Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 28;69(Pt 4):o619. doi: 10.1107/S1600536813008155

5-(4-Fluoro­phen­yl)-3-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]-N-phenyl-4,5-dihydro-1H-pyrazole-1-carbothio­amide

Bakr F Abdel-Wahab a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3629654  PMID: 23634141

Abstract

In the title compound, C26H23FN6S, the pyrazole ring has an envelope conformation, with the methine C atom being the flap atom. The thio­urea group is close to being coplanar with the pyrazole N atoms [N—N—C—S torsion angle = 176.78 (15)°], which allows for an intra­molecular N—H⋯N hydrogen bond; the connected triazole ring is nearly coplanar with this ring [N—C—C—N = −172.65 (19)°]. There is a significant twist between the pyrazole ring and attached fluoro­benzene ring [N—C—C—C = −18.8 (3)°] and a greater twist between triazole and attached tolyl ring [dihedral angle = 58.25 (14)°]. In the crystal, supra­molecular chains aligned along [40,10] are consolidated by π–π inter­actions between the triazole and phenyl rings [centroid–centroid distance = 3.7053 (13) Å].

Related literature  

For the biological activity and synthesis of related compounds, see: Abdel-Wahab, Abdel-Latif et al. (2012). For a related structure, see: Abdel-Wahab, Mohamed et al. (2012).graphic file with name e-69-0o619-scheme1.jpg

Experimental  

Crystal data  

  • C26H23FN6S

  • M r = 470.56

  • Monoclinic, Inline graphic

  • a = 6.5449 (5) Å

  • b = 26.1030 (17) Å

  • c = 14.3818 (8) Å

  • β = 100.604 (7)°

  • V = 2415.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.802, T max = 1.000

  • 15173 measured reflections

  • 5578 independent reflections

  • 3313 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.162

  • S = 1.03

  • 5578 reflections

  • 313 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813008155/hg5303sup1.cif

e-69-0o619-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813008155/hg5303Isup2.hkl

e-69-0o619-Isup2.hkl (273.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813008155/hg5303Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3⋯N3 0.83 (3) 2.05 (3) 2.568 (3) 120 (2)

Acknowledgments

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

supplementary crystallographic information

Comment

In connection with studies into the biological studies on related pyrazolines (Abdel-Wahab, Abdel-Latif et al., 2012), the title compound, (I), was investigated.

In (I), Fig. 1, the pyrazole ring has an envelope conformation with the methine-C8 atom being the flap atom. The thiourea group is close to co-planar with the N atoms of this ring [the N3—N2—C7—S1 torsion angle = 176.78 (15)°], which allows for an intramolecular N1—H···N3 hydrogen bond, Table 1, and the connected triazole ring is slightly twisted out of the plane through this ring [N3—C10—C17—N4 is -172.65 (19)°]. There is a significant twist between the pyrazole ring and attached fluorobenzene ring as seen in the N2—C8—C11—C12 torsion angle of -18.8 (3)°, and an even greater twist between triazole and attached tolyl ring with the dihedral angle being 58.25 (14)°. The relative dispositions of the terminal substituent in (I) resembles those found in a recently determined structure with pyrazole-p-tolyl and triazole-4-(piperidin-1-yl)phenyl substituents (Abdel-Wahab, Mohamed et al., 2012).

The most prominent feature of the crystal packing is the formation of π—π interactions between the triazole and phenyl rings [inter-centroid distance = 3.7053 (13) Å, angle of inclination = 10.17 (12)° for symmetry operation i: 1 + x, 3/2 - y, 1/2 + z]. These lead to a supramolecular chains, aligned approximately along [1 0 2], and which aggregate in the ac plane with no specific interactions between them, Fig. 2. Layers thus formed stack along the b axis, Fig. 3.

Experimental

The title compound was prepared according to the reported method (Abdel-Wahab, Abdel-Latif et al., 2012). Colourless crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(C). The nitrogen-bound H-atom was refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing in (I) highlighting the supramolecular chains sustained by π—π interactions (purple dashed lines).

Fig. 3.

Fig. 3.

A view of the crystal packing in projection down the a axis. The π—π interactions are shown as purple dashed lines.

Crystal data

C26H23FN6S F(000) = 984
Mr = 470.56 Dx = 1.294 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2937 reflections
a = 6.5449 (5) Å θ = 2.9–27.5°
b = 26.1030 (17) Å µ = 0.17 mm1
c = 14.3818 (8) Å T = 295 K
β = 100.604 (7)° Prism, colourless
V = 2415.0 (3) Å3 0.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 5578 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3313 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.040
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.9°
ω scan h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −33→33
Tmin = 0.802, Tmax = 1.000 l = −18→18
15173 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.3514P] where P = (Fo2 + 2Fc2)/3
5578 reflections (Δ/σ)max = 0.001
313 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.28247 (11) 0.59566 (2) 0.26576 (4) 0.0660 (2)
F1 0.4921 (5) 0.53780 (11) 0.71572 (17) 0.1882 (13)
N1 0.2779 (3) 0.69941 (8) 0.25175 (14) 0.0581 (5)
N2 0.5580 (3) 0.66351 (7) 0.34286 (12) 0.0538 (5)
N3 0.6368 (3) 0.71314 (7) 0.35592 (12) 0.0519 (5)
N4 1.1621 (3) 0.75227 (8) 0.45157 (14) 0.0624 (5)
N5 1.2414 (3) 0.79826 (8) 0.45671 (15) 0.0662 (6)
N6 1.0814 (3) 0.83112 (8) 0.42485 (12) 0.0584 (5)
C1 0.0777 (3) 0.71154 (8) 0.20191 (14) 0.0503 (5)
C2 0.0342 (4) 0.76336 (9) 0.18895 (15) 0.0580 (6)
H2 0.1373 0.7873 0.2105 0.070*
C3 −0.1592 (4) 0.77990 (10) 0.14473 (15) 0.0635 (7)
H3A −0.1860 0.8148 0.1371 0.076*
C4 −0.3132 (4) 0.74477 (11) 0.11172 (15) 0.0655 (7)
H4 −0.4442 0.7557 0.0819 0.079*
C5 −0.2697 (4) 0.69365 (11) 0.12361 (16) 0.0659 (7)
H5 −0.3729 0.6699 0.1012 0.079*
C6 −0.0762 (4) 0.67637 (9) 0.16809 (15) 0.0608 (6)
H6 −0.0500 0.6414 0.1751 0.073*
C7 0.3712 (4) 0.65505 (8) 0.28600 (14) 0.0504 (5)
C8 0.7040 (3) 0.62449 (9) 0.39009 (14) 0.0532 (6)
H8 0.7241 0.5976 0.3451 0.064*
C9 0.9037 (3) 0.65642 (9) 0.41746 (16) 0.0572 (6)
H9A 0.9644 0.6520 0.4837 0.069*
H9B 1.0056 0.6472 0.3792 0.069*
C10 0.8281 (3) 0.70984 (9) 0.39768 (14) 0.0503 (5)
C11 0.6339 (4) 0.60126 (9) 0.47522 (15) 0.0547 (6)
C12 0.4899 (4) 0.62432 (10) 0.51996 (17) 0.0666 (7)
H12 0.4242 0.6543 0.4956 0.080*
C13 0.4429 (5) 0.60252 (14) 0.6021 (2) 0.0936 (10)
H13 0.3470 0.6179 0.6336 0.112*
C14 0.5405 (7) 0.55819 (17) 0.6353 (2) 0.1117 (13)
C15 0.6779 (7) 0.53446 (15) 0.5924 (3) 0.1172 (13)
H15 0.7404 0.5041 0.6164 0.141*
C16 0.7249 (5) 0.55604 (11) 0.5117 (2) 0.0877 (9)
H16 0.8202 0.5398 0.4810 0.105*
C17 0.9534 (3) 0.75537 (9) 0.41700 (14) 0.0520 (5)
C18 0.8996 (3) 0.80599 (9) 0.39990 (14) 0.0530 (5)
C19 0.6961 (4) 0.83117 (10) 0.36692 (18) 0.0669 (7)
H19A 0.7083 0.8672 0.3802 0.100*
H19B 0.5940 0.8165 0.3991 0.100*
H19C 0.6543 0.8261 0.3000 0.100*
C20 1.1213 (4) 0.88469 (10) 0.41824 (18) 0.0636 (6)
C21 1.2087 (4) 0.91154 (11) 0.4967 (2) 0.0790 (8)
H21 1.2441 0.8953 0.5550 0.095*
C22 1.2439 (5) 0.96392 (12) 0.4878 (3) 0.0979 (10)
H22 1.3019 0.9826 0.5413 0.117*
C23 1.1953 (5) 0.98862 (13) 0.4024 (3) 0.1023 (11)
C24 1.1078 (6) 0.95997 (14) 0.3244 (3) 0.1113 (12)
H24 1.0730 0.9758 0.2657 0.134*
C25 1.0717 (5) 0.90862 (12) 0.3320 (2) 0.0926 (10)
H25 1.0134 0.8899 0.2786 0.111*
C26 1.2352 (5) 1.04560 (13) 0.3937 (4) 0.151 (2)
H26A 1.2715 1.0604 0.4556 0.227*
H26B 1.1121 1.0619 0.3599 0.227*
H26C 1.3473 1.0506 0.3599 0.227*
H3 0.355 (5) 0.7242 (10) 0.2690 (19) 0.080 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0670 (5) 0.0540 (4) 0.0691 (4) 0.0000 (3) −0.0082 (3) −0.0048 (3)
F1 0.231 (3) 0.219 (3) 0.1311 (18) −0.018 (2) 0.0773 (19) 0.0845 (19)
N1 0.0465 (12) 0.0515 (12) 0.0686 (12) −0.0016 (9) −0.0094 (10) 0.0012 (10)
N2 0.0447 (11) 0.0541 (11) 0.0577 (10) −0.0005 (9) −0.0038 (9) 0.0055 (9)
N3 0.0419 (11) 0.0577 (11) 0.0533 (10) −0.0040 (9) 0.0018 (9) 0.0021 (8)
N4 0.0391 (11) 0.0766 (14) 0.0691 (12) −0.0062 (10) 0.0038 (9) 0.0110 (10)
N5 0.0392 (11) 0.0766 (14) 0.0799 (13) −0.0071 (10) 0.0033 (10) 0.0126 (11)
N6 0.0420 (11) 0.0739 (13) 0.0585 (10) −0.0079 (10) 0.0069 (9) 0.0072 (10)
C1 0.0435 (13) 0.0598 (14) 0.0438 (10) 0.0014 (10) −0.0018 (9) 0.0020 (10)
C2 0.0570 (15) 0.0587 (14) 0.0543 (12) 0.0013 (11) −0.0001 (11) 0.0060 (10)
C3 0.0608 (16) 0.0713 (16) 0.0552 (13) 0.0141 (13) 0.0023 (12) 0.0123 (12)
C4 0.0492 (15) 0.0914 (19) 0.0517 (12) 0.0119 (14) −0.0018 (11) 0.0060 (13)
C5 0.0490 (15) 0.0826 (18) 0.0605 (13) −0.0044 (13) −0.0046 (12) −0.0059 (13)
C6 0.0532 (15) 0.0620 (14) 0.0617 (13) 0.0002 (12) −0.0042 (11) −0.0070 (11)
C7 0.0473 (13) 0.0569 (13) 0.0445 (10) 0.0017 (10) 0.0020 (10) 0.0008 (10)
C8 0.0475 (13) 0.0581 (14) 0.0511 (11) 0.0086 (10) 0.0013 (10) 0.0023 (10)
C9 0.0400 (13) 0.0709 (15) 0.0592 (12) 0.0056 (11) 0.0049 (10) 0.0081 (11)
C10 0.0392 (12) 0.0660 (14) 0.0450 (10) 0.0006 (10) 0.0059 (9) 0.0041 (10)
C11 0.0489 (14) 0.0561 (13) 0.0555 (12) −0.0058 (11) −0.0001 (11) 0.0023 (10)
C12 0.0601 (16) 0.0752 (17) 0.0637 (14) −0.0069 (13) 0.0092 (13) −0.0015 (13)
C13 0.085 (2) 0.122 (3) 0.0793 (19) −0.018 (2) 0.0293 (17) −0.0031 (19)
C14 0.124 (3) 0.132 (3) 0.081 (2) −0.026 (3) 0.023 (2) 0.041 (2)
C15 0.131 (3) 0.108 (3) 0.111 (3) 0.013 (2) 0.020 (3) 0.055 (2)
C16 0.092 (2) 0.082 (2) 0.0896 (19) 0.0178 (17) 0.0177 (17) 0.0252 (17)
C17 0.0385 (12) 0.0715 (15) 0.0453 (10) −0.0048 (11) 0.0058 (9) 0.0062 (10)
C18 0.0407 (13) 0.0708 (15) 0.0479 (11) −0.0051 (11) 0.0088 (10) 0.0043 (11)
C19 0.0452 (14) 0.0740 (17) 0.0788 (16) 0.0009 (12) 0.0045 (12) 0.0087 (13)
C20 0.0442 (14) 0.0697 (16) 0.0753 (16) −0.0098 (12) 0.0070 (12) 0.0136 (13)
C21 0.0627 (18) 0.0807 (19) 0.0870 (18) −0.0114 (14) −0.0036 (15) 0.0070 (15)
C22 0.062 (2) 0.079 (2) 0.142 (3) −0.0133 (16) −0.009 (2) −0.003 (2)
C23 0.0480 (17) 0.078 (2) 0.175 (3) −0.0001 (15) 0.004 (2) 0.039 (2)
C24 0.088 (3) 0.112 (3) 0.129 (3) −0.015 (2) 0.007 (2) 0.055 (2)
C25 0.096 (2) 0.097 (2) 0.0811 (18) −0.0215 (18) 0.0057 (17) 0.0258 (17)
C26 0.076 (2) 0.074 (2) 0.291 (6) −0.0018 (18) −0.002 (3) 0.058 (3)

Geometric parameters (Å, º)

S1—C7 1.662 (2) C10—C17 1.442 (3)
F1—C14 1.363 (4) C11—C12 1.374 (3)
N1—C7 1.358 (3) C11—C16 1.381 (3)
N1—C1 1.409 (3) C12—C13 1.395 (4)
N1—H3 0.83 (3) C12—H12 0.9300
N2—C7 1.358 (3) C13—C14 1.365 (5)
N2—N3 1.394 (2) C13—H13 0.9300
N2—C8 1.474 (3) C14—C15 1.333 (5)
N3—C10 1.288 (3) C15—C16 1.375 (4)
N4—N5 1.305 (3) C15—H15 0.9300
N4—C17 1.367 (3) C16—H16 0.9300
N5—N6 1.366 (3) C17—C18 1.378 (3)
N6—C18 1.348 (3) C18—C19 1.482 (3)
N6—C20 1.429 (3) C19—H19A 0.9600
C1—C6 1.383 (3) C19—H19B 0.9600
C1—C2 1.388 (3) C19—H19C 0.9600
C2—C3 1.377 (3) C20—C21 1.361 (4)
C2—H2 0.9300 C20—C25 1.373 (4)
C3—C4 1.381 (4) C21—C22 1.396 (4)
C3—H3A 0.9300 C21—H21 0.9300
C4—C5 1.368 (4) C22—C23 1.372 (5)
C4—H4 0.9300 C22—H22 0.9300
C5—C6 1.385 (3) C23—C24 1.382 (5)
C5—H5 0.9300 C23—C26 1.519 (4)
C6—H6 0.9300 C24—C25 1.369 (4)
C8—C11 1.511 (3) C24—H24 0.9300
C8—C9 1.539 (3) C25—H25 0.9300
C8—H8 0.9800 C26—H26A 0.9600
C9—C10 1.489 (3) C26—H26B 0.9600
C9—H9A 0.9700 C26—H26C 0.9600
C9—H9B 0.9700
C7—N1—C1 133.6 (2) C11—C12—C13 119.7 (3)
C7—N1—H3 110 (2) C11—C12—H12 120.2
C1—N1—H3 116 (2) C13—C12—H12 120.2
C7—N2—N3 120.12 (17) C14—C13—C12 118.7 (3)
C7—N2—C8 126.89 (18) C14—C13—H13 120.7
N3—N2—C8 112.83 (17) C12—C13—H13 120.7
C10—N3—N2 107.71 (17) C15—C14—F1 119.6 (4)
N5—N4—C17 109.1 (2) C15—C14—C13 123.0 (3)
N4—N5—N6 106.63 (18) F1—C14—C13 117.5 (4)
C18—N6—N5 111.6 (2) C14—C15—C16 118.4 (3)
C18—N6—C20 128.4 (2) C14—C15—H15 120.8
N5—N6—C20 119.91 (19) C16—C15—H15 120.8
C6—C1—C2 118.8 (2) C15—C16—C11 121.5 (3)
C6—C1—N1 125.3 (2) C15—C16—H16 119.2
C2—C1—N1 115.9 (2) C11—C16—H16 119.2
C3—C2—C1 121.1 (2) N4—C17—C18 109.1 (2)
C3—C2—H2 119.5 N4—C17—C10 121.1 (2)
C1—C2—H2 119.5 C18—C17—C10 129.7 (2)
C2—C3—C4 120.1 (2) N6—C18—C17 103.6 (2)
C2—C3—H3A 120.0 N6—C18—C19 124.5 (2)
C4—C3—H3A 120.0 C17—C18—C19 131.9 (2)
C5—C4—C3 118.9 (2) C18—C19—H19A 109.5
C5—C4—H4 120.6 C18—C19—H19B 109.5
C3—C4—H4 120.6 H19A—C19—H19B 109.5
C4—C5—C6 121.8 (2) C18—C19—H19C 109.5
C4—C5—H5 119.1 H19A—C19—H19C 109.5
C6—C5—H5 119.1 H19B—C19—H19C 109.5
C1—C6—C5 119.4 (2) C21—C20—C25 120.5 (3)
C1—C6—H6 120.3 C21—C20—N6 120.2 (2)
C5—C6—H6 120.3 C25—C20—N6 119.3 (2)
N1—C7—N2 111.98 (19) C20—C21—C22 118.6 (3)
N1—C7—S1 127.76 (17) C20—C21—H21 120.7
N2—C7—S1 120.26 (16) C22—C21—H21 120.7
N2—C8—C11 112.53 (19) C23—C22—C21 121.8 (3)
N2—C8—C9 101.03 (17) C23—C22—H22 119.1
C11—C8—C9 112.35 (18) C21—C22—H22 119.1
N2—C8—H8 110.2 C22—C23—C24 117.8 (3)
C11—C8—H8 110.2 C22—C23—C26 121.3 (4)
C9—C8—H8 110.2 C24—C23—C26 121.0 (4)
C10—C9—C8 102.80 (18) C25—C24—C23 121.1 (3)
C10—C9—H9A 111.2 C25—C24—H24 119.4
C8—C9—H9A 111.2 C23—C24—H24 119.4
C10—C9—H9B 111.2 C24—C25—C20 120.1 (3)
C8—C9—H9B 111.2 C24—C25—H25 119.9
H9A—C9—H9B 109.1 C20—C25—H25 119.9
N3—C10—C17 120.3 (2) C23—C26—H26A 109.5
N3—C10—C9 114.3 (2) C23—C26—H26B 109.5
C17—C10—C9 125.3 (2) H26A—C26—H26B 109.5
C12—C11—C16 118.8 (2) C23—C26—H26C 109.5
C12—C11—C8 122.7 (2) H26A—C26—H26C 109.5
C16—C11—C8 118.5 (2) H26B—C26—H26C 109.5
C7—N2—N3—C10 −168.49 (19) C11—C12—C13—C14 −0.8 (4)
C8—N2—N3—C10 7.2 (2) C12—C13—C14—C15 −0.5 (6)
C17—N4—N5—N6 −0.1 (2) C12—C13—C14—F1 179.8 (3)
N4—N5—N6—C18 0.4 (3) F1—C14—C15—C16 −179.6 (3)
N4—N5—N6—C20 −177.4 (2) C13—C14—C15—C16 0.8 (7)
C7—N1—C1—C6 −5.6 (4) C14—C15—C16—C11 0.2 (6)
C7—N1—C1—C2 172.6 (2) C12—C11—C16—C15 −1.4 (4)
C6—C1—C2—C3 1.1 (3) C8—C11—C16—C15 175.9 (3)
N1—C1—C2—C3 −177.3 (2) N5—N4—C17—C18 −0.2 (3)
C1—C2—C3—C4 −0.5 (3) N5—N4—C17—C10 175.68 (19)
C2—C3—C4—C5 −0.1 (4) N3—C10—C17—N4 −172.65 (19)
C3—C4—C5—C6 0.3 (4) C9—C10—C17—N4 3.8 (3)
C2—C1—C6—C5 −0.9 (3) N3—C10—C17—C18 2.3 (3)
N1—C1—C6—C5 177.3 (2) C9—C10—C17—C18 178.7 (2)
C4—C5—C6—C1 0.3 (4) N5—N6—C18—C17 −0.5 (2)
C1—N1—C7—N2 −170.1 (2) C20—N6—C18—C17 177.1 (2)
C1—N1—C7—S1 9.8 (4) N5—N6—C18—C19 177.0 (2)
N3—N2—C7—N1 −3.3 (3) C20—N6—C18—C19 −5.5 (4)
C8—N2—C7—N1 −178.33 (19) N4—C17—C18—N6 0.4 (2)
N3—N2—C7—S1 176.78 (15) C10—C17—C18—N6 −175.0 (2)
C8—N2—C7—S1 1.7 (3) N4—C17—C18—C19 −176.8 (2)
C7—N2—C8—C11 −75.8 (3) C10—C17—C18—C19 7.8 (4)
N3—N2—C8—C11 108.8 (2) C18—N6—C20—C21 123.5 (3)
C7—N2—C8—C9 164.2 (2) N5—N6—C20—C21 −59.1 (3)
N3—N2—C8—C9 −11.2 (2) C18—N6—C20—C25 −56.8 (4)
N2—C8—C9—C10 10.3 (2) N5—N6—C20—C25 120.5 (3)
C11—C8—C9—C10 −109.9 (2) C25—C20—C21—C22 0.9 (4)
N2—N3—C10—C17 177.36 (18) N6—C20—C21—C22 −179.5 (3)
N2—N3—C10—C9 0.6 (2) C20—C21—C22—C23 −0.8 (5)
C8—C9—C10—N3 −7.4 (2) C21—C22—C23—C24 0.5 (5)
C8—C9—C10—C17 175.99 (19) C21—C22—C23—C26 −179.8 (3)
N2—C8—C11—C12 −18.8 (3) C22—C23—C24—C25 −0.3 (5)
C9—C8—C11—C12 94.5 (3) C26—C23—C24—C25 180.0 (3)
N2—C8—C11—C16 164.0 (2) C23—C24—C25—C20 0.4 (6)
C9—C8—C11—C16 −82.8 (3) C21—C20—C25—C24 −0.7 (5)
C16—C11—C12—C13 1.7 (4) N6—C20—C25—C24 179.7 (3)
C8—C11—C12—C13 −175.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H3···N3 0.83 (3) 2.05 (3) 2.568 (3) 120 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5303).

References

  1. Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268. [DOI] [PubMed]
  2. Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1985. [DOI] [PMC free article] [PubMed]
  3. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813008155/hg5303sup1.cif

e-69-0o619-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813008155/hg5303Isup2.hkl

e-69-0o619-Isup2.hkl (273.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813008155/hg5303Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES