Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 28;69(Pt 4):o591. doi: 10.1107/S160053681300754X

Cyclo­hexane-1,4-dicarb­oxy­lic acid–pyridinium-4-olate (1/1)

Adriana Cruz-Enríquez a,*, Hector J Peinado-Guevara a, Viviana Reyes-Marquez b, Herbert Höpfl b, José J Campos-Gaxiola a
PMCID: PMC3629634  PMID: 23634121

Abstract

In the title adduct, C5H5NO·C8H12O4, the heterocycle exists in its zwitterionic form. The cyclo­hexane ring exhibits a chair conformation with the carb­oxy­lic acid groups in equatorial and axial orientations. In the crystal, mol­ecules are linked through charge-assisted O—H⋯O, N+—H⋯O and N+—H⋯O hydrogen bonds, and an additional series of C—H⋯O contacts, giving a pleated two-dimensional hydrogen-bonded network parallel to (-204).

Related literature  

For reports on supra­molecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995); Simon & Bassoul (2000); Weyna et al. (2009); Aakeröy et al. (2010); Yan et al. (2012). For related structures, see: Bhogala et al. (2005); Shattock et al. (2008); Yu (2012).graphic file with name e-69-0o591-scheme1.jpg

Experimental  

Crystal data  

  • C5H5NO·C8H12O4

  • M r = 267.28

  • Monoclinic, Inline graphic

  • a = 11.749 (2) Å

  • b = 11.618 (2) Å

  • c = 10.8010 (19) Å

  • β = 115.383 (2)°

  • V = 1332.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.50 × 0.43 × 0.24 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.95, T max = 0.98

  • 12552 measured reflections

  • 2345 independent reflections

  • 2229 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.161

  • S = 1.02

  • 2345 reflections

  • 181 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681300754X/pk2472sup1.cif

e-69-0o591-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300754X/pk2472Isup2.hkl

e-69-0o591-Isup2.hkl (115.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300754X/pk2472Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1′⋯O5 0.84 1.82 2.638 (3) 165
O3—H3′⋯O5i 0.84 1.76 2.594 (2) 175
N1—H1⋯O4ii 0.84 2.29 2.921 (3) 132
N1—H1⋯O5iii 0.84 2.39 3.038 (3) 134
C1—H1A⋯O2iv 0.98 2.67 3.625 (4) 162
C11—H11⋯O2iii 0.93 2.62 3.420 (5) 143
C12—H12⋯O4ii 0.93 2.47 3.014 (4) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2012/049).

supplementary crystallographic information

Comment

The engineering of novel materials via non-covalent synthesis has developed as a very attractive and potential area of research because of its importance in biological systems, molecular recognition (Simon et al., 2000; Aakeröy et al., 2010), pharmaceutical chemistry (Weyna et al., 2009) and materials chemistry (Yan et al., 2012). Aromatic carboxylic acids form reliable supramolecular synthons for the construction of novel organic networks by hydrogen bonding and π-π interactions (Desiraju, 1995), and numerous studies have focused on hydrogen bonding between carboxylic acids and pyridine derivatives (Bhogala et al., 2005; Shattock et al. 2008; Yu, 2012). Herein, we report on the solid-state structure of a 1:1 co-crystal formed between cyclohexane-1,4-dicarboxylic acid and pyridin-4-ol. The molecular components of the title compound are shown in Fig. 1. The asymmetric unit contains one cyclohexane-1,4-dicarboxylic acid and one pyridin-4-ol molecule in the zwitterionic form. The cyclohexane ring exhibits a chair conformation with the carboxylic groups in equatorial and axial orientation, as denoted by the C7—C1—C2—C3 [-177.7 (2)°] and C8—C4—C5—C6 [75.7 (3)°] torsion angles, respectively. In the crystal, the molecular entities are linked through charge-assisted O—H···O-, N+—H···O- and N+—H···O hydrogen bonds and an additional series of C—H···O contacts to give a pleated two-dimensional hydrogen-bonded network parallel to (-204) (Fig. 2, Table 1).

Experimental

C5H5NO.C8H12O4 was prepared from a solution of C5H5NO (0.05 g, 0.53 mmol) and C8H12O4 (0.09 g, 0.53 mmol) in CH3OH (5 ml), which was stirred for a few minutes at room temperature, giving a clear transparent solution. After evaporation of the solvent, colorless crystals suitable for single-crystal X-ray diffraction had formed in about 51% yield. IR (KBr): 3471, 3276, 3131, 3092, 2937, 2863, 1709, 1632, 1576, 1509, 1416, 1364, 1331, 1316, 1229, 1170, 1001 cm-1.

Refinement

H atoms were found in difference Fourier maps. Carbon-bound hydrogen atoms were placed in idealized positions using a riding models with constrained distances of 0.97 Å (R2CH2), 0.98 Å (R3CH) and 0.93 Å (Csp2H). Coordinates for hydrogens bound to oxygen and nitrogen were refined. Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (OH, NH) of the attached atom.

Figures

Fig. 1.

Fig. 1.

The molecular structures of the components in the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View down the c-axis of the two-dimensional hydrogen-bonded supramolecular network formed through O—H···O-, N+—H···O- and N+—H···O and C—H···O interactions.

Crystal data

C5H5NO·C8H12O4 F(000) = 568
Mr = 267.28 Dx = 1.333 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5484 reflections
a = 11.749 (2) Å θ = 2.6–27.4°
b = 11.618 (2) Å µ = 0.10 mm1
c = 10.8010 (19) Å T = 293 K
β = 115.383 (2)° Rectangular prism, yellow
V = 1332.0 (4) Å3 0.50 × 0.43 × 0.24 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2345 independent reflections
Radiation source: fine-focus sealed tube 2229 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.95, Tmax = 0.98 k = −13→13
12552 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0623P)2 + 1.4075P] where P = (Fo2 + 2Fc2)/3
2345 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.20 e Å3
3 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2230 (2) 0.1930 (2) 0.0632 (2) 0.0663 (6)
H1' 0.162 (2) 0.198 (4) 0.085 (4) 0.099*
O2 0.3186 (2) 0.3059 (3) 0.2412 (3) 0.0898 (9)
O3 0.8439 (2) 0.3327 (2) 0.3413 (2) 0.0733 (7)
H3' 0.901 (3) 0.324 (4) 0.4210 (17) 0.110*
O4 0.7984 (2) 0.15562 (19) 0.3701 (2) 0.0805 (8)
C1 0.4258 (2) 0.2522 (2) 0.1037 (2) 0.0420 (6)
H1A 0.3892 0.2539 0.0033 0.050*
C2 0.5129 (3) 0.3552 (2) 0.1563 (3) 0.0489 (7)
H2A 0.4647 0.4256 0.1246 0.059*
H2B 0.5510 0.3555 0.2557 0.059*
C3 0.6155 (3) 0.3511 (3) 0.1063 (3) 0.0556 (8)
H3A 0.6718 0.4160 0.1442 0.067*
H3B 0.5773 0.3583 0.0073 0.067*
C4 0.6915 (3) 0.2400 (3) 0.1470 (3) 0.0497 (7)
H4 0.7428 0.2374 0.0955 0.060*
C5 0.6058 (3) 0.1347 (3) 0.1039 (3) 0.0557 (8)
H5A 0.5683 0.1283 0.0048 0.067*
H5B 0.6559 0.0662 0.1416 0.067*
C6 0.5018 (3) 0.1405 (2) 0.1514 (3) 0.0485 (7)
H6A 0.5384 0.1363 0.2506 0.058*
H6B 0.4460 0.0751 0.1152 0.058*
C7 0.3195 (3) 0.2542 (2) 0.1453 (3) 0.0471 (6)
C8 0.7822 (2) 0.2371 (2) 0.2978 (3) 0.0442 (6)
N1 0.0308 (3) −0.0636 (2) 0.3628 (3) 0.0590 (7)
H1 0.041 (4) −0.115 (2) 0.421 (3) 0.088*
O5 0.01175 (16) 0.18473 (15) 0.09311 (18) 0.0470 (5)
C9 0.0146 (2) 0.1065 (2) 0.1791 (2) 0.0384 (6)
C10 −0.0764 (3) 0.0194 (2) 0.1462 (3) 0.0495 (7)
H10 −0.1444 0.0185 0.0603 0.059*
C11 −0.0659 (3) −0.0638 (2) 0.2390 (4) 0.0609 (8)
H11 −0.1266 −0.1213 0.2159 0.073*
C12 0.1179 (3) 0.0179 (3) 0.4004 (3) 0.0584 (8)
H12 0.1836 0.0165 0.4880 0.070*
C13 0.1124 (3) 0.1029 (2) 0.3127 (3) 0.0497 (7)
H13 0.1740 0.1599 0.3410 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0561 (13) 0.0868 (16) 0.0593 (13) −0.0227 (12) 0.0280 (11) −0.0188 (12)
O2 0.0729 (16) 0.130 (2) 0.0779 (16) −0.0249 (15) 0.0433 (14) −0.0510 (16)
O3 0.0722 (15) 0.0658 (14) 0.0532 (13) −0.0221 (12) −0.0005 (11) 0.0129 (11)
O4 0.1024 (19) 0.0580 (14) 0.0471 (12) −0.0139 (13) −0.0003 (12) 0.0119 (11)
C1 0.0442 (14) 0.0476 (15) 0.0296 (12) −0.0022 (11) 0.0115 (11) 0.0003 (11)
C2 0.0532 (16) 0.0370 (14) 0.0506 (15) 0.0012 (12) 0.0166 (13) 0.0067 (12)
C3 0.0529 (16) 0.0624 (18) 0.0448 (15) −0.0094 (14) 0.0146 (13) 0.0164 (13)
C4 0.0479 (15) 0.0695 (19) 0.0349 (13) 0.0017 (14) 0.0207 (12) 0.0011 (13)
C5 0.0569 (17) 0.0591 (18) 0.0447 (15) 0.0045 (14) 0.0157 (13) −0.0176 (13)
C6 0.0550 (16) 0.0374 (14) 0.0483 (15) −0.0063 (12) 0.0175 (13) −0.0069 (12)
C7 0.0480 (15) 0.0490 (16) 0.0400 (14) −0.0005 (12) 0.0146 (12) 0.0019 (12)
C8 0.0437 (14) 0.0500 (16) 0.0386 (13) 0.0008 (12) 0.0174 (11) 0.0004 (12)
N1 0.0757 (18) 0.0480 (15) 0.0647 (17) 0.0093 (13) 0.0411 (15) 0.0138 (12)
O5 0.0441 (10) 0.0454 (10) 0.0432 (10) −0.0014 (8) 0.0109 (8) 0.0082 (8)
C9 0.0411 (13) 0.0345 (13) 0.0403 (13) 0.0048 (10) 0.0182 (11) −0.0015 (10)
C10 0.0450 (15) 0.0467 (16) 0.0554 (16) −0.0027 (12) 0.0202 (13) −0.0062 (13)
C11 0.0667 (19) 0.0407 (16) 0.088 (2) −0.0111 (14) 0.0458 (19) −0.0066 (15)
C12 0.0672 (19) 0.0558 (18) 0.0488 (16) 0.0103 (16) 0.0217 (14) 0.0081 (14)
C13 0.0517 (15) 0.0439 (15) 0.0449 (14) −0.0043 (12) 0.0125 (12) −0.0001 (12)

Geometric parameters (Å, º)

O1—C7 1.310 (3) C4—H4 0.9800
O1—H1' 0.8400 (10) C5—C6 1.516 (4)
O2—C7 1.201 (3) C5—H5A 0.9700
O3—C8 1.299 (3) C5—H5B 0.9700
O3—H3' 0.8400 (11) C6—H6A 0.9700
O4—C8 1.189 (3) C6—H6B 0.9700
C1—C7 1.498 (4) N1—C12 1.324 (4)
C1—C2 1.518 (4) N1—C11 1.333 (4)
C1—C6 1.534 (4) N1—H1 0.8400 (10)
C1—H1A 0.9800 O5—C9 1.289 (3)
C2—C3 1.518 (4) C9—C10 1.403 (4)
C2—H2A 0.9700 C9—C13 1.408 (4)
C2—H2B 0.9700 C10—C11 1.359 (4)
C3—C4 1.524 (4) C10—H10 0.9300
C3—H3A 0.9700 C11—H11 0.9300
C3—H3B 0.9700 C12—C13 1.351 (4)
C4—C8 1.517 (4) C12—H12 0.9300
C4—C5 1.525 (4) C13—H13 0.9300
C7—O1—H1' 112 (3) H5A—C5—H5B 107.8
C8—O3—H3' 110 (3) C5—C6—C1 111.2 (2)
C7—C1—C2 113.0 (2) C5—C6—H6A 109.4
C7—C1—C6 110.6 (2) C1—C6—H6A 109.4
C2—C1—C6 109.8 (2) C5—C6—H6B 109.4
C7—C1—H1A 107.7 C1—C6—H6B 109.4
C2—C1—H1A 107.7 H6A—C6—H6B 108.0
C6—C1—H1A 107.7 O2—C7—O1 122.0 (3)
C3—C2—C1 110.7 (2) O2—C7—C1 125.7 (3)
C3—C2—H2A 109.5 O1—C7—C1 112.3 (2)
C1—C2—H2A 109.5 O4—C8—O3 122.4 (2)
C3—C2—H2B 109.5 O4—C8—C4 124.3 (3)
C1—C2—H2B 109.5 O3—C8—C4 113.3 (2)
H2A—C2—H2B 108.1 C12—N1—C11 121.6 (3)
C2—C3—C4 112.4 (2) C12—N1—H1 116 (3)
C2—C3—H3A 109.1 C11—N1—H1 122 (3)
C4—C3—H3A 109.1 O5—C9—C10 123.0 (2)
C2—C3—H3B 109.1 O5—C9—C13 121.1 (2)
C4—C3—H3B 109.1 C10—C9—C13 115.8 (2)
H3A—C3—H3B 107.9 C11—C10—C9 120.6 (3)
C8—C4—C3 112.5 (2) C11—C10—H10 119.7
C8—C4—C5 112.2 (2) C9—C10—H10 119.7
C3—C4—C5 111.2 (2) N1—C11—C10 120.5 (3)
C8—C4—H4 106.8 N1—C11—H11 119.8
C3—C4—H4 106.8 C10—C11—H11 119.8
C5—C4—H4 106.8 N1—C12—C13 120.6 (3)
C6—C5—C4 112.6 (2) N1—C12—H12 119.7
C6—C5—H5A 109.1 C13—C12—H12 119.7
C4—C5—H5A 109.1 C12—C13—C9 120.9 (3)
C6—C5—H5B 109.1 C12—C13—H13 119.6
C4—C5—H5B 109.1 C9—C13—H13 119.6
C7—C1—C2—C3 −177.7 (2) C6—C1—C7—O1 −79.7 (3)
C6—C1—C2—C3 58.2 (3) C3—C4—C8—O4 136.9 (3)
C1—C2—C3—C4 −56.6 (3) C5—C4—C8—O4 10.5 (4)
C2—C3—C4—C8 −74.5 (3) C3—C4—C8—O3 −44.6 (3)
C2—C3—C4—C5 52.4 (3) C5—C4—C8—O3 −170.9 (2)
C8—C4—C5—C6 75.7 (3) O5—C9—C10—C11 177.2 (2)
C3—C4—C5—C6 −51.4 (3) C13—C9—C10—C11 −1.8 (4)
C4—C5—C6—C1 54.4 (3) C12—N1—C11—C10 1.2 (4)
C7—C1—C6—C5 177.2 (2) C9—C10—C11—N1 0.3 (4)
C2—C1—C6—C5 −57.4 (3) C11—N1—C12—C13 −1.1 (5)
C2—C1—C7—O2 −22.5 (4) N1—C12—C13—C9 −0.5 (4)
C6—C1—C7—O2 101.1 (3) O5—C9—C13—C12 −177.1 (3)
C2—C1—C7—O1 156.7 (2) C10—C9—C13—C12 1.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1′···O5 0.84 1.82 2.638 (3) 165
O3—H3′···O5i 0.84 1.76 2.594 (2) 175
N1—H1···O4ii 0.84 2.29 2.921 (3) 132
N1—H1···O5iii 0.84 2.39 3.038 (3) 134
C1—H1A···O2iv 0.98 2.67 3.625 (4) 162
C11—H11···O2iii 0.93 2.62 3.420 (5) 143
C12—H12···O4ii 0.93 2.47 3.014 (4) 117

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2472).

References

  1. Aakeröy, C. B., Champness, N. R. & Janiak, C. (2010). CrystEngComm, 12, 22–43.
  2. Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.
  3. Bruker (2000). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2001). SAINT-Plus-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering Berlin: Wiley-VCH.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.
  14. Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friscic, T., Day, G. M., Bucar, D. K., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121–5123.
  15. Yu, C.-H. (2012). Acta Cryst. E68, o1989. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681300754X/pk2472sup1.cif

e-69-0o591-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300754X/pk2472Isup2.hkl

e-69-0o591-Isup2.hkl (115.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300754X/pk2472Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES