Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 23;69(Pt 4):o586–o587. doi: 10.1107/S1600536813007617

(2E)-2-(3-Eth­oxy-2-hy­droxy­benzyl­idene)hydrazinecarboxamide

A Ambili Aravindakshan a, M Sithambaresan b,*, M R Prathapachandra Kurup a
PMCID: PMC3629631  PMID: 23634118

Abstract

The title compound, C10H13N3O3, adopts an E conformation with respect to the azomethine bond and crystallizes in the amide form. A classical intra­molecular O—H⋯N hydrogen bond is present. The two N atoms of the hydrazinecarboxamide unit are also involved in inter­molecular N—H⋯O hydrogen bonds, with the O atom of the hydrazinecarboxamide group acting as the acceptor. Pairs of N—H⋯O hydrogen bond link the mol­ecules into centrosymmetric dimers, which are linked by further N—H⋯O hydrogen bonds into chains along the b axis. The chains are linked by C—H⋯π inter­actions.

Related literature  

For biological applications of hydrazinecarboxamide and its derivatives, see: Afrasiabi et al. (2005); Siji et al. (2010); Beraldo & Gambino (2004). For related structures and background references, see: Sithambaresan & Kurup (2011); Noblía et al. (2004, 2005); Benítez et al. (2009, 2011); Rivadeneira et al. (2009); Gambino et al. (2011). For standard bond-length data, see: Allen et al. (1987); Kala et al. (2007). For the synthesis, see: Sreekanth et al. (2004).graphic file with name e-69-0o586-scheme1.jpg

Experimental  

Crystal data  

  • C10H13N3O3

  • M r = 223.23

  • Triclinic, Inline graphic

  • a = 5.0676 (4) Å

  • b = 7.0426 (7) Å

  • c = 15.8394 (15) Å

  • α = 97.509 (4)°

  • β = 98.819 (3)°

  • γ = 105.790 (4)°

  • V = 528.62 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.969, T max = 0.979

  • 2559 measured reflections

  • 1794 independent reflections

  • 1496 reflections with I > 2σ(I)

  • R int = 0.011

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.109

  • S = 1.05

  • 1794 reflections

  • 163 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007617/fj2621sup1.cif

e-69-0o586-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007617/fj2621Isup2.hkl

e-69-0o586-Isup2.hkl (88.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007617/fj2621Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.85 (1) 2.06 (1) 2.9034 (19) 173 (2)
O2—H2′⋯N1 0.84 (1) 1.89 (1) 2.6736 (15) 155 (2)
N2—H2⋯O3ii 0.87 (1) 2.06 (1) 2.8965 (17) 161 (2)
C9—H9ACg iii 0.97 2.75 3.5896 (19) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

AAA thanks the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Junior Research Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the data collection. MRPK thanks the University Grants Commission, New Delhi, for a UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

The importance of semicarbazones lies in its pharmacological activities such as antitumoral (Afrasiabi et al., 2005), antimicrobial (Siji et al., 2010), antihypertensive, hypolipidemic, antineoplastic, hypnotic and anticonvulsant properties (Beraldo & Gambino, 2004). As the literature reports, the title compound, C10H13N3O3, is a tridentate semicarbazone ligand which formed complexes with vanadium (Noblía et al., 2004, 2005; Rivadeneira et al., 2009; Benítez et al., 2009; Benítez et al., 2011), and gallium (Gambino et al., 2011) and have demonstrated to possess biological activity as antitumor and antiparasitic agents.

The compound crystallizes in triclinic, P1 space group. The molecule exists in the E configuration with respect to C7═N1 bond (Sithambaresan & Kurup, 2011) which is confirmed by the torsion angle of -176.32 (13)° of C6—C7—N1—N2 moiety (Fig. 1). The torsion angle value of -169.81 (13)° corresponding to N1—N2—C8—O3 moiety supports the trans configuration of the O3 atom with respect to the hydrazine nitrogen atom N1 similar to its phenyl derivative (Sithambaresan & Kurup, 2011). The torsion angle value of 10.5 (2)° corresponding to N1—N2—C8—N3 moiety supports the cis configuration of the N3 atom with respect to the nitrogen atom N1. Also the torsion angles of -1.8 (2)° and 6.9 (2)° for O2—C1—C6—C7 and C1—C6—C7—N1 moieties respectively confirm the cis configuration of phenolic oxygen O2 and azomethine nitrogen N1 and it favours intramolecular hydrogen bonding between N1 and H attached to O2. The molecule as a whole slightly goes out of planarity with maximum mean plane deviations of 0.392 (2)° at N(3) and -0.345 (1)° at O(3).

Even though atom O1 lies cis to O2, with a torsion angle of -0.8 (2)° (O2—C1—C2—O1) and N1 lies cis to N3, with a torsion angle of 10.5 (2)° (N1—N2—C8—N3), there are no intramolecular hydrogen bonding interactions involving N3—H3'···N1 and O2—H2'···O1 bonds, which makes the title compound different from its phenyl derivative (Sithambaresan & Kurup, 2011). The C7═N1 [1.278 (2) Å] and C8═O3 [1.2481 (17) Å] bond distances are very close to the formal C═N and C═O bond lengths [C═ N; 1.28 Å and C═O; 1.21 Å] (Allen et al., 1987) respectively confirming the azomethine bond formation and the existence of semicarbazone in amido form in solid state. The N1—N2 [1.3749 (17) Å] and C8—N2 [1.352 (2) Å] bond distances lie in between the ideal values of corresponding single and double bonds [N—N; 1.45 and C—N; 1.47, N═N; 1.25 and C═N; 1.28] (Kala et al., 2007) and it clearly proves the extended conjugation in the molecule.

Two conventional intermolecular hydrogen bonds are present in the molecular system (Fig. 2) between the O3 and the H atoms attached to N2 and N3 atoms of the neighbouring molecules with D···A distances of 2.8963 (19) and 2.9032 (18) Å. N2–H2···O3 hydrogen bonds form centrosymmetric dimers and these dimers are connected together by means of N3–H3A···O3 hydrogen bond to construct a 1-D hydrogen bonding chain and such chains are beautifully connected one over the other by C–H···π interaction (Fig. 3) with H···π distance of 2.7500 Å keeping the molecular system stable. Fig. 4 shows the packing diagram of the title compound along b axis.

Experimental

The title compound was prepared by adapting a reported procedure (Sreekanth et al., 2004). To a warm methanolic solution of hydrazinecarboxamide (0.1115 g, 1 mmol), a methanolic solution of 3-ethoxy-2-hydroxybenzaldehyde (0.1662 g, 1 mmol) was added and the resulting solution was refluxed for 6 h after adding 3 drops of conc. HCl. On cooling the solution, colorless crystals were separated out. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of its solution in 1:1 mixture of methanol and DMF.

Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). N2–H2 and O2–H2' H atoms were located from difference maps and restrained using DFIX instructions. N3–H3A and N3–H3B H atoms were also located from difference maps and restrained using DFIX and DANG instructions. Omitted owing to bad disagreement was the reflection (0 0 1).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Fig. 2.

Fig. 2.

Graphical representation showing 1-D hydrogen bonding chain in the crystal structure of C10H13N3O3.

Fig. 3.

Fig. 3.

C–H···π interaction found in the title compound showing the linkage between layers.

Fig. 4.

Fig. 4.

A view of the unit cell along b axis.

Crystal data

C10H13N3O3 Z = 2
Mr = 223.23 F(000) = 236.0
Triclinic, P1 Dx = 1.403 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.0676 (4) Å Cell parameters from 1468 reflections
b = 7.0426 (7) Å θ = 3.1–27.8°
c = 15.8394 (15) Å µ = 0.11 mm1
α = 97.509 (4)° T = 296 K
β = 98.819 (3)° Needle, colorless
γ = 105.790 (4)° 0.30 × 0.25 × 0.20 mm
V = 528.62 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 1794 independent reflections
Radiation source: fine-focus sealed tube 1496 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.011
Detector resolution: 8.33 pixels mm-1 θmax = 25.0°, θmin = 2.7°
ω and φ scan h = −4→6
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −8→7
Tmin = 0.969, Tmax = 0.979 l = −18→18
2559 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.0879P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1794 reflections Δρmax = 0.15 e Å3
163 parameters Δρmin = −0.18 e Å3
5 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.043 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0222 (2) 0.77360 (18) 0.14679 (8) 0.0535 (4)
O2 0.4871 (2) 0.95529 (17) 0.25818 (8) 0.0507 (4)
N3 1.1509 (3) 1.3215 (2) 0.44231 (10) 0.0451 (4)
N1 0.9230 (2) 0.92842 (19) 0.36957 (8) 0.0378 (3)
N2 1.1846 (3) 1.0000 (2) 0.42199 (9) 0.0415 (4)
O3 1.5573 (2) 1.25778 (16) 0.48904 (8) 0.0484 (3)
C1 0.4059 (3) 0.7519 (2) 0.24373 (10) 0.0380 (4)
C2 0.1566 (3) 0.6509 (2) 0.18340 (10) 0.0409 (4)
C3 0.0673 (3) 0.4439 (3) 0.16548 (11) 0.0482 (4)
H3 −0.0981 0.3773 0.1258 0.058*
C4 0.2212 (4) 0.3340 (3) 0.20585 (12) 0.0518 (5)
H4 0.1593 0.1945 0.1932 0.062*
C5 0.4660 (3) 0.4317 (3) 0.26476 (11) 0.0460 (4)
H5 0.5691 0.3576 0.2916 0.055*
C6 0.5613 (3) 0.6415 (2) 0.28465 (9) 0.0374 (4)
C7 0.8283 (3) 0.7384 (2) 0.34449 (9) 0.0383 (4)
H7 0.9336 0.6587 0.3652 0.046*
C8 1.3056 (3) 1.1985 (2) 0.45241 (9) 0.0359 (4)
C9 −0.2192 (3) 0.6811 (3) 0.07918 (11) 0.0510 (5)
H9A −0.3608 0.5872 0.1005 0.061*
H9B −0.1694 0.6088 0.0307 0.061*
C10 −0.3277 (4) 0.8456 (3) 0.05117 (13) 0.0641 (6)
H10A −0.3775 0.9153 0.0996 0.096*
H10B −0.4897 0.7890 0.0054 0.096*
H10C −0.1854 0.9378 0.0305 0.096*
H2 1.274 (3) 0.917 (2) 0.4371 (11) 0.045 (5)*
H2' 0.642 (3) 0.984 (3) 0.2920 (12) 0.079 (7)*
H3A 1.223 (3) 1.4467 (15) 0.4605 (12) 0.061 (6)*
H3B 0.975 (2) 1.278 (3) 0.4271 (13) 0.068 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0390 (6) 0.0514 (8) 0.0589 (7) 0.0127 (5) −0.0154 (5) 0.0016 (6)
O2 0.0410 (7) 0.0387 (7) 0.0609 (8) 0.0109 (5) −0.0143 (5) −0.0013 (5)
N3 0.0284 (7) 0.0373 (8) 0.0621 (9) 0.0075 (6) −0.0051 (6) 0.0045 (7)
N1 0.0270 (7) 0.0419 (8) 0.0375 (7) 0.0069 (5) −0.0039 (5) 0.0016 (6)
N2 0.0284 (7) 0.0392 (8) 0.0493 (8) 0.0102 (6) −0.0094 (5) 0.0010 (6)
O3 0.0246 (6) 0.0407 (7) 0.0695 (8) 0.0063 (5) −0.0086 (5) 0.0021 (5)
C1 0.0323 (8) 0.0383 (9) 0.0383 (8) 0.0081 (7) 0.0016 (6) 0.0009 (6)
C2 0.0315 (8) 0.0461 (10) 0.0405 (8) 0.0107 (7) −0.0008 (6) 0.0029 (7)
C3 0.0345 (9) 0.0492 (10) 0.0474 (9) 0.0026 (7) −0.0057 (7) −0.0013 (7)
C4 0.0468 (10) 0.0385 (9) 0.0569 (10) 0.0015 (8) −0.0026 (8) 0.0018 (8)
C5 0.0434 (9) 0.0411 (9) 0.0471 (9) 0.0086 (7) −0.0022 (7) 0.0075 (7)
C6 0.0316 (8) 0.0418 (9) 0.0341 (8) 0.0075 (7) 0.0018 (6) 0.0032 (6)
C7 0.0341 (8) 0.0392 (9) 0.0381 (8) 0.0108 (7) −0.0012 (6) 0.0050 (7)
C8 0.0270 (7) 0.0386 (8) 0.0382 (8) 0.0075 (6) 0.0006 (6) 0.0053 (6)
C9 0.0367 (9) 0.0647 (12) 0.0425 (9) 0.0128 (8) −0.0072 (7) −0.0004 (8)
C10 0.0483 (11) 0.0769 (14) 0.0604 (12) 0.0167 (10) −0.0099 (9) 0.0168 (10)

Geometric parameters (Å, º)

O1—C2 1.3697 (19) C3—C4 1.386 (2)
O1—C9 1.4319 (18) C3—H3 0.9300
O2—C1 1.3558 (19) C4—C5 1.377 (2)
O2—H2' 0.837 (10) C4—H4 0.9300
N3—C8 1.326 (2) C5—C6 1.400 (2)
N3—H3A 0.849 (9) C5—H5 0.9300
N3—H3B 0.846 (9) C6—C7 1.459 (2)
N1—C7 1.278 (2) C7—H7 0.9300
N1—N2 1.3749 (17) C9—C10 1.499 (3)
N2—C8 1.352 (2) C9—H9A 0.9700
N2—H2 0.869 (9) C9—H9B 0.9700
O3—C8 1.2481 (17) C10—H10A 0.9600
C1—C6 1.397 (2) C10—H10B 0.9600
C1—C2 1.407 (2) C10—H10C 0.9600
C2—C3 1.380 (2)
C2—O1—C9 117.61 (13) C6—C5—H5 119.7
C1—O2—H2' 102.2 (16) C1—C6—C5 119.31 (14)
C8—N3—H3A 120.2 (13) C1—C6—C7 121.94 (14)
C8—N3—H3B 121.7 (13) C5—C6—C7 118.68 (14)
H3A—N3—H3B 117.1 (17) N1—C7—C6 122.59 (14)
C7—N1—N2 116.34 (13) N1—C7—H7 118.7
C8—N2—N1 121.45 (13) C6—C7—H7 118.7
C8—N2—H2 118.6 (12) O3—C8—N3 122.89 (15)
N1—N2—H2 120.0 (12) O3—C8—N2 118.66 (13)
O2—C1—C6 122.85 (14) N3—C8—N2 118.45 (13)
O2—C1—C2 117.48 (14) O1—C9—C10 107.13 (15)
C6—C1—C2 119.66 (15) O1—C9—H9A 110.3
O1—C2—C3 125.56 (14) C10—C9—H9A 110.3
O1—C2—C1 114.78 (14) O1—C9—H9B 110.3
C3—C2—C1 119.66 (14) C10—C9—H9B 110.3
C2—C3—C4 120.82 (15) H9A—C9—H9B 108.5
C2—C3—H3 119.6 C9—C10—H10A 109.5
C4—C3—H3 119.6 C9—C10—H10B 109.5
C5—C4—C3 119.85 (16) H10A—C10—H10B 109.5
C5—C4—H4 120.1 C9—C10—H10C 109.5
C3—C4—H4 120.1 H10A—C10—H10C 109.5
C4—C5—C6 120.70 (15) H10B—C10—H10C 109.5
C4—C5—H5 119.7
C7—N1—N2—C8 −179.98 (14) C2—C1—C6—C5 0.1 (2)
C9—O1—C2—C3 −5.3 (2) O2—C1—C6—C7 −1.8 (2)
C9—O1—C2—C1 174.53 (14) C2—C1—C6—C7 176.94 (13)
O2—C1—C2—O1 −0.8 (2) C4—C5—C6—C1 −0.3 (3)
C6—C1—C2—O1 −179.55 (13) C4—C5—C6—C7 −177.26 (14)
O2—C1—C2—C3 179.03 (14) N2—N1—C7—C6 −176.32 (13)
C6—C1—C2—C3 0.3 (2) C1—C6—C7—N1 6.9 (2)
O1—C2—C3—C4 179.43 (16) C5—C6—C7—N1 −176.21 (15)
C1—C2—C3—C4 −0.4 (3) N1—N2—C8—O3 −169.81 (13)
C2—C3—C4—C5 0.1 (3) N1—N2—C8—N3 10.5 (2)
C3—C4—C5—C6 0.2 (3) C2—O1—C9—C10 179.40 (14)
O2—C1—C6—C5 −178.64 (14)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring

D—H···A D—H H···A D···A D—H···A
N3—H3A···O3i 0.85 (1) 2.06 (1) 2.9034 (19) 173 (2)
O2—H2′···N1 0.84 (1) 1.89 (1) 2.6736 (15) 155 (2)
N2—H2···O3ii 0.87 (1) 2.06 (1) 2.8965 (17) 161 (2)
C9—H9A···Cgiii 0.97 2.75 3.5896 (19) 145

Symmetry codes: (i) −x+3, −y+3, −z+1; (ii) −x+3, −y+2, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2621).

References

  1. Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526–1531. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Benítez, J., Becco, L., Correia, I., Leal, S. M., Guiset, H., Costa Pessoa, J., Lorenzo, J., Aviles, F., Escobar, P., Moreno, V., Garat, B. & Gambino, D. (2011). J. Inorg. Biochem. 105, 303–312. [DOI] [PubMed]
  4. Benítez, J., Guggeri, L., Tomaz, I., Arrambide, G., Navarro, M., Costa Pessoa, J., Garat, B. & Gambino, D. (2009). J. Inorg. Biochem. 103, 609–616. [DOI] [PubMed]
  5. Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39. [DOI] [PubMed]
  6. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  7. Bruker (2004). SADABS, APEX2, XPREP and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Gambino, D., Fernándeza, M., Santosa, D., Etcheverría, G. A., Piro, O. E., Pavan, F. R., Leite, C. Q. F., Tomaz, I. & Marques, F. (2011). Polyhedron, 30, 1360–1366.
  10. Kala, U. L., Suma, S., Kurup, M. R. P., Suja, K. & John, R. P. (2007). Polyhedron, 26, 1427–1435.
  11. Noblía, P., Vieites, M., Parajón-Costa, P., Baran, E. J., Cerecetto, H., Draper, P., González, M., Piro, O. E., Castellano, E. E., Azqueta, A., López, A., Monge-Vega, A. & Gambino, D. (2005). J. Inorg. Biochem. 99, 443–451. [DOI] [PubMed]
  12. Noblía, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., González, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. & Gambino, D. (2004). Eur. J. Inorg. Chem. pp. 322–328.
  13. Rivadeneira, J., Barrio, D., Arrambide, G., Gambino, D., Bruzzone, L. & Etcheverry, S. (2009). J. Inorg. Biochem. 103, 633–642. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Siji, V. L., Sudarsanakumar, M. R., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22–28. [DOI] [PubMed]
  16. Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972. [DOI] [PMC free article] [PubMed]
  17. Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007617/fj2621sup1.cif

e-69-0o586-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007617/fj2621Isup2.hkl

e-69-0o586-Isup2.hkl (88.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007617/fj2621Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES