Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 23;69(Pt 4):o584. doi: 10.1107/S1600536813007460

N-(2,6-Dimeth­oxy­pyridin-3-yl)-9-methyl-9H-carbazole-3-sulfonamide

Guangzhi Shan a, Zhuorong Li a, Laixing Hu a, Jiandong Jiang a, Zongying Liu a,*
PMCID: PMC3629629  PMID: 23634116

Abstract

In the title compound, C20H19N3O4S, a novel tubulin ligand active against human cancer, the dihedral angle between the pyridine ring and the carbazole ring system is 42.87 (10)°. In the crystal, the mol­ecules are held together by N—H⋯O and C—H⋯O hydrogen bonds into layers, which are assembled into a three-dimensional network via π–π stacking inter­actions between inversion-related pyridine rings, with centroid–centroid distances of 3.5101 (12) Å.

Related literature  

For the synthesis and properties of the compound and its derivatives, see Hu et al. (2007). For tubulin as a target for anti­cancer activity, see Wang et al. (2008); Jackson et al. (2007); Jordan et al. (1991); Mollinedo & Gajate (2003); Wilson et al. (1999); Yvon et al. (1999). For the stability of the temperature controller used for the data collection, see Cosier & Glazer (1986).graphic file with name e-69-0o584-scheme1.jpg

Experimental  

Crystal data  

  • C20H19N3O4S

  • M r = 397.45

  • Monoclinic, Inline graphic

  • a = 13.5078 (2) Å

  • b = 7.9272 (1) Å

  • c = 20.9276 (3) Å

  • β = 124.027 (1)°

  • V = 1857.20 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.83 mm−1

  • T = 120 K

  • 0.45 × 0.36 × 0.32 mm

Data collection  

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.475, T max = 0.556

  • 11460 measured reflections

  • 3280 independent reflections

  • 3161 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.088

  • S = 1.06

  • 3280 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007460/pk2469sup1.cif

e-69-0o584-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007460/pk2469Isup2.hkl

e-69-0o584-Isup2.hkl (160.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007460/pk2469Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.81 (2) 2.56 (2) 3.3387 (18) 163 (2)
C18—H18A⋯O1ii 0.96 2.45 3.398 (2) 170
C10—H10⋯O2iii 0.93 2.56 3.4887 (19) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30901840) and the New Teachers’ Fund for Doctor Stations, Ministry of Education (20101106120032).

supplementary crystallographic information

Comment

Tubulin is a target for anticancer drugs (Jordan et al., 1991; Yvon et al., 1999; Wilson et al., 1999). The representative with this mode of action are the Vinca alkaloids (such as vincristine) and Taxol analogues such as paclitaxel (Jackson et al., 2007; Mollinedo et al., 2003). In this research area, N-(2,6-dimethoxypyridine-3-yl)-9-methylcarbazole-3-sulfonamide (IG-105, IMB-105) showed a promising anti-proliferative activity in human cancer cell lines. The title compound inhibits micro-tubule assembly by binding at the colchicine pocket and shows a potent anticancer activity in vitro and in vivo and was safe in mice (Wang et al., 2008).

The title molecule is shown in Fig. 1. In the crystal structure, the carbazole CH3 hydrogens are disordered. The distance is 5.0286 (12) Å between the respective centroids of pyridine ring and the 6-membered ring C1\C2\C3\C4\C5\C6, and the dihedral angle between their planes is 42.87 (10) °. The intermolecular interactions that are present in the structure are N—H···O and C—H···O hydrogen bonds (Table 1) and π-π stacking interactions between inversion-related pyridine rings, with centroid-centroid distance = 3.5101 (12) Å (symmetry codes x, y, z and 2-x, -y, 1-z).

Experimental

To a solution of 3-amino-2,6-dimethoxypyridine (2.6 g, 16.8 mmol) in 45 ml dimethylfornamide at room temperature, prepared 9-methylcarbazole-3-sulfonyl chloride (5.0 g, 16.9 mmol) was added. After stirring for 5 min, triethylamine (3.6 ml, 25.6 mmol) was added, with continued stirring for 2 h. After adding ice water (50 ml), the precipitate was filtered, washed with water (20 ml) and dried, recrystallized with anhydrous ethanol, dried in vacuo to give N- (2,6-dimethoxypyridine-3-yl)-9-methylcarbazole-3-sulfonamide as a colourless crystalline solid (5.2 g, 78%; mp: 170–172 °C).

1H NMR (DMSO δ): 3.40 (3H, s), 3.69 (3H, s), 3.89 (3H, s), 6.28(1H, d, J = 8.0 Hz), 7.26 (1H, t, J = 7.2 Hz), 7.44 (1H, d, J = 8.0 Hz), 7.52(1H, dd, J = 8.0, 7.2 Hz), 7.63 (1H, d, J = 8.0 Hz), 7.70 (1H, d, J = 8.8 Hz), 7.76 (1H, d, J = 8.8 Hz), 8.21 (1H, d, J = 8.0 Hz), 8.49 (1H, s), 9.32 (1H, s).

13C NMR (DMSO δ): 160.2, 156.7, 142.2, 141.3, 139.3, 130.4, 126.7, 124.3, 121.6, 121.1, 120.5, 119.9, 119.8, 112.2, 109.8, 109.1, 100.6, 53.4, 52.9, 29.2.

Single crystals suitable for X-ray analysis were obtained by slow evaporation of a mixed solvent of dichloromethane and cyclohexane (3:1 v/v).

Refinement

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93–0.96 Å, Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C). Hydrogen atoms bonded to nitrogen atoms (N1) were located in a difference map and their positions refined using fixed isotropic U values.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, showing the atom-numbering scheme. The displacement parameters are shown at the 30% probability level.

Fig. 2.

Fig. 2.

Part of packing of the title compound, viewed down the b direction. Dashed lines indicate hydrogen bonds.

Crystal data

C20H19N3O4S F(000) = 832
Mr = 397.45 Dx = 1.421 Mg m3
Monoclinic, P21/c Melting point = 443–445 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54184 Å
a = 13.5078 (2) Å Cell parameters from 7976 reflections
b = 7.9272 (1) Å θ = 3.3–66.7°
c = 20.9276 (3) Å µ = 1.83 mm1
β = 124.027 (1)° T = 120 K
V = 1857.20 (4) Å3 Block, colourless
Z = 4 0.45 × 0.36 × 0.32 mm

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer 3280 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 3161 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 10.4713 pixels mm-1 θmax = 66.8°, θmin = 4.0°
ω scans h = −16→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −9→8
Tmin = 0.475, Tmax = 0.556 l = −24→24
11460 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0468P)2 + 1.1436P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3280 reflections Δρmax = 0.45 e Å3
262 parameters Δρmin = −0.52 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0078 (4)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.69096 (3) 0.28850 (4) 0.403260 (19) 0.01331 (14)
O1 0.62355 (9) 0.15207 (14) 0.35261 (6) 0.0178 (3)
O2 0.68743 (10) 0.45199 (14) 0.37286 (6) 0.0195 (3)
O3 0.95214 (10) −0.42247 (14) 0.55767 (6) 0.0209 (3)
O4 0.93551 (10) 0.14336 (14) 0.60496 (6) 0.0208 (3)
N1 0.83268 (12) 0.22943 (17) 0.45142 (8) 0.0152 (3)
H1 0.8755 (17) 0.301 (3) 0.4817 (11) 0.019 (5)*
N2 0.94314 (11) −0.14034 (16) 0.58206 (7) 0.0166 (3)
N3 0.59643 (11) 0.36785 (16) 0.64261 (7) 0.0167 (3)
C1 0.65608 (13) 0.30951 (19) 0.47199 (8) 0.0137 (3)
C2 0.61415 (13) 0.16778 (19) 0.48958 (9) 0.0161 (3)
H2 0.6013 0.0675 0.4629 0.019*
C3 0.59167 (13) 0.1756 (2) 0.54624 (9) 0.0169 (3)
H3 0.5632 0.0822 0.5581 0.020*
C4 0.61299 (13) 0.32797 (19) 0.58516 (8) 0.0148 (3)
C5 0.65942 (13) 0.46985 (18) 0.56913 (8) 0.0141 (3)
C6 0.67969 (13) 0.46111 (19) 0.51119 (8) 0.0143 (3)
H6 0.7082 0.5539 0.4990 0.017*
C7 0.67359 (13) 0.6016 (2) 0.62161 (8) 0.0158 (3)
C8 0.63249 (13) 0.5339 (2) 0.66488 (8) 0.0163 (3)
C9 0.63143 (14) 0.6286 (2) 0.72079 (9) 0.0203 (3)
H9 0.6032 0.5837 0.7488 0.024*
C10 0.67411 (15) 0.7918 (2) 0.73269 (9) 0.0224 (4)
H10 0.6743 0.8583 0.7694 0.027*
C11 0.71695 (15) 0.8595 (2) 0.69094 (9) 0.0219 (4)
H11 0.7462 0.9693 0.7009 0.026*
C12 0.71658 (14) 0.7660 (2) 0.63491 (9) 0.0188 (3)
H12 0.7444 0.8121 0.6069 0.023*
C13 0.91249 (13) 0.01614 (19) 0.55524 (9) 0.0150 (3)
C14 0.86006 (13) 0.05938 (19) 0.47790 (8) 0.0141 (3)
C15 0.83742 (13) −0.0704 (2) 0.42735 (9) 0.0160 (3)
H15 0.8028 −0.0469 0.3754 0.019*
C16 0.86582 (13) −0.2349 (2) 0.45332 (9) 0.0173 (3)
H16 0.8493 −0.3239 0.4198 0.021*
C17 0.92017 (13) −0.26123 (19) 0.53180 (9) 0.0163 (3)
C18 0.54002 (16) 0.2605 (2) 0.66988 (10) 0.0239 (4)
H18A 0.5740 0.2834 0.7234 0.036* 0.61 (2)
H18B 0.5530 0.1443 0.6637 0.036* 0.61 (2)
H18C 0.4558 0.2831 0.6405 0.036* 0.61 (2)
H18D 0.4812 0.1905 0.6284 0.036* 0.39 (2)
H18E 0.5022 0.3296 0.6880 0.036* 0.39 (2)
H18F 0.5994 0.1908 0.7112 0.036* 0.39 (2)
C19 0.99079 (19) 0.0978 (2) 0.68440 (10) 0.0319 (4)
H19A 0.9996 0.1965 0.7137 0.048*
H19B 1.0680 0.0497 0.7041 0.048*
H19C 0.9418 0.0167 0.6885 0.048*
C20 1.01784 (18) −0.4455 (2) 0.63937 (10) 0.0326 (4)
H20A 1.0864 −0.3728 0.6641 0.049*
H20B 1.0434 −0.5608 0.6518 0.049*
H20C 0.9678 −0.4185 0.6571 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0165 (2) 0.0117 (2) 0.0116 (2) 0.00097 (13) 0.00782 (16) 0.00084 (13)
O1 0.0184 (5) 0.0184 (6) 0.0143 (5) 0.0000 (4) 0.0077 (4) −0.0026 (4)
O2 0.0266 (6) 0.0147 (6) 0.0192 (6) 0.0027 (4) 0.0141 (5) 0.0049 (4)
O3 0.0268 (6) 0.0119 (5) 0.0196 (6) 0.0000 (4) 0.0103 (5) 0.0013 (4)
O4 0.0320 (6) 0.0150 (6) 0.0142 (5) −0.0026 (5) 0.0123 (5) −0.0031 (4)
N1 0.0163 (7) 0.0117 (7) 0.0168 (7) −0.0023 (5) 0.0088 (6) −0.0022 (5)
N2 0.0185 (6) 0.0149 (7) 0.0160 (6) −0.0023 (5) 0.0094 (5) −0.0001 (5)
N3 0.0223 (7) 0.0151 (7) 0.0159 (6) −0.0003 (5) 0.0128 (6) 0.0003 (5)
C1 0.0148 (7) 0.0133 (7) 0.0118 (7) 0.0011 (6) 0.0067 (6) 0.0000 (6)
C2 0.0188 (7) 0.0107 (7) 0.0180 (7) −0.0013 (6) 0.0098 (6) −0.0025 (6)
C3 0.0207 (8) 0.0121 (7) 0.0193 (8) −0.0025 (6) 0.0121 (7) 0.0009 (6)
C4 0.0160 (7) 0.0144 (7) 0.0134 (7) 0.0018 (6) 0.0078 (6) 0.0018 (6)
C5 0.0152 (7) 0.0108 (7) 0.0134 (7) 0.0010 (6) 0.0062 (6) −0.0003 (6)
C6 0.0152 (7) 0.0115 (7) 0.0155 (7) −0.0001 (6) 0.0081 (6) 0.0014 (6)
C7 0.0161 (7) 0.0145 (7) 0.0134 (7) 0.0028 (6) 0.0062 (6) −0.0006 (6)
C8 0.0172 (7) 0.0156 (8) 0.0123 (7) 0.0039 (6) 0.0060 (6) 0.0012 (6)
C9 0.0221 (8) 0.0232 (9) 0.0137 (7) 0.0056 (6) 0.0089 (7) 0.0001 (6)
C10 0.0248 (8) 0.0222 (9) 0.0141 (7) 0.0068 (7) 0.0071 (7) −0.0038 (6)
C11 0.0232 (8) 0.0153 (8) 0.0187 (8) 0.0014 (6) 0.0064 (7) −0.0045 (6)
C12 0.0209 (8) 0.0150 (8) 0.0172 (8) 0.0014 (6) 0.0086 (7) 0.0000 (6)
C13 0.0160 (7) 0.0138 (7) 0.0158 (7) −0.0031 (6) 0.0093 (6) −0.0033 (6)
C14 0.0137 (7) 0.0126 (7) 0.0158 (7) −0.0004 (6) 0.0081 (6) −0.0001 (6)
C15 0.0148 (7) 0.0181 (8) 0.0141 (7) −0.0004 (6) 0.0075 (6) −0.0011 (6)
C16 0.0186 (8) 0.0147 (8) 0.0179 (8) −0.0025 (6) 0.0097 (6) −0.0042 (6)
C17 0.0163 (7) 0.0121 (7) 0.0202 (8) −0.0024 (6) 0.0101 (6) −0.0002 (6)
C18 0.0367 (10) 0.0200 (8) 0.0252 (9) 0.0000 (7) 0.0235 (8) 0.0021 (7)
C19 0.0539 (12) 0.0235 (9) 0.0157 (8) −0.0099 (8) 0.0179 (8) −0.0045 (7)
C20 0.0452 (11) 0.0200 (9) 0.0190 (8) 0.0022 (8) 0.0096 (8) 0.0048 (7)

Geometric parameters (Å, º)

S1—O1 1.4291 (11) C8—C9 1.397 (2)
S1—O2 1.4327 (11) C9—C10 1.381 (2)
S1—N1 1.6554 (13) C9—H9 0.9300
S1—C1 1.7542 (15) C10—C11 1.397 (3)
O3—C17 1.3608 (19) C10—H10 0.9300
O3—C20 1.430 (2) C11—C12 1.385 (2)
O4—C13 1.3543 (18) C11—H11 0.9300
O4—C19 1.436 (2) C12—H12 0.9300
N1—C14 1.425 (2) C13—C14 1.399 (2)
N1—H1 0.80 (2) C14—C15 1.382 (2)
N2—C17 1.325 (2) C15—C16 1.382 (2)
N2—C13 1.329 (2) C15—H15 0.9300
N3—C4 1.3770 (19) C16—C17 1.390 (2)
N3—C8 1.390 (2) C16—H16 0.9300
N3—C18 1.455 (2) C18—H18A 0.9600
C1—C6 1.388 (2) C18—H18B 0.9600
C1—C2 1.397 (2) C18—H18C 0.9600
C2—C3 1.380 (2) C18—H18D 0.9600
C2—H2 0.9300 C18—H18E 0.9600
C3—C4 1.394 (2) C18—H18F 0.9600
C3—H3 0.9300 C19—H19A 0.9600
C4—C5 1.416 (2) C19—H19B 0.9600
C5—C6 1.386 (2) C19—H19C 0.9600
C5—C7 1.449 (2) C20—H20A 0.9600
C6—H6 0.9300 C20—H20B 0.9600
C7—C12 1.390 (2) C20—H20C 0.9600
C7—C8 1.407 (2)
O1—S1—O2 120.41 (6) C7—C12—H12 120.8
O1—S1—N1 106.10 (7) N2—C13—O4 119.17 (13)
O2—S1—N1 105.43 (7) N2—C13—C14 123.64 (14)
O1—S1—C1 109.15 (7) O4—C13—C14 117.16 (13)
O2—S1—C1 108.71 (7) C15—C14—C13 117.10 (14)
N1—S1—C1 106.10 (7) C15—C14—N1 120.55 (13)
C17—O3—C20 116.23 (13) C13—C14—N1 122.34 (13)
C13—O4—C19 116.68 (12) C14—C15—C16 120.50 (14)
C14—N1—S1 117.67 (10) C14—C15—H15 119.7
C14—N1—H1 116.4 (14) C16—C15—H15 119.7
S1—N1—H1 110.9 (13) C15—C16—C17 116.98 (14)
C17—N2—C13 117.44 (13) C15—C16—H16 121.5
C4—N3—C8 108.21 (13) C17—C16—H16 121.5
C4—N3—C18 125.79 (13) N2—C17—O3 118.84 (14)
C8—N3—C18 125.74 (13) N2—C17—C16 124.31 (14)
C6—C1—C2 122.25 (14) O3—C17—C16 116.85 (14)
C6—C1—S1 119.24 (11) N3—C18—H18A 109.5
C2—C1—S1 118.31 (11) N3—C18—H18B 109.5
C3—C2—C1 120.44 (14) H18A—C18—H18B 109.5
C3—C2—H2 119.8 N3—C18—H18C 109.5
C1—C2—H2 119.8 H18A—C18—H18C 109.5
C2—C3—C4 117.92 (14) H18B—C18—H18C 109.5
C2—C3—H3 121.0 N3—C18—H18D 109.5
C4—C3—H3 121.0 H18A—C18—H18D 141.1
N3—C4—C3 128.88 (14) H18B—C18—H18D 56.3
N3—C4—C5 109.52 (13) H18C—C18—H18D 56.3
C3—C4—C5 121.59 (14) N3—C18—H18E 109.5
C6—C5—C4 119.85 (13) H18A—C18—H18E 56.3
C6—C5—C7 133.80 (14) H18B—C18—H18E 141.1
C4—C5—C7 106.34 (13) H18C—C18—H18E 56.3
C5—C6—C1 117.89 (14) H18D—C18—H18E 109.5
C5—C6—H6 121.1 N3—C18—H18F 109.5
C1—C6—H6 121.1 H18A—C18—H18F 56.3
C12—C7—C8 120.01 (14) H18B—C18—H18F 56.3
C12—C7—C5 133.71 (15) H18C—C18—H18F 141.1
C8—C7—C5 106.28 (13) H18D—C18—H18F 109.5
N3—C8—C9 128.59 (15) H18E—C18—H18F 109.5
N3—C8—C7 109.63 (13) O4—C19—H19A 109.5
C9—C8—C7 121.78 (15) O4—C19—H19B 109.5
C10—C9—C8 117.10 (15) H19A—C19—H19B 109.5
C10—C9—H9 121.5 O4—C19—H19C 109.5
C8—C9—H9 121.5 H19A—C19—H19C 109.5
C9—C10—C11 121.62 (15) H19B—C19—H19C 109.5
C9—C10—H10 119.2 O3—C20—H20A 109.5
C11—C10—H10 119.2 O3—C20—H20B 109.5
C12—C11—C10 121.16 (16) H20A—C20—H20B 109.5
C12—C11—H11 119.4 O3—C20—H20C 109.5
C10—C11—H11 119.4 H20A—C20—H20C 109.5
C11—C12—C7 118.33 (15) H20B—C20—H20C 109.5
C11—C12—H12 120.8
O1—S1—N1—C14 −41.52 (12) C4—N3—C8—C7 −0.40 (16)
O2—S1—N1—C14 −170.29 (11) C18—N3—C8—C7 −174.84 (14)
C1—S1—N1—C14 74.49 (12) C12—C7—C8—N3 −178.80 (13)
O1—S1—C1—C6 −159.85 (11) C5—C7—C8—N3 1.12 (16)
O2—S1—C1—C6 −26.75 (14) C12—C7—C8—C9 1.1 (2)
N1—S1—C1—C6 86.21 (13) C5—C7—C8—C9 −178.95 (13)
O1—S1—C1—C2 25.18 (14) N3—C8—C9—C10 179.09 (15)
O2—S1—C1—C2 158.28 (11) C7—C8—C9—C10 −0.8 (2)
N1—S1—C1—C2 −88.76 (13) C8—C9—C10—C11 −0.2 (2)
C6—C1—C2—C3 1.7 (2) C9—C10—C11—C12 1.0 (2)
S1—C1—C2—C3 176.48 (11) C10—C11—C12—C7 −0.7 (2)
C1—C2—C3—C4 −0.5 (2) C8—C7—C12—C11 −0.3 (2)
C8—N3—C4—C3 178.69 (15) C5—C7—C12—C11 179.77 (16)
C18—N3—C4—C3 −6.9 (3) C17—N2—C13—O4 −179.41 (13)
C8—N3—C4—C5 −0.51 (16) C17—N2—C13—C14 −1.3 (2)
C18—N3—C4—C5 173.93 (14) C19—O4—C13—N2 −1.0 (2)
C2—C3—C4—N3 179.15 (14) C19—O4—C13—C14 −179.21 (15)
C2—C3—C4—C5 −1.7 (2) N2—C13—C14—C15 1.4 (2)
N3—C4—C5—C6 −177.87 (13) O4—C13—C14—C15 179.54 (13)
C3—C4—C5—C6 2.9 (2) N2—C13—C14—N1 −177.34 (13)
N3—C4—C5—C7 1.19 (16) O4—C13—C14—N1 0.8 (2)
C3—C4—C5—C7 −178.08 (13) S1—N1—C14—C15 76.61 (16)
C4—C5—C6—C1 −1.7 (2) S1—N1—C14—C13 −104.69 (15)
C7—C5—C6—C1 179.60 (15) C13—C14—C15—C16 0.2 (2)
C2—C1—C6—C5 −0.5 (2) N1—C14—C15—C16 178.92 (13)
S1—C1—C6—C5 −175.32 (11) C14—C15—C16—C17 −1.6 (2)
C6—C5—C7—C12 −2.6 (3) C13—N2—C17—O3 179.01 (13)
C4—C5—C7—C12 178.51 (16) C13—N2—C17—C16 −0.4 (2)
C6—C5—C7—C8 177.48 (16) C20—O3—C17—N2 −5.0 (2)
C4—C5—C7—C8 −1.39 (16) C20—O3—C17—C16 174.38 (15)
C4—N3—C8—C9 179.67 (15) C15—C16—C17—N2 1.8 (2)
C18—N3—C8—C9 5.2 (2) C15—C16—C17—O3 −177.58 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.81 (2) 2.56 (2) 3.3387 (18) 163 (2)
C18—H18A···O1ii 0.96 2.45 3.398 (2) 170
C10—H10···O2iii 0.93 2.56 3.4887 (19) 177

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2469).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Hu, L.-X., Li, Z.-R., Wang, Y.-M., Wu, Y.-B., Jiang, J.-D. & Boykin, D. W. (2007). Bioorg. Med. Chem. Lett. 17, 1194–1196. [DOI] [PubMed]
  4. Jackson, J. R., Patrick, D. R., Dar, M. M. & Huang, P. S. (2007). Nat. Rev. Cancer, 7, 107–117. [DOI] [PubMed]
  5. Jordan, M. A., Thrower, D. & Wilson, L. (1991). Cancer Res. 51, 2212–2222. [PubMed]
  6. Mollinedo, F. & Gajate, C. (2003). Apoptosis, 8, 413–450. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wang, Y.-M., Hu, L.-X., Liu, Z.-M., Uou, X.-F., Zhang, S.-H., Qu, J.-R., Li, Z.-R., Li, Y., Kong, W.-J., He, H.-W., Shao, R.-G., Zhang, L.-R., Peng, Z.-G., Boykin, D. W. & Jiang, J.-D. (2008). Clin. Cancer Res. 14, 6218–6227. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Wilson, L., Panda, D. & Jordan, M. A. (1999). Cell Struct. Funct. 24, 329–335. [DOI] [PubMed]
  12. Yvon, A. M., Wadsworth, P. & Jordan, M. A. (1999). Mol. Biol. Cell, 10, 947–959. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007460/pk2469sup1.cif

e-69-0o584-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007460/pk2469Isup2.hkl

e-69-0o584-Isup2.hkl (160.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007460/pk2469Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES