Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 28;69(Pt 4):o594–o595. doi: 10.1107/S1600536813007678

(E)-3-(4-Meth­oxy­phen­yl)-3-[3-(4-meth­oxy­phen­yl)-1H-pyrazol-1-yl]prop-2-enal

V Susindran a, S Athimoolam b,*, S Asath Bahadur c, R Manikannan d, S Muthusubramanian e
PMCID: PMC3629636  PMID: 23634123

Abstract

In the title mol­ecule, C20H18N2O3, the pyrazole ring forms a dihedral angle of 2.2 (1)° with its meth­oxy­phenyl substituent and a dihedral angle of 67.2 (1)° with the benzene substituent on the propenal unit. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds, forming R 2 2(26) and R 2 2(28) cyclic dimers that lie about crystallographic inversion centres. These dimers are further linked through C—H⋯O and C—H⋯N hydrogen bonds, forming C(8), C(9), C(10) and C(16) chain motifs. These primary motifs are further linked to form secondary C 2 2(15) chains and R 2 2(18) rings.

Related literature  

For the pharmacological and medicinal properties of pyrazole compounds, see: Baraldi et al. (1998); Bruno et al. (1990); Chen & Li (1998); Cottineau et al. (2002); Londershausen (1996); Mishra et al. (1998); Smith et al. (2001). For related structures, see: Susindran et al. (2010a ,b , 2012). For hydrogen-bond motifs, see: Etter et al. (1990).graphic file with name e-69-0o594-scheme1.jpg

Experimental  

Crystal data  

  • C20H18N2O3

  • M r = 334.36

  • Triclinic, Inline graphic

  • a = 8.8081 (6) Å

  • b = 9.8474 (5) Å

  • c = 10.3292 (8) Å

  • α = 94.997 (12)°

  • β = 93.811 (14)°

  • γ = 106.719 (13)°

  • V = 850.85 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.15 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • 8253 measured reflections

  • 2993 independent reflections

  • 2677 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.107

  • S = 1.04

  • 2993 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813007678/sj5307sup1.cif

e-69-0o594-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007678/sj5307Isup2.hkl

e-69-0o594-Isup2.hkl (143.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007678/sj5307Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.73 3.366 (2) 126
C18—H18C⋯N2i 0.96 2.74 3.627 (2) 155
C14—H14⋯O2ii 0.93 2.49 3.301 (2) 145
C33—H33⋯O1iii 0.93 2.82 3.642 (2) 148
C37—H37B⋯O2iv 0.96 2.75 3.688 (2) 166
C37—H37C⋯O1v 0.96 2.76 3.650 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

VS and SAB sincerely thank the Vice Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement.

supplementary crystallographic information

Comment

Pyrazoles are classified as both aromatic ring compounds and heterocyclic compounds and are characterized by a 5-membered ring structure composed of three carbon atoms and two nitrogen atoms in adjacent positions in the unsubstituted parent compound. Being so composed and having pharmacological effects on humans, they are classified as alkaloids although they are rare in nature. Pyrazole and its derivatives have been successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al.,1998), anti-inflammatory (Smith et al., 2001), antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998) and pesticidal (Londershausen, 1996) activities. Based on the above specifics and also as part of our continuing work on pyrazole related compounds (Susindran et al., 2010a,b, 2012), we report here the structure of the title pyrazole derivative.

The molecular structure of the title compound is shown in Fig. 1. The phenyl rings of the methoxyphenyl groups and the plane of the pyrazole ring form dihedral angles of 2.2 (1)° (with the C31—C36 ring) and 67.2 (1)° (with the C12—C17 ring). The crystal packing is stabilized through weak intermolecular C—H···O and C—H···N interactions (Table 1). Molecules are connected around inversion centres of the unit cell making R22(26) and R22(28) ring motifs (Etter et al., 1990) through C33—H33···O1 and C37—H37B···O2 interactions, respectively. These pairs of dimeric rings are further connected in a head-to-tail fashion by C37—H37B···O2 and C33—H33···O1 contacts, Table 1, to generate sheets of dimers approximately parallel to (112). These contacts also generate C22(15) chains in the ab-plane, Fig 2.

Additional chains are generated in the crystal as follows. A C(8) chain forms along the a-axis through a C14—H14···O2 interaction (Fig. 3) while C5—H5···O3 and C18—H18C···N2 contacts generate C(9) and C(10) chains along b. A combination of these contacts also generate an R22(18) ring motif (Fig. 4). Finally a C(16) chain of molecules linked in a head to tail fashion forms along the bc diagonal through a C37—H37C···O1 contact, Fig 5.

Experimental

Phosphorous oxychloride (0.024 mole) was added dropwise over 5 to 10 minutes to a mixture of 1-(4-methoxyphenyl)-1-ethanone N-[(E)-1-(4-methoxyphenyl)ethylidene]hydrazone (0.003 mole) and 3 ml of dimethyl formamide cooled in ice to 0°C. The reaction mixture was then irradiated with microwaves for 30 sec. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate. The products were separated by column chromatography using petroleum ether and ethyl acetate mixture (98/2 v/v) as eluent. The title compound was crystallized from dichloromethane.

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å and Uiso(H) = 1.2 - 1.5 Ueq (parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A view of the primary R22(26) and R22(28) rings and the secondary C22(15) chains.

Fig. 3.

Fig. 3.

A view of the C(8) chain extending along the a-axis.

Fig. 4.

Fig. 4.

A view of the primary C(9) and C(10) chains leading to a secondary R22(18) ring motif.

Fig. 5.

Fig. 5.

A view of a C(16) chain motif connecting the molecules in a head-to-tail fashion along the diagonal of the bc-plane.

Crystal data

C20H18N2O3 Z = 2
Mr = 334.36 F(000) = 352
Triclinic, P1 Dx = 1.305 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8081 (6) Å Cell parameters from 3011 reflections
b = 9.8474 (5) Å θ = 2.2–24.3°
c = 10.3292 (8) Å µ = 0.09 mm1
α = 94.997 (12)° T = 293 K
β = 93.811 (14)° Block, colourless
γ = 106.719 (13)° 0.22 × 0.19 × 0.15 mm
V = 850.85 (10) Å3

Data collection

Bruker SMART APEX CCD diffractometer 2677 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.020
Graphite monochromator θmax = 25.0°, θmin = 2.0°
ω scans h = −10→10
8253 measured reflections k = −11→11
2993 independent reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.057P)2 + 0.1393P] where P = (Fo2 + 2Fc2)/3
2993 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.69002 (13) 0.52763 (11) 0.64078 (11) 0.0457 (3)
N2 0.67831 (13) 0.65931 (12) 0.61936 (11) 0.0462 (3)
C3 0.76448 (15) 0.69626 (14) 0.52034 (12) 0.0422 (3)
C4 0.83041 (17) 0.58717 (15) 0.47685 (14) 0.0509 (3)
H4 0.8947 0.5874 0.4089 0.061*
C5 0.78079 (17) 0.48282 (15) 0.55426 (14) 0.0505 (3)
H5 0.8041 0.3963 0.5496 0.061*
C11 0.60073 (15) 0.45024 (14) 0.73278 (13) 0.0444 (3)
C12 0.66018 (15) 0.33536 (14) 0.77906 (12) 0.0436 (3)
C13 0.81934 (16) 0.36217 (15) 0.82620 (14) 0.0508 (3)
H13 0.8894 0.4532 0.8269 0.061*
C14 0.87420 (17) 0.25667 (16) 0.87148 (14) 0.0527 (4)
H14 0.9807 0.2768 0.9028 0.063*
C15 0.77221 (17) 0.12014 (15) 0.87087 (13) 0.0473 (3)
C16 0.61388 (17) 0.09080 (14) 0.82448 (13) 0.0478 (3)
H16 0.5444 −0.0005 0.8239 0.057*
C17 0.55946 (16) 0.19790 (14) 0.77898 (13) 0.0454 (3)
H17 0.4530 0.1774 0.7476 0.055*
O1 0.84005 (13) 0.02394 (12) 0.91793 (11) 0.0643 (3)
C18 0.7407 (2) −0.11630 (18) 0.92744 (19) 0.0734 (5)
H18A 0.6562 −0.1113 0.9801 0.110*
H18B 0.8025 −0.1704 0.9669 0.110*
H18C 0.6963 −0.1619 0.8417 0.110*
C31 0.77884 (15) 0.83377 (14) 0.47012 (12) 0.0413 (3)
C32 0.86613 (15) 0.87520 (15) 0.36586 (13) 0.0460 (3)
H32 0.9203 0.8156 0.3287 0.055*
C33 0.87491 (16) 1.00260 (15) 0.31559 (13) 0.0483 (3)
H33 0.9338 1.0277 0.2453 0.058*
C34 0.79545 (16) 1.09256 (14) 0.37054 (13) 0.0459 (3)
C35 0.71081 (17) 1.05416 (15) 0.47681 (14) 0.0507 (3)
H35 0.6596 1.1153 0.5157 0.061*
C36 0.70186 (17) 0.92713 (15) 0.52510 (13) 0.0481 (3)
H36 0.6434 0.9027 0.5958 0.058*
O3 0.79160 (14) 1.21895 (11) 0.32819 (11) 0.0639 (3)
C37 0.8698 (3) 1.26075 (19) 0.21679 (18) 0.0768 (5)
H37A 0.9816 1.2730 0.2343 0.115*
H37B 0.8542 1.3492 0.1958 0.115*
H37C 0.8267 1.1885 0.1445 0.115*
C1A 0.47167 (16) 0.48460 (15) 0.77072 (14) 0.0496 (3)
H1A 0.4399 0.5534 0.7292 0.059*
C2A 0.38042 (18) 0.42069 (15) 0.87178 (15) 0.0547 (4)
H2A 0.4199 0.3611 0.9206 0.066*
O2 0.25512 (13) 0.43970 (13) 0.89739 (13) 0.0758 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0500 (6) 0.0417 (6) 0.0481 (6) 0.0163 (5) 0.0060 (5) 0.0086 (5)
N2 0.0514 (7) 0.0421 (6) 0.0482 (6) 0.0168 (5) 0.0077 (5) 0.0083 (5)
C3 0.0397 (7) 0.0464 (7) 0.0407 (7) 0.0139 (6) 0.0013 (5) 0.0043 (5)
C4 0.0551 (8) 0.0560 (8) 0.0481 (8) 0.0247 (7) 0.0105 (6) 0.0081 (6)
C5 0.0555 (8) 0.0478 (8) 0.0539 (8) 0.0242 (7) 0.0057 (6) 0.0050 (6)
C11 0.0437 (7) 0.0409 (7) 0.0446 (7) 0.0078 (6) −0.0012 (6) 0.0040 (5)
C12 0.0432 (7) 0.0429 (7) 0.0438 (7) 0.0113 (6) 0.0027 (5) 0.0063 (5)
C13 0.0435 (7) 0.0482 (8) 0.0562 (8) 0.0048 (6) 0.0026 (6) 0.0134 (6)
C14 0.0402 (7) 0.0648 (9) 0.0546 (8) 0.0156 (7) 0.0035 (6) 0.0161 (7)
C15 0.0532 (8) 0.0531 (8) 0.0421 (7) 0.0227 (7) 0.0104 (6) 0.0121 (6)
C16 0.0518 (8) 0.0414 (7) 0.0487 (8) 0.0102 (6) 0.0072 (6) 0.0073 (6)
C17 0.0405 (7) 0.0446 (7) 0.0486 (7) 0.0097 (6) 0.0006 (6) 0.0044 (6)
O1 0.0669 (7) 0.0648 (7) 0.0729 (7) 0.0323 (6) 0.0096 (5) 0.0252 (5)
C18 0.0972 (13) 0.0589 (10) 0.0768 (12) 0.0368 (9) 0.0141 (10) 0.0253 (8)
C31 0.0380 (7) 0.0453 (7) 0.0402 (7) 0.0125 (6) 0.0012 (5) 0.0039 (5)
C32 0.0419 (7) 0.0494 (8) 0.0482 (7) 0.0156 (6) 0.0083 (6) 0.0026 (6)
C33 0.0455 (7) 0.0510 (8) 0.0455 (7) 0.0075 (6) 0.0116 (6) 0.0073 (6)
C34 0.0462 (7) 0.0405 (7) 0.0473 (7) 0.0071 (6) 0.0030 (6) 0.0053 (6)
C35 0.0560 (8) 0.0470 (8) 0.0531 (8) 0.0196 (6) 0.0136 (6) 0.0055 (6)
C36 0.0525 (8) 0.0518 (8) 0.0437 (7) 0.0176 (6) 0.0144 (6) 0.0106 (6)
O3 0.0835 (8) 0.0468 (6) 0.0661 (7) 0.0200 (5) 0.0224 (6) 0.0182 (5)
C37 0.1060 (14) 0.0580 (10) 0.0669 (11) 0.0169 (9) 0.0234 (10) 0.0238 (8)
C1A 0.0458 (8) 0.0456 (8) 0.0565 (8) 0.0119 (6) 0.0019 (6) 0.0090 (6)
C2A 0.0505 (8) 0.0477 (8) 0.0621 (9) 0.0086 (6) 0.0062 (7) 0.0046 (7)
O2 0.0561 (7) 0.0799 (8) 0.0946 (9) 0.0200 (6) 0.0264 (6) 0.0125 (7)

Geometric parameters (Å, º)

N1—C5 1.3646 (18) C18—H18A 0.9600
N1—N2 1.3656 (15) C18—H18B 0.9600
N1—C11 1.4082 (17) C18—H18C 0.9600
N2—C3 1.3281 (17) C31—C32 1.3869 (18)
C3—C4 1.4151 (19) C31—C36 1.3951 (19)
C3—C31 1.4668 (18) C32—C33 1.3830 (19)
C4—C5 1.348 (2) C32—H32 0.9300
C4—H4 0.9300 C33—C34 1.3852 (19)
C5—H5 0.9300 C33—H33 0.9300
C11—C1A 1.3482 (19) C34—O3 1.3633 (16)
C11—C12 1.4779 (18) C34—C35 1.3865 (19)
C12—C17 1.3885 (18) C35—C36 1.3701 (19)
C12—C13 1.3950 (19) C35—H35 0.9300
C13—C14 1.3693 (19) C36—H36 0.9300
C13—H13 0.9300 O3—C37 1.4116 (19)
C14—C15 1.385 (2) C37—H37A 0.9600
C14—H14 0.9300 C37—H37B 0.9600
C15—O1 1.3631 (16) C37—H37C 0.9600
C15—C16 1.383 (2) C1A—C2A 1.438 (2)
C16—C17 1.3821 (18) C1A—H1A 0.9300
C16—H16 0.9300 C2A—O2 1.2133 (18)
C17—H17 0.9300 C2A—H2A 0.9300
O1—C18 1.422 (2)
C5—N1—N2 111.08 (11) O1—C18—H18B 109.5
C5—N1—C11 128.12 (11) H18A—C18—H18B 109.5
N2—N1—C11 120.42 (11) O1—C18—H18C 109.5
C3—N2—N1 105.15 (10) H18A—C18—H18C 109.5
N2—C3—C4 110.69 (12) H18B—C18—H18C 109.5
N2—C3—C31 120.28 (12) C32—C31—C36 117.49 (12)
C4—C3—C31 129.03 (12) C32—C31—C3 121.90 (12)
C5—C4—C3 105.76 (12) C36—C31—C3 120.60 (12)
C5—C4—H4 127.1 C33—C32—C31 121.85 (13)
C3—C4—H4 127.1 C33—C32—H32 119.1
C4—C5—N1 107.31 (12) C31—C32—H32 119.1
C4—C5—H5 126.3 C32—C33—C34 119.60 (12)
N1—C5—H5 126.3 C32—C33—H33 120.2
C1A—C11—N1 119.20 (12) C34—C33—H33 120.2
C1A—C11—C12 125.76 (12) O3—C34—C33 125.26 (12)
N1—C11—C12 115.04 (11) O3—C34—C35 115.54 (12)
C17—C12—C13 117.75 (12) C33—C34—C35 119.20 (13)
C17—C12—C11 121.30 (12) C36—C35—C34 120.67 (13)
C13—C12—C11 120.94 (12) C36—C35—H35 119.7
C14—C13—C12 121.12 (13) C34—C35—H35 119.7
C14—C13—H13 119.4 C35—C36—C31 121.16 (13)
C12—C13—H13 119.4 C35—C36—H36 119.4
C13—C14—C15 120.43 (13) C31—C36—H36 119.4
C13—C14—H14 119.8 C34—O3—C37 118.14 (12)
C15—C14—H14 119.8 O3—C37—H37A 109.5
O1—C15—C16 125.18 (13) O3—C37—H37B 109.5
O1—C15—C14 115.27 (13) H37A—C37—H37B 109.5
C16—C15—C14 119.55 (13) O3—C37—H37C 109.5
C17—C16—C15 119.65 (13) H37A—C37—H37C 109.5
C17—C16—H16 120.2 H37B—C37—H37C 109.5
C15—C16—H16 120.2 C11—C1A—C2A 123.61 (13)
C16—C17—C12 121.50 (12) C11—C1A—H1A 118.2
C16—C17—H17 119.3 C2A—C1A—H1A 118.2
C12—C17—H17 119.3 O2—C2A—C1A 124.07 (15)
C15—O1—C18 118.42 (13) O2—C2A—H2A 118.0
O1—C18—H18A 109.5 C1A—C2A—H2A 118.0
C5—N1—N2—C3 −0.92 (14) C15—C16—C17—C12 −0.2 (2)
C11—N1—N2—C3 −174.43 (11) C13—C12—C17—C16 0.3 (2)
N1—N2—C3—C4 0.69 (15) C11—C12—C17—C16 −178.75 (12)
N1—N2—C3—C31 179.94 (11) C16—C15—O1—C18 −3.6 (2)
N2—C3—C4—C5 −0.22 (16) C14—C15—O1—C18 176.38 (14)
C31—C3—C4—C5 −179.40 (13) N2—C3—C31—C32 −179.19 (12)
C3—C4—C5—N1 −0.35 (16) C4—C3—C31—C32 −0.1 (2)
N2—N1—C5—C4 0.80 (16) N2—C3—C31—C36 −0.28 (19)
C11—N1—C5—C4 173.69 (12) C4—C3—C31—C36 178.82 (13)
C5—N1—C11—C1A −152.78 (14) C36—C31—C32—C33 −1.3 (2)
N2—N1—C11—C1A 19.52 (18) C3—C31—C32—C33 177.64 (12)
C5—N1—C11—C12 27.04 (19) C31—C32—C33—C34 0.3 (2)
N2—N1—C11—C12 −160.66 (11) C32—C33—C34—O3 −178.35 (12)
C1A—C11—C12—C17 50.16 (19) C32—C33—C34—C35 1.2 (2)
N1—C11—C12—C17 −129.64 (13) O3—C34—C35—C36 177.84 (13)
C1A—C11—C12—C13 −128.87 (16) C33—C34—C35—C36 −1.8 (2)
N1—C11—C12—C13 51.32 (17) C34—C35—C36—C31 0.8 (2)
C17—C12—C13—C14 −0.3 (2) C32—C31—C36—C35 0.7 (2)
C11—C12—C13—C14 178.74 (13) C3—C31—C36—C35 −178.22 (12)
C12—C13—C14—C15 0.3 (2) C33—C34—O3—C37 2.3 (2)
C13—C14—C15—O1 179.86 (13) C35—C34—O3—C37 −177.29 (14)
C13—C14—C15—C16 −0.2 (2) N1—C11—C1A—C2A −174.57 (12)
O1—C15—C16—C17 −179.88 (12) C12—C11—C1A—C2A 5.6 (2)
C14—C15—C16—C17 0.2 (2) C11—C1A—C2A—O2 −172.01 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O3i 0.93 2.73 3.366 (2) 126
C18—H18C···N2i 0.96 2.74 3.627 (2) 155
C14—H14···O2ii 0.93 2.49 3.301 (2) 145
C33—H33···O1iii 0.93 2.82 3.642 (2) 148
C37—H37B···O2iv 0.96 2.75 3.688 (2) 166
C37—H37C···O1v 0.96 2.76 3.650 (2) 155

Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+2, −z+1; (v) x, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5307).

References

  1. Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–66. [PubMed]
  4. Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.
  5. Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108. [DOI] [PubMed]
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Londershausen, M. (1996). Pestic. Sci. 48, 269–274.
  8. Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Susindran, V., Athimoolam, S., Bahadur, S. A., Manikannan, R. & Muthusubramanian, S. (2010a). Acta Cryst. E66, o2594–o2595. [DOI] [PMC free article] [PubMed]
  13. Susindran, V., Athimoolam, S., Bahadur, S. A., Sridhar, B., Manikannan, R. & Muthusubramanian, S. (2010b). Acta Cryst. E66, o577. [DOI] [PMC free article] [PubMed]
  14. Susindran, V., Athimoolam, S., Bahadur, S. A., Manikannan, R. & Muthusubramanian, S. (2012). Acta Cryst. E68, o2845. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813007678/sj5307sup1.cif

e-69-0o594-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007678/sj5307Isup2.hkl

e-69-0o594-Isup2.hkl (143.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007678/sj5307Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES