0042 (17) 0.0120 (17) −0.019 (2)
C6 0.0505 (18) 0.058 (2) 0.062 (2) −0.0107 (15) 0.0028 (14) −0.0129 (17)
C7 0.0493 (17) 0.050 (2) 0.053 (2) −0.0116 (14) 0.0015 (13) −0.0087 (16)
C8 0.067 (2) 0.084 (3) 0.054 (2) −0.0145 (19) 0.0081 (16) −0.020 (2)
C9 0.073 (2) 0.090 (3) 0.046 (2) −0.016 (2) −0.0022 (17) −0.002 (2)
C10 0.068 (2) 0.067 (3) 0.058 (2) −0.0054 (17) −0.0045 (16) −0.0005 (19)
C11 0.0567 (19) 0.061 (2) 0.056 (2) −0.0021 (16) 0.0022 (15) −0.0062 (17)
C12 0.0553 (19) 0.064 (2) 0.053 (2) −0.0115 (16) 0.0006 (14) −0.0047 (17)
C13 0.065 (2) 0.078 (3) 0.048 (2) −0.0057 (18) −0.0047 (15) −0.0005 (18)
C14 0.060 (2) 0.081 (3) 0.057 (2) −0.0014 (18) −0.0025 (16) −0.009 (2)
C15 0.0522 (19) 0.091 (3) 0.055 (2) −0.0114 (18) 0.0009 (15) −0.007 (2)
C16 0.077 (2) 0.128 (4) 0.047 (2) 0.003 (2) 0.0008 (18) 0.014 (2)
C17 0.072 (2) 0.098 (3) 0.057 (2) 0.010 (2) −0.0005 (18) 0.010 (2)
C18 0.0525 (18) 0.082 (3) 0.051 (2) −0.0034 (17) −0.0023 (15) −0.0022 (19)
C19 0.064 (2) 0.080 (3) 0.055 (2) −0.0135 (18) 0.0008 (16) 0.004 (2)
C20 0.078 (2) 0.083 (3) 0.043 (2) −0.012 (2) −0.0002 (16) 0.0086 (19)
C21 0.0595 (19) 0.065 (2) 0.045 (2) −0.0040 (16) −0.0066 (14) 0.0058 (17)
C22 0.084 (3) 0.112 (4) 0.058 (2) −0.045 (2) −0.0023 (19) 0.006 (2)
C23 0.101 (3) 0.138 (4) 0.048 (2) −0.052 (3) 0.003 (2) 0.007 (3)
C24 0.0595 (18) 0.055 (2) 0.054 (2) −0.0006 (15) −0.0057 (15) 0.0045 (17)
C25 0.0551 (18) 0.048 (2) 0.056 (2) 0.0008 (15) −0.0085 (14) 0.0019 (16)
C26 0.069 (2) 0.056 (2) 0.069 (3) −0.0031 (17) −0.0140 (18) 0.015 (2)
C27 0.066 (2) 0.056 (2) 0.088 (3) −0.0129 (17) −0.0173 (19) 0.003 (2)
C28 0.064 (2) 0.062 (3) 0.076 (3) −0.0021 (17) −0.0198 (18) −0.009 (2)
C29 0.0553 (18) 0.056 (2) 0.060 (2) 0.0042 (15) −0.0092 (15) −0.0086 (17)
C30 0.0521 (17) 0.047 (2) 0.0496 (19) 0.0066 (14) −0.0082 (13) −0.0065 (15)
C31 0.0610 (19) 0.064 (2) 0.051 (2) −0.0047 (16) −0.0044 (15) −0.0069 (17)
C32 0.070 (2) 0.078 (3) 0.054 (2) −0.0095 (19) 0.0011 (16) −0.002 (2)
C33 0.082 (3) 0.099 (3) 0.047 (2) −0.007 (2) −0.0067 (18) −0.003 (2)
C34 0.079 (2) 0.084 (3) 0.055 (2) 0.000 (2) −0.0176 (18) −0.015 (2)
N1 0.0627 (16) 0.0613 (19) 0.0543 (18) −0.0053 (13) 0.0028 (13) 0.0029 (15)
N2 0.0693 (17) 0.069 (2) 0.0527 (18) −0.0124 (15) −0.0096 (13) 0.0084 (16)
O1 0.0572 (14) 0.133 (3) 0.0487 (15) −0.0162 (14) 0.0013 (10) −0.0195 (15)
O2 0.0898 (17) 0.0694 (18) 0.0713 (18) 0.0043 (14) −0.0028 (13) 0.0123 (14)
O3 0.103 (2) 0.103 (2) 0.076 (2) −0.0363 (17) −0.0163 (15) 0.0316 (18)
C35 0.0551 (18) 0.051 (2) 0.061 (2) −0.0092 (15) −0.0077 (15) −0.0036 (17)
C36 0.065 (2) 0.049 (2) 0.073 (3) −0.0085 (16) −0.0139 (17) 0.0024 (19)
C37 0.060 (2) 0.057 (2) 0.090 (3) 0.0042 (17) −0.0059 (18) 0.007 (2)
C38 0.067 (2) 0.061 (3) 0.077 (3) 0.0043 (18) 0.0081 (18) −0.002 (2)
C39 0.0588 (19) 0.053 (2) 0.067 (2) −0.0041 (16) 0.0017 (16) 0.0013 (18)
C40 0.0531 (18) 0.047 (2) 0.064 (2) −0.0082 (15) −0.0041 (15) −0.0014 (17)
C41 0.081 (3) 0.080 (3) 0.071 (3) 0.001 (2) 0.011 (2) −0.008 (2)
C42 0.083 (3) 0.087 (3) 0.060 (2) −0.002 (2) 0.0001 (19) 0.001 (2)
C43 0.075 (2) 0.074 (3) 0.066 (3) 0.0015 (19) −0.0118 (18) 0.000 (2)
C44 0.0585 (19) 0.065 (2) 0.060 (2) 0.0009 (16) −0.0050 (15) −0.0002 (18)
C45 0.0586 (19) 0.057 (2) 0.061 (2) −0.0058 (16) −0.0084 (15) 0.0023 (18)
C46 0.070 (2) 0.065 (2) 0.050 (2) −0.0059 (18) −0.0109 (16) 0.0011 (18)
C47 0.064 (2) 0.069 (3) 0.055 (2) −0.0068 (17) −0.0120 (16) −0.0008 (19)
C48 0.0580 (19) 0.075 (3) 0.051 (2) −0.0110 (17) −0.0068 (15) 0.0009 (18)
C49 0.072 (2) 0.086 (3) 0.049 (2) −0.007 (2) −0.0108 (16) 0.004 (2)
C50 0.066 (2) 0.074 (3) 0.054 (2) −0.0015 (18) −0.0115 (16) 0.0052 (19)
C51 0.0633 (19) 0.056 (2) 0.049 (2) −0.0071 (16) −0.0082 (15) −0.0008 (17)
C52 0.0552 (19) 0.074 (3) 0.051 (2) −0.0032 (17) −0.0025 (15) −0.0034 (18)
C53 0.0597 (19) 0.063 (2) 0.062 (2) −0.0072 (16) −0.0063 (16) −0.0010 (19)
C54 0.060 (2) 0.074 (3) 0.056 (2) −0.0096 (18) 0.0038 (15) −0.0034 (19)
C55 0.0566 (18) 0.057 (2) 0.054 (2) 0.0053 (16) −0.0018 (15) −0.0051 (17)
C56 0.071 (2) 0.072 (3) 0.070 (3) −0.0206 (19) −0.0028 (18) 0.001 (2)
C57 0.090 (3) 0.101 (3) 0.052 (2) −0.033 (2) −0.0014 (19) 0.008 (2)
C58 0.0624 (19) 0.052 (2) 0.063 (2) 0.0050 (16) 0.0003 (16) −0.0077 (18)
C59 0.0593 (19) 0.055 (2) 0.056 (2) 0.0047 (16) −0.0038 (15) −0.0116 (17)
C60 0.069 (2) 0.055 (2) 0.066 (2) 0.0023 (17) −0.0001 (17) −0.0170 (19)
C61 0.066 (2) 0.068 (3) 0.078 (3) −0.0081 (18) −0.0080 (19) −0.015 (2)
C62 0.068 (2) 0.078 (3) 0.071 (3) 0.004 (2) −0.0161 (18) −0.020 (2)
C63 0.068 (2) 0.066 (3) 0.058 (2) 0.0126 (18) −0.0084 (16) −0.0061 (19)
C64 0.0593 (19) 0.056 (2) 0.057 (2) 0.0076 (16) 0.0005 (15) −0.0121 (17)
C65 0.068 (2) 0.069 (3) 0.065 (2) −0.0031 (18) −0.0019 (17) −0.004 (2)
C66 0.086 (3) 0.070 (3) 0.076 (3) −0.006 (2) 0.006 (2) 0.000 (2)
C67 0.107 (3) 0.090 (4) 0.065 (3) −0.001 (3) −0.006 (2) 0.011 (2)
C68 0.095 (3) 0.087 (3) 0.067 (3) 0.011 (2) −0.022 (2) −0.007 (2)
N3 0.0677 (17) 0.060 (2) 0.0553 (19) 0.0005 (14) −0.0124 (13) −0.0005 (15)
N4 0.0678 (17) 0.0550 (19) 0.0613 (19) −0.0043 (14) −0.0017 (14) −0.0100 (15)
O4 0.0625 (14) 0.113 (2) 0.0553 (16) −0.0029 (14) −0.0054 (11) −0.0138 (15)
O5 0.0899 (17) 0.0749 (19) 0.0697 (18) 0.0072 (14) −0.0274 (13) 0.0003 (14)
O6 0.0875 (17) 0.0694 (18) 0.0671 (17) −0.0133 (13) 0.0068 (13) −0.0058 (14)

Geometric parameters (Å, º)

C1—N1 1.299 (4) C35—C45 1.414 (5)
C1—C2 1.417 (4) C35—C36 1.431 (5)
C1—H1 0.93 C35—C40 1.449 (4)
C2—C3 1.419 (4) C36—O5 1.287 (4)
C2—C7 1.453 (4) C36—C37 1.438 (5)
C3—O2 1.301 (4) C37—C38 1.336 (5)
C3—C4 1.426 (5) C37—H37 0.93
C4—C5 1.346 (5) C38—C39 1.421 (5)
C4—H4 0.93 C38—H38 0.93
C5—C6 1.426 (5) C39—C41 1.413 (5)
C5—H5 0.93 C39—C40 1.415 (5)
C6—C8 1.403 (5) C40—C44 1.403 (4)
C6—C7 1.415 (4) C41—C42 1.357 (5)
C7—C11 1.406 (4) C41—H41 0.93
C8—C9 1.358 (5) C42—C43 1.378 (5)
C8—H8 0.93 C42—H42 0.93
C9—C10 1.391 (5) C43—C44 1.376 (5)
C9—H9 0.93 C43—H43 0.93
C10—C11 1.374 (4) C44—H44 0.93
C10—H10 0.93 C45—N3 1.302 (4)
C11—H11 0.93 C45—H45 0.93
C12—C13 1.379 (5) C46—C47 1.360 (5)
C12—C17 1.382 (5) C46—C51 1.388 (5)
C12—N1 1.416 (4) C46—H46 0.93
C13—C14 1.386 (5) C47—C48 1.385 (4)
C13—H13 0.93 C47—H47 0.93
C14—C15 1.366 (5) C48—C49 1.375 (5)
C14—H14 0.93 C48—O4 1.391 (4)
C15—C16 1.373 (5) C49—C50 1.379 (5)
C15—O1 1.394 (4) C49—H49 0.93
C16—C17 1.375 (5) C50—C51 1.388 (4)
C16—H16 0.93 C50—H50 0.93
C17—H17 0.93 C51—N3 1.409 (4)
C18—C23 1.353 (5) C52—C57 1.359 (5)
C18—C19 1.358 (4) C52—C53 1.366 (5)
C18—O1 1.398 (4) C52—O4 1.390 (4)
C19—C20 1.389 (5) C53—C54 1.368 (5)
C19—H19 0.93 C53—H53 0.93
C20—C21 1.386 (5) C54—C55 1.381 (5)
C20—H20 0.93 C54—H54 0.93
C21—C22 1.369 (5) C55—C56 1.374 (5)
C21—N2 1.413 (4) C55—N4 1.409 (4)
C22—C23 1.381 (5) C56—C57 1.375 (5)
C22—H22 0.93 C56—H56 0.93
C23—H23 0.93 C57—H57 0.93
C24—N2 1.302 (4) C58—N4 1.292 (4)
C24—C25 1.416 (5) C58—C59 1.427 (5)
C24—H24 0.93 C58—H58 0.93
C25—C26 1.427 (5) C59—C60 1.430 (5)
C25—C30 1.444 (4) C59—C64 1.444 (5)
C26—O3 1.296 (4) C60—O6 1.317 (4)
C26—C27 1.429 (5) C60—C61 1.413 (5)
C27—C28 1.346 (5) C61—C62 1.348 (5)
C27—H27 0.93 C61—H61 0.93
C28—C29 1.416 (5) C62—C63 1.420 (5)
C28—H28 0.93 C62—H62 0.93
C29—C34 1.402 (5) C63—C68 1.402 (5)
C29—C30 1.419 (4) C63—C64 1.416 (5)
C30—C31 1.405 (4) C64—C65 1.414 (5)
C31—C32 1.375 (4) C65—C66 1.367 (5)
C31—H31 0.93 C65—H65 0.93
C32—C33 1.385 (5) C66—C67 1.389 (6)
C32—H32 0.93 C66—H66 0.93
C33—C34 1.358 (5) C67—C68 1.367 (6)
C33—H33 0.93 C67—H67 0.93
C34—H34 0.93 C68—H68 0.93
N1—H1A 0.86 N3—H3 0.86
N2—H2 0.86 N4—H4A 0.86
N1—C1—C2 122.3 (3) C45—C35—C36 118.7 (3)
N1—C1—H1 118.9 C45—C35—C40 121.5 (3)
C2—C1—H1 118.9 C36—C35—C40 119.8 (3)
C1—C2—C3 119.4 (3) O5—C36—C35 122.7 (3)
C1—C2—C7 121.5 (3) O5—C36—C37 119.1 (3)
C3—C2—C7 119.1 (3) C35—C36—C37 118.2 (3)
O2—C3—C2 122.0 (3) C38—C37—C36 121.2 (3)
O2—C3—C4 118.7 (3) C38—C37—H37 119.4
C2—C3—C4 119.3 (3) C36—C37—H37 119.4
C5—C4—C3 121.0 (3) C37—C38—C39 122.7 (3)
C5—C4—H4 119.5 C37—C38—H38 118.7
C3—C4—H4 119.5 C39—C38—H38 118.7
C4—C5—C6 122.4 (3) C41—C39—C40 119.6 (3)
C4—C5—H5 118.8 C41—C39—C38 121.4 (3)
C6—C5—H5 118.8 C40—C39—C38 119.0 (3)
C8—C6—C7 119.8 (3) C44—C40—C39 117.1 (3)
C8—C6—C5 121.7 (3) C44—C40—C35 123.8 (3)
C7—C6—C5 118.5 (3) C39—C40—C35 119.1 (3)
C11—C7—C6 116.8 (3) C42—C41—C39 121.5 (4)
C11—C7—C2 123.5 (3) C42—C41—H41 119.2
C6—C7—C2 119.7 (3) C39—C41—H41 119.2
C9—C8—C6 121.6 (3) C41—C42—C43 119.1 (4)
C9—C8—H8 119.2 C41—C42—H42 120.4
C6—C8—H8 119.2 C43—C42—H42 120.4
C8—C9—C10 119.6 (3) C44—C43—C42 121.2 (4)
C8—C9—H9 120.2 C44—C43—H43 119.4
C10—C9—H9 120.2 C42—C43—H43 119.4
C11—C10—C9 119.9 (3) C43—C44—C40 121.5 (3)
C11—C10—H10 120 C43—C44—H44 119.3
C9—C10—H10 120 C40—C44—H44 119.3
C10—C11—C7 122.3 (3) N3—C45—C35 122.9 (3)
C10—C11—H11 118.9 N3—C45—H45 118.6
C7—C11—H11 118.9 C35—C45—H45 118.6
C13—C12—C17 118.9 (3) C47—C46—C51 120.5 (3)
C13—C12—N1 124.1 (3) C47—C46—H46 119.8
C17—C12—N1 116.9 (3) C51—C46—H46 119.8
C12—C13—C14 120.2 (3) C46—C47—C48 120.4 (3)
C12—C13—H13 119.9 C46—C47—H47 119.8
C14—C13—H13 119.9 C48—C47—H47 119.8
C15—C14—C13 120.1 (3) C49—C48—C47 120.2 (3)
C15—C14—H14 119.9 C49—C48—O4 123.0 (3)
C13—C14—H14 119.9 C47—C48—O4 116.7 (3)
C14—C15—C16 120.0 (3) C48—C49—C50 119.2 (3)
C14—C15—O1 118.4 (3) C48—C49—H49 120.4
C16—C15—O1 121.5 (3) C50—C49—H49 120.4
C15—C16—C17 120.0 (3) C49—C50—C51 121.0 (3)
C15—C16—H16 120 C49—C50—H50 119.5
C17—C16—H16 120 C51—C50—H50 119.5
C16—C17—C12 120.6 (3) C50—C51—C46 118.7 (3)
C16—C17—H17 119.7 C50—C51—N3 117.7 (3)
C12—C17—H17 119.7 C46—C51—N3 123.6 (3)
C23—C18—C19 119.6 (3) C57—C52—C53 120.0 (3)
C23—C18—O1 122.0 (3) C57—C52—O4 121.9 (3)
C19—C18—O1 118.3 (3) C53—C52—O4 118.1 (3)
C18—C19—C20 120.2 (3) C52—C53—C54 120.2 (3)
C18—C19—H19 119.9 C52—C53—H53 119.9
C20—C19—H19 119.9 C54—C53—H53 119.9
C21—C20—C19 120.2 (3) C53—C54—C55 120.4 (3)
C21—C20—H20 119.9 C53—C54—H54 119.8
C19—C20—H20 119.9 C55—C54—H54 119.8
C22—C21—C20 118.6 (3) C56—C55—C54 118.6 (3)
C22—C21—N2 117.5 (3) C56—C55—N4 117.1 (3)
C20—C21—N2 123.9 (3) C54—C55—N4 124.2 (3)
C21—C22—C23 120.1 (3) C55—C56—C57 120.4 (3)
C21—C22—H22 119.9 C55—C56—H56 119.8
C23—C22—H22 119.9 C57—C56—H56 119.8
C18—C23—C22 121.2 (3) C52—C57—C56 120.2 (3)
C18—C23—H23 119.4 C52—C57—H57 119.9
C22—C23—H23 119.4 C56—C57—H57 119.9
N2—C24—C25 122.8 (3) N4—C58—C59 122.4 (3)
N2—C24—H24 118.6 N4—C58—H58 118.8
C25—C24—H24 118.6 C59—C58—H58 118.8
C24—C25—C26 118.8 (3) C58—C59—C60 118.6 (3)
C24—C25—C30 122.0 (3) C58—C59—C64 121.9 (3)
C26—C25—C30 119.2 (3) C60—C59—C64 119.5 (3)
O3—C26—C25 122.0 (3) O6—C60—C61 119.3 (3)
O3—C26—C27 118.9 (3) O6—C60—C59 121.9 (3)
C25—C26—C27 119.1 (3) C61—C60—C59 118.8 (4)
C28—C27—C26 120.7 (3) C62—C61—C60 121.6 (4)
C28—C27—H27 119.6 C62—C61—H61 119.2
C26—C27—H27 119.6 C60—C61—H61 119.2
C27—C28—C29 122.6 (3) C61—C62—C63 121.7 (3)
C27—C28—H28 118.7 C61—C62—H62 119.1
C29—C28—H28 118.7 C63—C62—H62 119.1
C34—C29—C28 121.5 (3) C68—C63—C64 119.5 (4)
C34—C29—C30 119.7 (3) C68—C63—C62 121.1 (4)
C28—C29—C30 118.8 (3) C64—C63—C62 119.3 (3)
C31—C30—C29 117.0 (3) C65—C64—C63 117.6 (3)
C31—C30—C25 123.5 (3) C65—C64—C59 123.5 (3)
C29—C30—C25 119.5 (3) C63—C64—C59 119.0 (3)
C32—C31—C30 121.7 (3) C66—C65—C64 121.0 (4)
C32—C31—H31 119.2 C66—C65—H65 119.5
C30—C31—H31 119.2 C64—C65—H65 119.5
C31—C32—C33 120.5 (4) C65—C66—C67 121.4 (4)
C31—C32—H32 119.7 C65—C66—H66 119.3
C33—C32—H32 119.7 C67—C66—H66 119.3
C34—C33—C32 119.5 (3) C68—C67—C66 118.9 (4)
C34—C33—H33 120.3 C68—C67—H67 120.6
C32—C33—H33 120.3 C66—C67—H67 120.6
C33—C34—C29 121.6 (3) C67—C68—C63 121.7 (4)
C33—C34—H34 119.2 C67—C68—H68 119.2
C29—C34—H34 119.2 C63—C68—H68 119.2
C1—N1—C12 126.3 (3) C45—N3—C51 126.4 (3)
C1—N1—H1A 116.9 C45—N3—H3 116.8
C12—N1—H1A 116.9 C51—N3—H3 116.8
C24—N2—C21 127.1 (3) C58—N4—C55 125.6 (3)
C24—N2—H2 116.5 C58—N4—H4A 117.2
C21—N2—H2 116.5 C55—N4—H4A 117.2
C15—O1—C18 116.5 (2) C52—O4—C48 116.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.86 1.83 2.533 (4) 138
N2—H2···O3 0.86 1.82 2.530 (4) 138
N3—H3···O5 0.86 1.84 2.543 (4) 138
N4—H4A···O6 0.86 1.82 2.522 (4) 138
C20—H20···O2i 0.93 2.46 3.236 (5) 141
C46—H46···O3 0.93 2.37 3.085 (5) 134

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5684).

References

  1. Ahamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933–942.
  2. Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373–4378. [DOI] [PubMed]
  3. Djamel, D., Tahar, D., Djahida, H., Hanane, H. & Salah, C. (2011). Acta Cryst. E67, o1119–o1120. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Ghames, A., Douadi, T., Haffar, D., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2006). Polyhedron, 25, 3201–3208.
  6. Gilmartin, M. A. T. & Hart, J. P. (1995). Analyst, 120, 1029–1045. [DOI] [PubMed]
  7. Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586–o588.
  8. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.
  9. Issaadi, S., Haffar, D., Douadi, T., Chafaa, S., Séraphin, D., Khan, M. A. & Boue, G. M. (2005). Synth. React. Inorg. Met-Org. Nano-Met. Chem 35, 875–882.
  10. Izatt, R. M., Pawlak, M. K. & Bardshaw, I. S. (1995). Chem. Rev. 95, 2529–2586.
  11. Kalcher, K., Kauffman, J. M., Wank, J., Vaneare, I. S., Vitras, K., Neuhal, C. & Yang, Z. (1995). Electroanalysis, 7, 5–22.
  12. Khandar, A. A., Hosseini-Yazdi, S. A. & Zarei, S. A. (2005). Inorg. Chim. Acta, 358, 3211–3217.
  13. Kidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69–72. [DOI] [PubMed]
  14. Negm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523–3536.
  15. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Souza, M. V. N. (2005). Mini Rev. Med. Chem. 5, 1009–1017.
  19. Zhenlan, Q., Shenhao, C., Ying, L. & Xuegui, C. (2002). Corros. Sci. 44, 703–715.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007307/xu5684sup1.cif

e-69-0o581-sup1.cif (33.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007307/xu5684Isup2.hkl

e-69-0o581-Isup2.hkl (438.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES