Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 28;69(Pt 4):o610. doi: 10.1107/S1600536813007939

2-Amino-6-methyl­pyridinium 4-hy­droxy­benzoate

V Kannan a, P Sugumar b, S Brahadeeswaran c, M N Ponnuswamy b,*
PMCID: PMC3629648  PMID: 23634135

Abstract

In the title mol­ecular salt, C6H9N2 +·C7H5O3 , the dihedral angle between the benzene ring and the CO2 group in the anion is 6.1 (2)°. In the crystal, the cation and anion are linked by N—H⋯O and C—H⋯O hydrogen bonds, and the anions are connected by O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature  

For general background to methyl­pyridinium derivatives, see: Blessing (1986); Brahadeeswaran et al. (2006); Brown (1976); Kvenvolden et al. (1971); Tomaru et al. (1991).graphic file with name e-69-0o610-scheme1.jpg

Experimental  

Crystal data  

  • C6H9N2 +·C7H5O3

  • M r = 246.26

  • Monoclinic, Inline graphic

  • a = 11.9488 (3) Å

  • b = 9.2952 (3) Å

  • c = 12.4067 (3) Å

  • β = 117.116 (2)°

  • V = 1226.51 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.17 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.981, T max = 0.984

  • 11403 measured reflections

  • 3084 independent reflections

  • 2471 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.122

  • S = 1.04

  • 3084 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813007939/lx2273sup1.cif

e-69-0o610-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007939/lx2273Isup2.hkl

e-69-0o610-Isup2.hkl (151.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007939/lx2273Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.00 2.8499 (13) 169
N2—H2A⋯O2i 0.86 1.94 2.7879 (14) 168
N2—H2B⋯O1ii 0.86 2.18 2.9902 (14) 157
O3—H3A⋯O2iii 0.97 (2) 1.67 (2) 2.6281 (14) 168.5 (19)
C4—H4⋯O3iv 0.93 2.51 3.4134 (17) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

VK and SB are grateful to the Department of Science and Technology (DST), New Delhi, India, for financial support through grant SR/FTP/PS-53/2007 Dt. 22–08-08.

supplementary crystallographic information

Comment

Pyridine heterocycles and their derivatives are present in many large molecules having photo chemical, electro chemical and catalytic applications. Pyridine derivatives possess nonlinear optical (NLO) properties(Tomaru et al., 1991). 4–N,N–dimethylamino–4'–N'–methyl stilbazolium tosylate (DAST) is used in generating and detecting terahertz (THz) frequencies (Brahadeeswaran et al.,2006). Carboxylic acids are believed to have existed in the prebiotic earth (Kvenvolden et al., 1971) and form aggregation patterns. An attempt is made to solve the pyridine based crystal structures to explore the NLO behaviour.

The crystal structure of the title compound (Fig.1) consists of aminomethylpyridinium cation and hydroxybenzoate anion connected via N—H···O & C—H···O hydrogen bonds (Blessing,1986; Brown, 1976). The pyridinium ring is essentially planar, with a maximum deviation of -0.005 (1) Å for atom N1. The dihedral angle between the pyridinium ring in the cation and the benzene ring in the anion is 78.32 (7)°.

In the crystal structure (Fig. 2), the cation and anion are linked by N—H···O and C—H···O hydrogen bonds (Table 1), and the anions are connected by O—H···O hydrogen bonds (Table 1), forming a three–dimensional network.

Experimental

Methanol solutions of 2–amino–6–methylpyridine (54 mg) and 4–hydroxybenzoic acid (69 mg) were mixed together and stirred for about 1 h to get a homogeneous mixture. The resulting solution was allowed to evaporate at 303 K slowly in a water bath which has a temperature accuracy of ± 0.01° C at ambient atmosphere. Brownish crystals with developed morphology of title compound were obtained after 15 days.

Refinement

Especially about N—H & O—H according to RES. H atoms were positioned geometrically (N—H = 0.85–0.90 Å, O—H = 0.95–0.97 and C—H = 0.93–0.98Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the N—H···O, C—H···O and O—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen–bonding were omitted for clarity. [Symmetry code: (i) - x + 1, - y + 2, - z + 1; (ii) - x + 1 , y - 1/2, - z + 1/2; (iii) - x + 2, y - 1/2, - z + 3/2; (iv) - x + 2, - y + 1, - z + 1; (v) - x + 1, - y + 2, - z + 1; (vi) - x + 1, y + 1/2, - z + 1/2; (vii) - x + 2, y + 1/2, - z + 3/2.]

Crystal data

C6H9N2+·C7H5O3 F(000) = 520
Mr = 246.26 Dx = 1.334 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2671 reflections
a = 11.9488 (3) Å θ = 1.9–28.4°
b = 9.2952 (3) Å µ = 0.10 mm1
c = 12.4067 (3) Å T = 293 K
β = 117.116 (2)° Block, white crystalline
V = 1226.51 (6) Å3 0.20 × 0.18 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3084 independent reflections
Radiation source: fine-focus sealed tube 2471 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
ω and φ scans θmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −16→15
Tmin = 0.981, Tmax = 0.984 k = −10→12
11403 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.2532P] where P = (Fo2 + 2Fc2)/3
3084 reflections (Δ/σ)max < 0.001
168 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.63520 (11) 0.65353 (14) 0.57200 (11) 0.0399 (3)
C3 0.72343 (13) 0.56067 (17) 0.57177 (14) 0.0528 (3)
H3 0.7947 0.5393 0.6434 0.063*
C4 0.70557 (14) 0.49803 (16) 0.46291 (15) 0.0562 (4)
H4 0.7652 0.4342 0.4623 0.067*
C5 0.60208 (14) 0.52912 (14) 0.35780 (13) 0.0486 (3)
H5 0.5912 0.4868 0.2857 0.058*
C6 0.51139 (12) 0.62547 (13) 0.35806 (11) 0.0384 (3)
C7 0.64299 (12) 0.72809 (17) 0.68095 (12) 0.0490 (3)
H7A 0.5776 0.6934 0.6988 0.074*
H7B 0.6331 0.8298 0.6660 0.074*
H7C 0.7234 0.7094 0.7485 0.074*
C8 0.81847 (10) 0.98339 (13) 0.59471 (10) 0.0370 (3)
C9 0.90757 (11) 0.92379 (15) 0.70239 (11) 0.0415 (3)
H9 0.9070 0.9489 0.7747 0.050*
C10 0.99711 (12) 0.82801 (15) 0.70462 (11) 0.0433 (3)
H10 1.0556 0.7891 0.7778 0.052*
C11 0.99954 (11) 0.79001 (15) 0.59772 (11) 0.0435 (3)
C12 0.91149 (14) 0.84879 (19) 0.48968 (12) 0.0592 (4)
H12 0.9124 0.8242 0.4175 0.071*
C13 0.82247 (13) 0.94363 (18) 0.48875 (12) 0.0542 (4)
H13 0.7637 0.9819 0.4154 0.065*
C14 0.72117 (10) 1.08629 (13) 0.59372 (10) 0.0369 (3)
N1 0.53173 (9) 0.68267 (11) 0.46589 (8) 0.0359 (2)
H1 0.4763 0.7405 0.4674 0.043*
N2 0.40790 (11) 0.66254 (13) 0.26020 (9) 0.0482 (3)
H2A 0.3555 0.7216 0.2661 0.058*
H2B 0.3930 0.6276 0.1908 0.058*
O1 0.63458 (8) 1.12882 (11) 0.49535 (8) 0.0503 (3)
O2 0.73063 (8) 1.12516 (11) 0.69528 (8) 0.0474 (2)
O3 1.08494 (10) 0.69729 (13) 0.59355 (10) 0.0598 (3)
H3A 1.145 (2) 0.672 (2) 0.675 (2) 0.089 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0376 (6) 0.0431 (7) 0.0414 (6) −0.0007 (5) 0.0200 (5) 0.0035 (5)
C3 0.0437 (7) 0.0584 (9) 0.0572 (8) 0.0125 (6) 0.0239 (6) 0.0110 (7)
C4 0.0607 (8) 0.0492 (8) 0.0751 (10) 0.0178 (7) 0.0453 (8) 0.0095 (7)
C5 0.0657 (8) 0.0392 (7) 0.0571 (8) 0.0039 (6) 0.0422 (7) −0.0004 (6)
C6 0.0463 (6) 0.0351 (6) 0.0416 (6) −0.0035 (5) 0.0269 (5) −0.0008 (5)
C7 0.0444 (7) 0.0597 (8) 0.0395 (6) −0.0010 (6) 0.0162 (5) −0.0015 (6)
C8 0.0327 (5) 0.0395 (6) 0.0367 (6) 0.0008 (5) 0.0140 (5) −0.0002 (5)
C9 0.0417 (6) 0.0474 (7) 0.0345 (6) 0.0047 (5) 0.0165 (5) 0.0002 (5)
C10 0.0390 (6) 0.0483 (7) 0.0358 (6) 0.0072 (5) 0.0110 (5) 0.0041 (5)
C11 0.0372 (6) 0.0472 (7) 0.0430 (6) 0.0062 (5) 0.0156 (5) −0.0027 (5)
C12 0.0563 (8) 0.0815 (11) 0.0350 (6) 0.0240 (8) 0.0167 (6) −0.0031 (7)
C13 0.0485 (7) 0.0720 (10) 0.0339 (6) 0.0205 (7) 0.0117 (5) 0.0031 (6)
C14 0.0328 (5) 0.0392 (6) 0.0391 (6) −0.0015 (5) 0.0168 (5) 0.0015 (5)
N1 0.0373 (5) 0.0366 (5) 0.0379 (5) 0.0027 (4) 0.0208 (4) 0.0000 (4)
N2 0.0516 (6) 0.0566 (7) 0.0380 (5) 0.0035 (5) 0.0217 (5) −0.0052 (5)
O1 0.0431 (5) 0.0630 (6) 0.0413 (5) 0.0166 (4) 0.0162 (4) 0.0076 (4)
O2 0.0415 (5) 0.0576 (6) 0.0425 (5) 0.0060 (4) 0.0188 (4) −0.0047 (4)
O3 0.0539 (6) 0.0729 (7) 0.0498 (6) 0.0261 (5) 0.0212 (5) 0.0006 (5)

Geometric parameters (Å, º)

C2—N1 1.3606 (15) C8—C14 1.5013 (16)
C2—C3 1.3634 (18) C9—C10 1.3825 (17)
C2—C7 1.4837 (18) C9—H9 0.9300
C3—C4 1.395 (2) C10—C11 1.3855 (17)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.358 (2) C11—O3 1.3546 (15)
C4—H4 0.9300 C11—C12 1.3844 (18)
C5—C6 1.4070 (17) C12—C13 1.3775 (19)
C5—H5 0.9300 C12—H12 0.9300
C6—N2 1.3241 (16) C13—H13 0.9300
C6—N1 1.3547 (15) C14—O1 1.2511 (14)
C7—H7A 0.9600 C14—O2 1.2653 (14)
C7—H7B 0.9600 N1—H1 0.8600
C7—H7C 0.9600 N2—H2A 0.8600
C8—C13 1.3873 (17) N2—H2B 0.8600
C8—C9 1.3887 (16) O3—H3A 0.97 (2)
N1—C2—C3 119.11 (12) C10—C9—H9 119.2
N1—C2—C7 116.13 (11) C8—C9—H9 119.2
C3—C2—C7 124.75 (12) C9—C10—C11 119.92 (11)
C2—C3—C4 119.27 (13) C9—C10—H10 120.0
C2—C3—H3 120.4 C11—C10—H10 120.0
C4—C3—H3 120.4 O3—C11—C12 117.87 (12)
C5—C4—C3 120.77 (12) O3—C11—C10 122.92 (11)
C5—C4—H4 119.6 C12—C11—C10 119.21 (12)
C3—C4—H4 119.6 C13—C12—C11 120.25 (12)
C4—C5—C6 119.91 (12) C13—C12—H12 119.9
C4—C5—H5 120.0 C11—C12—H12 119.9
C6—C5—H5 120.0 C12—C13—C8 121.50 (12)
N2—C6—N1 118.40 (11) C12—C13—H13 119.2
N2—C6—C5 124.19 (12) C8—C13—H13 119.2
N1—C6—C5 117.41 (12) O1—C14—O2 122.68 (11)
C2—C7—H7A 109.5 O1—C14—C8 120.15 (11)
C2—C7—H7B 109.5 O2—C14—C8 117.16 (10)
H7A—C7—H7B 109.5 C6—N1—C2 123.52 (10)
C2—C7—H7C 109.5 C6—N1—H1 118.2
H7A—C7—H7C 109.5 C2—N1—H1 118.2
H7B—C7—H7C 109.5 C6—N2—H2A 120.0
C13—C8—C9 117.58 (11) C6—N2—H2B 120.0
C13—C8—C14 121.54 (11) H2A—N2—H2B 120.0
C9—C8—C14 120.88 (11) C11—O3—H3A 109.1 (12)
C10—C9—C8 121.54 (11)
N1—C2—C3—C4 0.1 (2) C10—C11—C12—C13 −0.1 (3)
C7—C2—C3—C4 −179.57 (13) C11—C12—C13—C8 0.3 (3)
C2—C3—C4—C5 0.3 (2) C9—C8—C13—C12 −0.1 (2)
C3—C4—C5—C6 0.0 (2) C14—C8—C13—C12 −179.76 (14)
C4—C5—C6—N2 179.79 (13) C13—C8—C14—O1 6.19 (19)
C4—C5—C6—N1 −0.64 (19) C9—C8—C14—O1 −173.41 (12)
C13—C8—C9—C10 −0.1 (2) C13—C8—C14—O2 −174.60 (12)
C14—C8—C9—C10 179.48 (12) C9—C8—C14—O2 5.80 (18)
C8—C9—C10—C11 0.3 (2) N2—C6—N1—C2 −179.31 (11)
C9—C10—C11—O3 179.75 (13) C5—C6—N1—C2 1.10 (17)
C9—C10—C11—C12 −0.1 (2) C3—C2—N1—C6 −0.82 (18)
O3—C11—C12—C13 179.97 (15) C7—C2—N1—C6 178.85 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.00 2.8499 (13) 169
N2—H2A···O2i 0.86 1.94 2.7879 (14) 168
N2—H2B···O1ii 0.86 2.18 2.9902 (14) 157
O3—H3A···O2iii 0.97 (2) 1.67 (2) 2.6281 (14) 168.5 (19)
C4—H4···O3iv 0.93 2.51 3.4134 (17) 163

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+3/2; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2273).

References

  1. Blessing, R. H. (1986). Acta Cryst. B42, 613–621.
  2. Brahadeeswaran, S., Onduka, S., Takagi, M., Takahashi, Y., Adachi, H., Yoshimura, M., Mori, Y. & Sasaki, T. (2006). J. Cryst. Growth, 292, 441–444.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Brown, I. D. (1976). Acta Cryst. A32, 24–31.
  5. Bruker (2008). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Kvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486–490. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Oobara, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813007939/lx2273sup1.cif

e-69-0o610-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007939/lx2273Isup2.hkl

e-69-0o610-Isup2.hkl (151.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007939/lx2273Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES