Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 28;69(Pt 4):o611. doi: 10.1107/S1600536813007824

1,4-Bis(3-chloro­pyrazin-2-yl­oxy)benzene

Thothadri Srinivasan a, Venkatesan Kalpana b, Perumal Rajakumar b, Devadasan Velmurugan a,*
PMCID: PMC3629649  PMID: 23634136

Abstract

In the title compound, C14H8Cl2N4O2, the pyrazine rings are orthogonal to the benzene ring, making dihedral angles of 88.42 (8) and 89.22 (8)°. The Cl atoms attached to the pyrazine rings deviate by −0.0597 (5) and 0.0009 (5) Å from the ring plane. The crystal structure features C—H⋯N hydrogen bonds.

Related literature  

For applications of the pyrazine ring system in drug development, see: Du et al. (2009); Dubinina et al. (2006); Ellsworth et al. (2007); Mukaiyama et al. (2007). For a related structure, see: Nasir et al. (2010).graphic file with name e-69-0o611-scheme1.jpg

Experimental  

Crystal data  

  • C14H8Cl2N4O2

  • M r = 335.14

  • Monoclinic, Inline graphic

  • a = 11.083 (2) Å

  • b = 10.0452 (17) Å

  • c = 12.846 (2) Å

  • β = 105.681 (6)°

  • V = 1376.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.869, T max = 0.909

  • 12550 measured reflections

  • 3461 independent reflections

  • 2835 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.092

  • S = 1.04

  • 3461 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813007824/pv2624sup1.cif

e-69-0o611-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007824/pv2624Isup2.hkl

e-69-0o611-Isup2.hkl (166.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007824/pv2624Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N3i 0.93 2.60 3.480 (2) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the TBI X-ray facility and the UGC (SAP), CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and other facilities. TS also thanks the DST for an Inspire fellowship.

supplementary crystallographic information

Comment

The pyrazine ring is a useful structural unit in medicinal chemistry and has found broad applications in drug development and can be used as antiproliferative agent (Dubinina et al., 2006), potent CXCR3 antagonist (Du et al., 2009), CB1 antagonist (Ellsworth et al., 2007) and c-Src inhibitor (Mukaiyama et al., 2007). In view of different applications of this class of compounds, we have undertaken the single-crystal structure determination of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Nasir et al., 2010). In the titled compound, the pyrazine ring (N1/N2/C1-C4) makes a dihedral angle of 88.42 (8)° with the benzene ring (C5-C10), which shows that these are orthogonal to each other. The other pyrazine ring (N3/N4/C11-C14) makes a dihedral angle of 89.22 (8)° with the bezene ring, which also shows that these are also orthogonal to each other. The dihedral angle between the two pyrazine rings is 3.18 (7)°. The chlorine atoms Cl1 and Cl2 attached with the pyrazine rings deviate by -0.0597 (5) and 0.0009 (5)Å. The crystal packing is stabilised by intermolecular C–H···N hydrogen bonds (Tab. 1 & Fig. 2).

Experimental

To a stirred solution of Cs2CO3/K2CO3 (22 mmol) in CH3CN (50 mL), dihydroxybenzenes (10 mmol) was added and stirred for 5 min. 2,3-Dichloropyrazine (20 mmol) in CH3CN (100 mL) was added dropwise to the above reaction mixture and stirring was allowed at refluxing condition for 12 h. After the reaction was complete, the reaction mixture was allowed to attain room temperature and then evaporated to dryness. The residue obtained was extracted with CH2Cl2 (3 x 100 mL), washed with water (3 x 100 mL), brine and then dried over Na2SO4. Evaporation of the organic layer gave a residue, which on purification using column chromatography with hexane/CHCl3 (1:1) as an eluent gave the corresponding compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexane at room temperature.

Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å, refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down c axis. H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C14H8Cl2N4O2 F(000) = 680
Mr = 335.14 Dx = 1.617 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3461 reflections
a = 11.083 (2) Å θ = 1.9–28.5°
b = 10.0452 (17) Å µ = 0.48 mm1
c = 12.846 (2) Å T = 293 K
β = 105.681 (6)° Block, colourless
V = 1376.9 (4) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 3461 independent reflections
Radiation source: fine-focus sealed tube 2835 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
ω and φ scans θmax = 28.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −14→14
Tmin = 0.869, Tmax = 0.909 k = −13→12
12550 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.4056P] where P = (Fo2 + 2Fc2)/3
3461 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.22254 (14) 1.32153 (13) 1.02506 (11) 0.0359 (3)
C2 0.01581 (16) 1.31228 (17) 1.00820 (14) 0.0480 (4)
H2 −0.0583 1.3530 1.0117 0.058*
C3 0.01374 (15) 1.18158 (17) 0.97786 (13) 0.0453 (4)
H3 −0.0615 1.1350 0.9632 0.054*
C4 0.22027 (13) 1.18857 (13) 0.99072 (11) 0.0352 (3)
C5 0.32330 (13) 1.00672 (13) 0.93800 (13) 0.0387 (3)
C6 0.30055 (14) 0.99296 (15) 0.82880 (14) 0.0431 (3)
H6 0.2838 1.0671 0.7838 0.052*
C7 0.30274 (15) 0.86655 (15) 0.78589 (14) 0.0436 (3)
H7 0.2868 0.8545 0.7116 0.052*
C8 0.32871 (13) 0.75997 (13) 0.85454 (13) 0.0386 (3)
C9 0.35300 (17) 0.77452 (16) 0.96402 (14) 0.0494 (4)
H9 0.3712 0.7007 1.0092 0.059*
C10 0.35021 (17) 0.90062 (16) 1.00675 (15) 0.0495 (4)
H10 0.3664 0.9128 1.0810 0.059*
C11 0.24232 (12) 0.55046 (13) 0.79327 (11) 0.0333 (3)
C12 0.26134 (13) 0.41769 (14) 0.76895 (11) 0.0348 (3)
C13 0.05687 (15) 0.37541 (16) 0.74872 (13) 0.0447 (4)
H13 −0.0108 0.3171 0.7325 0.054*
C14 0.03882 (14) 0.50456 (16) 0.77375 (13) 0.0437 (3)
H14 −0.0409 0.5318 0.7752 0.052*
O1 0.32804 (10) 1.13575 (10) 0.98142 (10) 0.0464 (3)
O2 0.34166 (10) 0.63330 (10) 0.81253 (10) 0.0475 (3)
Cl1 0.36216 (4) 1.40754 (4) 1.05877 (4) 0.05003 (12)
Cl2 0.40796 (4) 0.36482 (4) 0.76640 (4) 0.05393 (13)
N1 0.12198 (14) 1.38253 (13) 1.03283 (11) 0.0445 (3)
N2 0.11690 (12) 1.11893 (12) 0.96874 (11) 0.0418 (3)
N3 0.13237 (11) 0.59329 (12) 0.79629 (11) 0.0397 (3)
N4 0.17015 (13) 0.33116 (12) 0.74704 (11) 0.0430 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0523 (8) 0.0232 (6) 0.0317 (7) 0.0015 (6) 0.0104 (6) −0.0007 (5)
C2 0.0536 (9) 0.0444 (9) 0.0482 (9) 0.0148 (7) 0.0173 (7) −0.0002 (7)
C3 0.0455 (8) 0.0433 (9) 0.0490 (9) 0.0019 (7) 0.0158 (7) −0.0011 (7)
C4 0.0440 (7) 0.0246 (6) 0.0371 (7) 0.0019 (5) 0.0111 (6) −0.0030 (5)
C5 0.0363 (7) 0.0233 (6) 0.0580 (9) −0.0015 (5) 0.0153 (6) −0.0111 (6)
C6 0.0485 (8) 0.0272 (7) 0.0546 (9) −0.0001 (6) 0.0155 (7) −0.0004 (6)
C7 0.0495 (8) 0.0351 (8) 0.0481 (9) −0.0036 (6) 0.0163 (7) −0.0082 (7)
C8 0.0340 (6) 0.0234 (6) 0.0604 (9) −0.0027 (5) 0.0163 (6) −0.0116 (6)
C9 0.0643 (10) 0.0274 (7) 0.0568 (10) 0.0043 (7) 0.0171 (8) 0.0004 (7)
C10 0.0648 (10) 0.0356 (8) 0.0478 (9) 0.0022 (7) 0.0149 (8) −0.0073 (7)
C11 0.0384 (7) 0.0253 (6) 0.0359 (7) −0.0015 (5) 0.0096 (5) −0.0044 (5)
C12 0.0435 (7) 0.0268 (7) 0.0332 (7) 0.0020 (5) 0.0088 (6) −0.0041 (5)
C13 0.0495 (8) 0.0409 (8) 0.0424 (8) −0.0151 (7) 0.0101 (7) −0.0062 (6)
C14 0.0374 (7) 0.0441 (8) 0.0486 (9) −0.0045 (6) 0.0099 (6) −0.0037 (7)
O1 0.0423 (5) 0.0261 (5) 0.0716 (8) −0.0031 (4) 0.0168 (5) −0.0173 (5)
O2 0.0401 (5) 0.0271 (5) 0.0798 (8) −0.0047 (4) 0.0238 (5) −0.0206 (5)
Cl1 0.0611 (2) 0.02891 (19) 0.0576 (3) −0.00820 (16) 0.01178 (19) −0.00849 (16)
Cl2 0.0508 (2) 0.0412 (2) 0.0695 (3) 0.01017 (16) 0.01584 (19) −0.01644 (19)
N1 0.0605 (8) 0.0315 (6) 0.0420 (7) 0.0106 (6) 0.0146 (6) −0.0013 (5)
N2 0.0452 (7) 0.0310 (6) 0.0507 (8) −0.0008 (5) 0.0154 (6) −0.0063 (5)
N3 0.0380 (6) 0.0306 (6) 0.0504 (7) 0.0005 (5) 0.0116 (5) −0.0049 (5)
N4 0.0569 (8) 0.0293 (6) 0.0413 (7) −0.0071 (5) 0.0107 (6) −0.0073 (5)

Geometric parameters (Å, º)

C1—N1 1.2991 (19) C7—H7 0.9300
C1—C4 1.4047 (19) C8—C9 1.366 (2)
C1—Cl1 1.7224 (16) C8—O2 1.4046 (16)
C2—N1 1.335 (2) C9—C10 1.384 (2)
C2—C3 1.368 (2) C9—H9 0.9300
C2—H2 0.9300 C10—H10 0.9300
C3—N2 1.3377 (19) C11—N3 1.3028 (18)
C3—H3 0.9300 C11—O2 1.3486 (16)
C4—N2 1.3065 (19) C11—C12 1.3987 (19)
C4—O1 1.3415 (17) C12—N4 1.3048 (19)
C5—C10 1.365 (2) C12—Cl2 1.7184 (15)
C5—C6 1.364 (2) C13—N4 1.337 (2)
C5—O1 1.4063 (16) C13—C14 1.364 (2)
C6—C7 1.387 (2) C13—H13 0.9300
C6—H6 0.9300 C14—N3 1.3383 (19)
C7—C8 1.367 (2) C14—H14 0.9300
N1—C1—C4 121.98 (14) C8—C9—C10 119.13 (15)
N1—C1—Cl1 118.38 (11) C8—C9—H9 120.4
C4—C1—Cl1 119.64 (11) C10—C9—H9 120.4
N1—C2—C3 121.38 (15) C5—C10—C9 118.84 (16)
N1—C2—H2 119.3 C5—C10—H10 120.6
C3—C2—H2 119.3 C9—C10—H10 120.6
N2—C3—C2 121.84 (15) N3—C11—O2 120.97 (12)
N2—C3—H3 119.1 N3—C11—C12 121.34 (13)
C2—C3—H3 119.1 O2—C11—C12 117.68 (12)
N2—C4—O1 121.26 (12) N4—C12—C11 121.92 (13)
N2—C4—C1 121.15 (13) N4—C12—Cl2 118.13 (11)
O1—C4—C1 117.60 (13) C11—C12—Cl2 119.96 (11)
C10—C5—C6 122.27 (13) N4—C13—C14 121.20 (14)
C10—C5—O1 119.01 (15) N4—C13—H13 119.4
C6—C5—O1 118.56 (14) C14—C13—H13 119.4
C5—C6—C7 118.91 (15) N3—C14—C13 121.99 (14)
C5—C6—H6 120.5 N3—C14—H14 119.0
C7—C6—H6 120.5 C13—C14—H14 119.0
C8—C7—C6 118.93 (15) C4—O1—C5 117.46 (11)
C8—C7—H7 120.5 C11—O2—C8 117.80 (11)
C6—C7—H7 120.5 C1—N1—C2 116.88 (13)
C9—C8—C7 121.91 (13) C4—N2—C3 116.72 (13)
C9—C8—O2 118.70 (14) C11—N3—C14 116.74 (12)
C7—C8—O2 119.15 (14) C12—N4—C13 116.80 (13)
N1—C2—C3—N2 −1.7 (3) N2—C4—O1—C5 5.5 (2)
N1—C1—C4—N2 −2.5 (2) C1—C4—O1—C5 −174.53 (13)
Cl1—C1—C4—N2 177.22 (12) C10—C5—O1—C4 −95.31 (18)
N1—C1—C4—O1 177.57 (14) C6—C5—O1—C4 89.25 (17)
Cl1—C1—C4—O1 −2.73 (19) N3—C11—O2—C8 11.1 (2)
C10—C5—C6—C7 1.1 (2) C12—C11—O2—C8 −169.49 (14)
O1—C5—C6—C7 176.40 (13) C9—C8—O2—C11 86.67 (18)
C5—C6—C7—C8 −0.6 (2) C7—C8—O2—C11 −98.82 (17)
C6—C7—C8—C9 −0.3 (2) C4—C1—N1—C2 1.0 (2)
C6—C7—C8—O2 −174.58 (13) Cl1—C1—N1—C2 −178.69 (12)
C7—C8—C9—C10 0.6 (2) C3—C2—N1—C1 1.0 (2)
O2—C8—C9—C10 174.91 (14) O1—C4—N2—C3 −178.35 (14)
C6—C5—C10—C9 −0.8 (2) C1—C4—N2—C3 1.7 (2)
O1—C5—C10—C9 −176.08 (15) C2—C3—N2—C4 0.3 (2)
C8—C9—C10—C5 0.0 (3) O2—C11—N3—C14 178.56 (14)
N3—C11—C12—N4 0.8 (2) C12—C11—N3—C14 −0.8 (2)
O2—C11—C12—N4 −178.58 (14) C13—C14—N3—C11 0.0 (2)
N3—C11—C12—Cl2 −179.68 (11) C11—C12—N4—C13 0.1 (2)
O2—C11—C12—Cl2 0.94 (19) Cl2—C12—N4—C13 −179.44 (11)
N4—C13—C14—N3 0.9 (3) C14—C13—N4—C12 −0.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···N3i 0.93 2.60 3.480 (2) 159

Symmetry code: (i) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2624).

References

  1. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Du, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. & Medina, J. C. (2009). Bioorg. Med. Chem. Lett. 19, 5200–5204. [DOI] [PubMed]
  3. Dubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. & Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727–737. [DOI] [PubMed]
  4. Ellsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. & Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 3978–3982. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Mukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H. & Kusama, H. (2007). Bioorg. Med. Chem. Lett. 15, 868–885. [DOI] [PubMed]
  7. Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813007824/pv2624sup1.cif

e-69-0o611-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007824/pv2624Isup2.hkl

e-69-0o611-Isup2.hkl (166.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007824/pv2624Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES