Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 28;69(Pt 4):o620. doi: 10.1107/S1600536813007976

3,4′,5-Trichloro­biphenyl-4-yl 2,2,2-trichloro­ethyl sulfate

Hans-Joachim Lehmler a,*, Xianran He a, Michael W Duffel b, Sean Parkin c
PMCID: PMC3629655  PMID: 23634142

Abstract

Crystals of the title compound, C14H8Cl6O4S, are twinned by inversion, with unequal components [0.85 (3):0.15 (3)]. The asymmetric unit contains two independent mol­ecules that are related by a pseudo-inversion center. The Car—O [1.393 (9) and 1.397 (9) Å] and ester S—O bond lengths [1.600 (5) and 1.590 (5) Å] of both mol­ecules are comparable to the structurally related 2,3,5,5-trichloro­biphenyl-4-yl 2,2,2-trichloro­ethyl sulfate. The dihedral angles between the benzene rings in the two mol­ecules are 37.8 (2) and 35.0 (2)°.

Related literature  

For related structures of biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters of sulfuric acid, see: Li et al. (2008, 2010a ,b ,c ). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005); Denehy et al. (2006). For additional background to sulfate metabolites of polychlorinated bi­phenyls, see: Liu et al. (2006, 2009); Wang et al. (2006); Dhakal et al. (2012); Zhai et al. (2013).graphic file with name e-69-0o620-scheme1.jpg

Experimental  

Crystal data  

  • C14H8Cl6O4S

  • M r = 484.96

  • Orthorhombic, Inline graphic

  • a = 13.993 (3) Å

  • b = 9.1890 (18) Å

  • c = 28.778 (6) Å

  • V = 3700.3 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 9.71 mm−1

  • T = 90 K

  • 0.17 × 0.09 × 0.02 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.504, T max = 0.830

  • 45894 measured reflections

  • 6651 independent reflections

  • 6238 reflections with I > 2σ(I)

  • R int = 0.062

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.161

  • S = 1.15

  • 6651 reflections

  • 302 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.85 e Å−3

  • Absolute structure: Flack (1983), 3176 Friedel pairs

  • Flack parameter: 0.15 (3)

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007976/yk2088sup1.cif

e-69-0o620-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007976/yk2088Isup2.hkl

e-69-0o620-Isup2.hkl (325.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007976/yk2088Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by grants ES05605, ES013661 and ES017425 from the National Institute of Environmental Health Sciences, NIH.

supplementary crystallographic information

Comment

Sulfuric acid monoesters of hydroxylated polychlorinated biphenyls (OHPCBs) are emerging as an important class of metabolites of polychlorinated biphenyls (PCBs). Two recent in vivo studies report the formation of PCB sulfates by rats (Dhakal et al., 2012) and poplar plants (Zhai et al., 2013). In vitro studies demonstrate that PCB sulfates are both substrates and inhibitors of mammalian cytosolic sulfotransferases (Liu et al., 2006; Wang et al., 2006; Liu et al., 2009). Only limited structural information about sulfate mono- and diesters of hydroxylated PCBs is available to support structure-activity or structure-property relationship studies. Here we report the structure of the title compound, a biphenyl-4-yl 2,2,2-trichloroethyl sulfate with two chlorine substituents ortho to the sulfate group, to contribute to the number of available crystal structures.

The two independent molecules of the title compound in the asymmetric unit are related by a pseudo-inversion center. The length of the Caromatic—O bonds of the two molecules are 1.393 (9) and 1.397 (9) Å, respectively. These bond lengths are comparable to the Caromatic—O bond length (1.405 Å) reported for the structurally related 2',3,5,5'-trichloro-biphenyl-4-yl 2,2,2-trichloroethyl sulfate (Li et al., 2010b). In contrast, biphenyl-4-yl 2,2,2-trichloroethyl sulfates without electronegative chlorine substituents ortho to the sulfate group have slightly longer Caromatic—O bond length ranging from 1.426 to 1.449 Å (Li et al., 2008; Li et al., 2010b; Li et al., 2010a; Li et al., 2010c).

The lengths of the PCB sulfate ester bond of the title compound (i.e., S1—O1) are 1.600 (5) and 1.590 (5) Å. In contrast, biphenyl-4-yl 2,2,2-trichloroethyl sulfates without chlorine substituents ortho to the sulfate group typically have shorter sulfate ester bond lengths ranging from 1.563 to 1.586 Å (Li et al., 2008; Li et al., 2010b; Li et al., 2010a; Li et al., 2010c). Similar to aromatic sulfate monoesters (Brandao et al., 2005; Denehy et al., 2006), this difference suggests that chlorine substituents ortho to the sulfate group decrease the stability of the S—O ester bond.

The dihedral angle of the biphenyl moiety of PCB derivatives is a structural parameter associated with the affinity of PCB derivatives for cellular target molecules. The two molecules of the title compound have solid state dihedral angles of 37.8 (2)° and 35.0 (2)°. Similarly, structurally related biphenyl-4-yl 2,2,2-trichloroethyl sulfates have dihedral angles ranging from 4.9° to 41.8° in the solid state (Li et al., 2008; Li et al., 2010a; Li et al., 2010c). The fact that biphenyl-4-yl 2,2,2-trichloroethyl sulfates without ortho chlorine substituents adopt a range of dihedral angles can be explained by crystal packing effects, which force the biphenyl moiety to adopt an energetically less favorable conformation in the solid state.

Experimental

The title compound was synthesized from 3,4',5-trichlorobiphenyl-4-ol and 2,2,2-trichloroethyl sulfonyl chloride using 4-dimethylaminopyridine as catalyst as reported previously (Li et al., 2008). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanolic solution.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.99 Å (R2CH2), 0.95 Å (Csp2H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

The two independent molecules are related by a pseudo-inversion centre, which results in large correlations between the displacement parameters. In order to ensure satisfactory refinement, the displacement parameters of equivalent atoms in each molecule were constrained to be the same using the EADP command of SHELXL97.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H8Cl6O4S F(000) = 1936
Mr = 484.96 Dx = 1.741 Mg m3
Orthorhombic, Pca21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2ac Cell parameters from 9992 reflections
a = 13.993 (3) Å θ = 3.1–68.3°
b = 9.1890 (18) Å µ = 9.71 mm1
c = 28.778 (6) Å T = 90 K
V = 3700.3 (13) Å3 Flake, colourless
Z = 8 0.17 × 0.09 × 0.02 mm

Data collection

Bruker X8 Proteum diffractometer 6651 independent reflections
Radiation source: fine-focus rotating anode 6238 reflections with I > 2σ(I)
Graded multilayer optics monochromator Rint = 0.062
Detector resolution: 5.6 pixels mm-1 θmax = 68.4°, θmin = 3.1°
φ and ω scans h = −14→16
Absorption correction: multi-scan (SADABS; Bruker, 2006) k = −10→11
Tmin = 0.504, Tmax = 0.830 l = −34→34
45894 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0514P)2 + 21.3733P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max < 0.001
6651 reflections Δρmax = 0.96 e Å3
302 parameters Δρmin = −0.85 e Å3
1 restraint Absolute structure: Flack (1983), 3176 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.15 (3)

Special details

Experimental. The crystal was twinned by inversion, but with unequal sized pieces of each component. The refined Flack parameter indicates major:minor fractions of 0.85 (3):0.15 (3).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.77740 (12) 0.4047 (2) 0.35290 (7) 0.0283 (2)
O1A 0.8439 (4) 0.2785 (5) 0.33235 (19) 0.0273 (7)
O2A 0.8158 (4) 0.4167 (6) 0.40377 (19) 0.0313 (7)
O3A 0.7985 (4) 0.5393 (6) 0.3314 (2) 0.0302 (7)
O4A 0.6838 (4) 0.3483 (6) 0.3531 (2) 0.0349 (7)
Cl1A 1.03327 (13) 0.3420 (2) 0.37524 (7) 0.0380 (3)
Cl2A 0.78298 (12) 0.2737 (2) 0.23480 (7) 0.0318 (2)
Cl3A 1.37897 (13) 0.5084 (2) 0.10448 (8) 0.0378 (3)
Cl4A 0.8960 (2) 0.4431 (3) 0.50012 (9) 0.0563 (4)
Cl5A 0.69326 (19) 0.4810 (2) 0.48583 (9) 0.0487 (4)
Cl6A 0.76595 (19) 0.2066 (2) 0.52014 (8) 0.0489 (4)
C1A 1.0641 (5) 0.3630 (7) 0.2372 (3) 0.0240 (9)
C2A 1.0822 (5) 0.3612 (8) 0.2847 (3) 0.0273 (9)
H2A 1.1456 0.3760 0.2956 0.033*
C3A 1.0090 (5) 0.3381 (8) 0.3166 (3) 0.0276 (9)
C4A 0.9162 (5) 0.3143 (8) 0.3011 (3) 0.0252 (9)
C5A 0.8987 (5) 0.3119 (7) 0.2542 (3) 0.0259 (9)
C6A 0.9704 (5) 0.3381 (8) 0.2223 (3) 0.0273 (9)
H6A 0.9560 0.3393 0.1900 0.033*
C7A 0.7997 (6) 0.2919 (9) 0.4344 (3) 0.0326 (10)
H7A1 0.8546 0.2241 0.4332 0.039*
H7A2 0.7412 0.2386 0.4251 0.039*
C8A 0.7887 (7) 0.3548 (10) 0.4822 (3) 0.0431 (12)
C1'A 1.1400 (5) 0.3932 (8) 0.2034 (3) 0.0284 (9)
C2'A 1.1233 (5) 0.4783 (9) 0.1639 (3) 0.0314 (11)
H2'A 1.0607 0.5138 0.1581 0.038*
C3'A 1.1959 (5) 0.5118 (9) 0.1333 (3) 0.0307 (10)
H3'A 1.1833 0.5691 0.1065 0.037*
C4'A 1.2877 (5) 0.4609 (9) 0.1420 (3) 0.0284 (10)
C5'A 1.3053 (5) 0.3752 (8) 0.1800 (3) 0.0293 (10)
H5'A 1.3677 0.3379 0.1850 0.035*
C6'A 1.2329 (5) 0.3424 (8) 0.2113 (3) 0.0285 (9)
H6'A 1.2464 0.2854 0.2380 0.034*
S1B 0.48992 (12) 0.0952 (2) 0.44025 (7) 0.0283 (2)
O1B 0.4243 (3) 0.2207 (5) 0.46086 (19) 0.0273 (7)
O2B 0.4512 (4) 0.0835 (6) 0.38944 (19) 0.0313 (7)
O3B 0.4667 (4) −0.0367 (6) 0.4615 (2) 0.0302 (7)
O4B 0.5834 (4) 0.1524 (6) 0.4402 (2) 0.0349 (7)
Cl1B 0.23508 (13) 0.1574 (2) 0.41731 (7) 0.0380 (3)
Cl2B 0.48229 (12) 0.2267 (2) 0.55864 (7) 0.0318 (2)
Cl3B −0.11866 (13) 0.0187 (2) 0.68821 (8) 0.0378 (3)
Cl4B 0.3715 (2) 0.0537 (3) 0.29351 (9) 0.0563 (4)
Cl5B 0.50048 (19) 0.2929 (2) 0.27257 (8) 0.0487 (4)
Cl6B 0.57633 (19) 0.0222 (3) 0.30941 (8) 0.0489 (4)
C1B 0.2034 (5) 0.1376 (8) 0.5547 (3) 0.0240 (9)
C2B 0.1855 (5) 0.1373 (8) 0.5077 (3) 0.0273 (9)
H2B 0.1222 0.1221 0.4967 0.033*
C3B 0.2590 (5) 0.1590 (8) 0.4759 (3) 0.0276 (9)
C4B 0.3515 (5) 0.1866 (8) 0.4923 (3) 0.0252 (9)
C5B 0.3684 (5) 0.1883 (8) 0.5392 (3) 0.0259 (9)
C6B 0.2963 (5) 0.1672 (8) 0.5714 (3) 0.0273 (9)
H6B 0.3089 0.1725 0.6038 0.033*
C7B 0.4686 (6) 0.2041 (9) 0.3589 (3) 0.0326 (10)
H7B1 0.5276 0.2556 0.3684 0.039*
H7B2 0.4146 0.2736 0.3604 0.039*
C8B 0.4791 (7) 0.1461 (10) 0.3102 (3) 0.0431 (12)
C1'B 0.1230 (5) 0.1095 (8) 0.5886 (3) 0.0284 (9)
C2'B 0.1395 (5) 0.0364 (9) 0.6294 (3) 0.0314 (11)
H2'B 0.2024 0.0042 0.6364 0.038*
C3'B 0.0659 (5) 0.0087 (8) 0.6607 (3) 0.0307 (10)
H3'B 0.0784 −0.0421 0.6888 0.037*
C4'B −0.0243 (5) 0.0551 (9) 0.6506 (3) 0.0284 (10)
C5'B −0.0442 (5) 0.1307 (8) 0.6098 (3) 0.0293 (10)
H5'B −0.1072 0.1629 0.6031 0.035*
C6'B 0.0308 (5) 0.1580 (8) 0.5789 (3) 0.0285 (9)
H6'B 0.0188 0.2102 0.5510 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0183 (5) 0.0276 (5) 0.0392 (6) 0.0017 (4) 0.0002 (4) 0.0039 (4)
O1A 0.0202 (14) 0.0205 (15) 0.0411 (17) −0.0046 (12) 0.0037 (13) 0.0031 (12)
O2A 0.0285 (16) 0.0267 (16) 0.0386 (17) −0.0036 (13) 0.0023 (13) 0.0059 (13)
O3A 0.0248 (17) 0.0217 (16) 0.0442 (18) 0.0022 (12) 0.0006 (13) 0.0063 (13)
O4A 0.0187 (15) 0.0370 (18) 0.0491 (19) −0.0033 (13) −0.0001 (14) 0.0041 (15)
Cl1A 0.0219 (5) 0.0543 (7) 0.0379 (6) −0.0016 (5) −0.0044 (5) 0.0037 (5)
Cl2A 0.0167 (5) 0.0340 (6) 0.0447 (6) −0.0060 (4) −0.0047 (4) 0.0021 (5)
Cl3A 0.0279 (6) 0.0455 (7) 0.0399 (6) −0.0032 (5) 0.0037 (5) 0.0000 (6)
Cl4A 0.0802 (11) 0.0341 (6) 0.0545 (8) −0.0139 (7) −0.0252 (7) 0.0035 (5)
Cl5A 0.0709 (11) 0.0286 (7) 0.0465 (9) 0.0093 (7) 0.0109 (8) 0.0067 (7)
Cl6A 0.0715 (11) 0.0299 (8) 0.0454 (9) 0.0031 (7) 0.0054 (8) 0.0030 (7)
C1A 0.018 (2) 0.0134 (18) 0.040 (2) 0.0007 (16) 0.0015 (18) 0.0006 (17)
C2A 0.0137 (19) 0.023 (2) 0.045 (3) −0.0001 (16) −0.0014 (17) 0.0013 (19)
C3A 0.019 (2) 0.020 (2) 0.044 (2) 0.0014 (17) −0.0017 (18) 0.0002 (18)
C4A 0.0122 (18) 0.0156 (19) 0.048 (3) −0.0009 (15) −0.0002 (18) 0.0014 (17)
C5A 0.017 (2) 0.0120 (18) 0.048 (3) 0.0000 (16) 0.0010 (18) 0.0004 (17)
C6A 0.020 (2) 0.022 (2) 0.040 (2) −0.0008 (17) −0.0039 (18) −0.0016 (18)
C7A 0.033 (2) 0.027 (2) 0.038 (2) 0.001 (2) −0.002 (2) 0.0039 (19)
C8A 0.060 (3) 0.028 (2) 0.041 (3) −0.002 (2) −0.007 (3) 0.000 (2)
C1'A 0.017 (2) 0.024 (2) 0.044 (2) 0.0023 (17) −0.0018 (18) −0.0069 (19)
C2'A 0.017 (2) 0.034 (3) 0.043 (2) 0.0000 (19) −0.0038 (19) 0.000 (2)
C3'A 0.025 (2) 0.030 (2) 0.037 (2) 0.002 (2) −0.005 (2) 0.000 (2)
C4'A 0.019 (2) 0.026 (2) 0.040 (2) −0.0023 (18) 0.0028 (18) −0.0037 (19)
C5'A 0.019 (2) 0.026 (2) 0.043 (3) 0.0008 (18) −0.0034 (18) −0.003 (2)
C6'A 0.019 (2) 0.023 (2) 0.042 (3) −0.0013 (17) −0.0001 (19) 0.001 (2)
S1B 0.0183 (5) 0.0276 (5) 0.0392 (6) 0.0017 (4) 0.0002 (4) 0.0039 (4)
O1B 0.0202 (14) 0.0205 (15) 0.0411 (17) −0.0046 (12) 0.0037 (13) 0.0031 (12)
O2B 0.0285 (16) 0.0267 (16) 0.0386 (17) −0.0036 (13) 0.0023 (13) 0.0059 (13)
O3B 0.0248 (17) 0.0217 (16) 0.0442 (18) 0.0022 (12) 0.0006 (13) 0.0063 (13)
O4B 0.0187 (15) 0.0370 (18) 0.0491 (19) −0.0033 (13) −0.0001 (14) 0.0041 (15)
Cl1B 0.0219 (5) 0.0543 (7) 0.0379 (6) −0.0016 (5) −0.0044 (5) 0.0037 (5)
Cl2B 0.0167 (5) 0.0340 (6) 0.0447 (6) −0.0060 (4) −0.0047 (4) 0.0021 (5)
Cl3B 0.0279 (6) 0.0455 (7) 0.0399 (6) −0.0032 (5) 0.0037 (5) 0.0000 (6)
Cl4B 0.0802 (11) 0.0341 (6) 0.0545 (8) −0.0139 (7) −0.0252 (7) 0.0035 (5)
Cl5B 0.0709 (11) 0.0286 (7) 0.0465 (9) 0.0093 (7) 0.0109 (8) 0.0067 (7)
Cl6B 0.0715 (11) 0.0299 (8) 0.0454 (9) 0.0031 (7) 0.0054 (8) 0.0030 (7)
C1B 0.018 (2) 0.0134 (18) 0.040 (2) 0.0007 (16) 0.0015 (18) 0.0006 (17)
C2B 0.0137 (19) 0.023 (2) 0.045 (3) −0.0001 (16) −0.0014 (17) 0.0013 (19)
C3B 0.019 (2) 0.020 (2) 0.044 (2) 0.0014 (17) −0.0017 (18) 0.0002 (18)
C4B 0.0122 (18) 0.0156 (19) 0.048 (3) −0.0009 (15) −0.0002 (18) 0.0014 (17)
C5B 0.017 (2) 0.0120 (18) 0.048 (3) 0.0000 (16) 0.0010 (18) 0.0004 (17)
C6B 0.020 (2) 0.022 (2) 0.040 (2) −0.0008 (17) −0.0039 (18) −0.0016 (18)
C7B 0.033 (2) 0.027 (2) 0.038 (2) 0.001 (2) −0.002 (2) 0.0039 (19)
C8B 0.060 (3) 0.028 (2) 0.041 (3) −0.002 (2) −0.007 (3) 0.000 (2)
C1'B 0.017 (2) 0.024 (2) 0.044 (2) 0.0023 (17) −0.0018 (18) −0.0069 (19)
C2'B 0.017 (2) 0.034 (3) 0.043 (2) 0.0000 (19) −0.0038 (19) 0.000 (2)
C3'B 0.025 (2) 0.030 (2) 0.037 (2) 0.002 (2) −0.005 (2) 0.000 (2)
C4'B 0.019 (2) 0.026 (2) 0.040 (2) −0.0023 (18) 0.0028 (18) −0.0037 (19)
C5'B 0.019 (2) 0.026 (2) 0.043 (3) 0.0008 (18) −0.0034 (18) −0.003 (2)
C6'B 0.019 (2) 0.023 (2) 0.042 (3) −0.0013 (17) −0.0001 (19) 0.001 (2)

Geometric parameters (Å, º)

S1A—O4A 1.408 (5) S1B—O3B 1.396 (6)
S1A—O3A 1.414 (6) S1B—O4B 1.409 (5)
S1A—O2A 1.563 (6) S1B—O2B 1.563 (6)
S1A—O1A 1.600 (5) S1B—O1B 1.590 (5)
O1A—C4A 1.393 (9) O1B—C4B 1.397 (9)
O2A—C7A 1.464 (9) O2B—C7B 1.434 (9)
Cl1A—C3A 1.722 (9) Cl1B—C3B 1.720 (8)
Cl2A—C5A 1.749 (7) Cl2B—C5B 1.726 (7)
Cl3A—C4'A 1.730 (8) Cl3B—C4'B 1.739 (8)
Cl4A—C8A 1.783 (10) Cl4B—C8B 1.793 (10)
Cl5A—C8A 1.772 (10) Cl5B—C8B 1.755 (9)
Cl6A—C8A 1.774 (9) Cl6B—C8B 1.774 (10)
C1A—C2A 1.391 (11) C1B—C2B 1.378 (11)
C1A—C6A 1.400 (10) C1B—C6B 1.412 (10)
C1A—C1'A 1.467 (10) C1B—C1'B 1.510 (10)
C2A—C3A 1.390 (11) C2B—C3B 1.389 (11)
C2A—H2A 0.9500 C2B—H2B 0.9500
C3A—C4A 1.390 (10) C3B—C4B 1.401 (10)
C4A—C5A 1.373 (11) C4B—C5B 1.370 (11)
C5A—C6A 1.381 (11) C5B—C6B 1.384 (11)
C6A—H6A 0.9500 C6B—H6B 0.9500
C7A—C8A 1.500 (12) C7B—C8B 1.509 (12)
C7A—H7A1 0.9900 C7B—H7B1 0.9900
C7A—H7A2 0.9900 C7B—H7B2 0.9900
C1'A—C6'A 1.399 (10) C1'B—C2'B 1.373 (12)
C1'A—C2'A 1.400 (12) C1'B—C6'B 1.393 (10)
C2'A—C3'A 1.380 (12) C2'B—C3'B 1.391 (12)
C2'A—H2'A 0.9500 C2'B—H2'B 0.9500
C3'A—C4'A 1.389 (11) C3'B—C4'B 1.364 (10)
C3'A—H3'A 0.9500 C3'B—H3'B 0.9500
C4'A—C5'A 1.369 (12) C4'B—C5'B 1.392 (12)
C5'A—C6'A 1.388 (11) C5'B—C6'B 1.399 (11)
C5'A—H5'A 0.9500 C5'B—H5'B 0.9500
C6'A—H6'A 0.9500 C6'B—H6'B 0.9500
O4A—S1A—O3A 121.2 (3) O3B—S1B—O4B 122.7 (3)
O4A—S1A—O2A 109.9 (3) O3B—S1B—O2B 105.6 (3)
O3A—S1A—O2A 106.0 (3) O4B—S1B—O2B 110.3 (3)
O4A—S1A—O1A 106.0 (3) O3B—S1B—O1B 109.4 (3)
O3A—S1A—O1A 110.5 (3) O4B—S1B—O1B 105.4 (3)
O2A—S1A—O1A 101.4 (3) O2B—S1B—O1B 101.4 (3)
C4A—O1A—S1A 119.3 (4) C4B—O1B—S1B 120.0 (4)
C7A—O2A—S1A 117.1 (5) C7B—O2B—S1B 117.5 (5)
C2A—C1A—C6A 118.1 (7) C2B—C1B—C6B 120.1 (7)
C2A—C1A—C1'A 121.5 (7) C2B—C1B—C1'B 119.9 (6)
C6A—C1A—C1'A 120.3 (7) C6B—C1B—C1'B 120.0 (7)
C3A—C2A—C1A 121.1 (7) C1B—C2B—C3B 120.8 (7)
C3A—C2A—H2A 119.5 C1B—C2B—H2B 119.6
C1A—C2A—H2A 119.5 C3B—C2B—H2B 119.6
C4A—C3A—C2A 120.0 (8) C2B—C3B—C4B 119.3 (8)
C4A—C3A—Cl1A 120.1 (6) C2B—C3B—Cl1B 119.9 (6)
C2A—C3A—Cl1A 119.8 (6) C4B—C3B—Cl1B 120.7 (6)
C5A—C4A—C3A 119.0 (7) C5B—C4B—O1B 120.6 (6)
C5A—C4A—O1A 120.1 (6) C5B—C4B—C3B 119.5 (7)
C3A—C4A—O1A 120.5 (7) O1B—C4B—C3B 119.8 (7)
C4A—C5A—C6A 121.5 (7) C4B—C5B—C6B 122.2 (7)
C4A—C5A—Cl2A 118.8 (6) C4B—C5B—Cl2B 118.7 (6)
C6A—C5A—Cl2A 119.7 (6) C6B—C5B—Cl2B 119.0 (6)
C5A—C6A—C1A 120.3 (8) C5B—C6B—C1B 118.1 (7)
C5A—C6A—H6A 119.9 C5B—C6B—H6B 121.0
C1A—C6A—H6A 119.9 C1B—C6B—H6B 121.0
O2A—C7A—C8A 105.4 (6) O2B—C7B—C8B 108.2 (7)
O2A—C7A—H7A1 110.7 O2B—C7B—H7B1 110.0
C8A—C7A—H7A1 110.7 C8B—C7B—H7B1 110.0
O2A—C7A—H7A2 110.7 O2B—C7B—H7B2 110.0
C8A—C7A—H7A2 110.7 C8B—C7B—H7B2 110.0
H7A1—C7A—H7A2 108.8 H7B1—C7B—H7B2 108.4
C7A—C8A—Cl5A 112.5 (6) C7B—C8B—Cl5B 108.6 (6)
C7A—C8A—Cl6A 106.7 (6) C7B—C8B—Cl6B 108.2 (6)
Cl5A—C8A—Cl6A 109.3 (5) Cl5B—C8B—Cl6B 110.8 (6)
C7A—C8A—Cl4A 110.8 (7) C7B—C8B—Cl4B 109.5 (7)
Cl5A—C8A—Cl4A 108.6 (5) Cl5B—C8B—Cl4B 110.0 (5)
Cl6A—C8A—Cl4A 108.8 (5) Cl6B—C8B—Cl4B 109.7 (5)
C6'A—C1'A—C2'A 118.2 (7) C2'B—C1'B—C6'B 118.9 (7)
C6'A—C1'A—C1A 120.1 (7) C2'B—C1'B—C1B 120.7 (6)
C2'A—C1'A—C1A 121.6 (6) C6'B—C1'B—C1B 120.4 (7)
C3'A—C2'A—C1'A 121.3 (7) C1'B—C2'B—C3'B 121.2 (7)
C3'A—C2'A—H2'A 119.3 C1'B—C2'B—H2'B 119.4
C1'A—C2'A—H2'A 119.3 C3'B—C2'B—H2'B 119.4
C2'A—C3'A—C4'A 119.3 (8) C4'B—C3'B—C2'B 119.4 (8)
C2'A—C3'A—H3'A 120.3 C4'B—C3'B—H3'B 120.3
C4'A—C3'A—H3'A 120.3 C2'B—C3'B—H3'B 120.3
C5'A—C4'A—C3'A 120.3 (7) C3'B—C4'B—C5'B 121.3 (8)
C5'A—C4'A—Cl3A 120.7 (6) C3'B—C4'B—Cl3B 120.7 (7)
C3'A—C4'A—Cl3A 118.9 (7) C5'B—C4'B—Cl3B 118.0 (6)
C4'A—C5'A—C6'A 120.7 (7) C4'B—C5'B—C6'B 118.5 (7)
C4'A—C5'A—H5'A 119.6 C4'B—C5'B—H5'B 120.8
C6'A—C5'A—H5'A 119.6 C6'B—C5'B—H5'B 120.8
C5'A—C6'A—C1'A 120.0 (8) C1'B—C6'B—C5'B 120.6 (8)
C5'A—C6'A—H6'A 120.0 C1'B—C6'B—H6'B 119.7
C1'A—C6'A—H6'A 120.0 C5'B—C6'B—H6'B 119.7
O4A—S1A—O1A—C4A 138.7 (5) O3B—S1B—O1B—C4B −4.9 (6)
O3A—S1A—O1A—C4A 5.6 (6) O4B—S1B—O1B—C4B −138.6 (6)
O2A—S1A—O1A—C4A −106.4 (5) O2B—S1B—O1B—C4B 106.3 (6)
O4A—S1A—O2A—C7A 45.2 (6) O3B—S1B—O2B—C7B −177.9 (5)
O3A—S1A—O2A—C7A 177.8 (5) O4B—S1B—O2B—C7B −43.3 (6)
O1A—S1A—O2A—C7A −66.7 (5) O1B—S1B—O2B—C7B 68.0 (6)
C6A—C1A—C2A—C3A −1.2 (11) C6B—C1B—C2B—C3B 3.1 (11)
C1'A—C1A—C2A—C3A 177.5 (7) C1'B—C1B—C2B—C3B −178.2 (7)
C1A—C2A—C3A—C4A 0.9 (11) C1B—C2B—C3B—C4B −2.3 (11)
C1A—C2A—C3A—Cl1A −178.0 (6) C1B—C2B—C3B—Cl1B 179.7 (6)
C2A—C3A—C4A—C5A 1.0 (11) S1B—O1B—C4B—C5B 91.6 (8)
Cl1A—C3A—C4A—C5A 179.9 (5) S1B—O1B—C4B—C3B −92.2 (7)
C2A—C3A—C4A—O1A 174.4 (6) C2B—C3B—C4B—C5B 1.6 (11)
Cl1A—C3A—C4A—O1A −6.7 (10) Cl1B—C3B—C4B—C5B 179.5 (6)
S1A—O1A—C4A—C5A −92.0 (7) C2B—C3B—C4B—O1B −174.6 (6)
S1A—O1A—C4A—C3A 94.7 (7) Cl1B—C3B—C4B—O1B 3.3 (10)
C3A—C4A—C5A—C6A −2.6 (11) O1B—C4B—C5B—C6B 174.4 (6)
O1A—C4A—C5A—C6A −176.0 (6) C3B—C4B—C5B—C6B −1.8 (11)
C3A—C4A—C5A—Cl2A 177.1 (5) O1B—C4B—C5B—Cl2B −2.3 (10)
O1A—C4A—C5A—Cl2A 3.7 (9) C3B—C4B—C5B—Cl2B −178.5 (5)
C4A—C5A—C6A—C1A 2.3 (11) C4B—C5B—C6B—C1B 2.5 (11)
Cl2A—C5A—C6A—C1A −177.4 (5) Cl2B—C5B—C6B—C1B 179.2 (5)
C2A—C1A—C6A—C5A −0.4 (11) C2B—C1B—C6B—C5B −3.2 (11)
C1'A—C1A—C6A—C5A −179.1 (6) C1'B—C1B—C6B—C5B 178.2 (6)
S1A—O2A—C7A—C8A −148.3 (6) S1B—O2B—C7B—C8B 148.2 (6)
O2A—C7A—C8A—Cl5A 58.7 (8) O2B—C7B—C8B—Cl5B −180.0 (5)
O2A—C7A—C8A—Cl6A 178.5 (5) O2B—C7B—C8B—Cl6B −59.6 (8)
O2A—C7A—C8A—Cl4A −63.2 (7) O2B—C7B—C8B—Cl4B 59.9 (8)
C2A—C1A—C1'A—C6'A 36.2 (11) C2B—C1B—C1'B—C2'B 145.8 (8)
C6A—C1A—C1'A—C6'A −145.1 (7) C6B—C1B—C1'B—C2'B −35.5 (11)
C2A—C1A—C1'A—C2'A −140.7 (8) C2B—C1B—C1'B—C6'B −34.4 (11)
C6A—C1A—C1'A—C2'A 38.0 (11) C6B—C1B—C1'B—C6'B 144.2 (7)
C6'A—C1'A—C2'A—C3'A 0.1 (12) C6'B—C1'B—C2'B—C3'B 0.8 (12)
C1A—C1'A—C2'A—C3'A 177.0 (7) C1B—C1'B—C2'B—C3'B −179.4 (7)
C1'A—C2'A—C3'A—C4'A −0.5 (12) C1'B—C2'B—C3'B—C4'B 0.0 (13)
C2'A—C3'A—C4'A—C5'A 1.7 (12) C2'B—C3'B—C4'B—C5'B −0.5 (12)
C2'A—C3'A—C4'A—Cl3A −177.9 (6) C2'B—C3'B—C4'B—Cl3B 178.5 (6)
C3'A—C4'A—C5'A—C6'A −2.4 (12) C3'B—C4'B—C5'B—C6'B 0.3 (12)
Cl3A—C4'A—C5'A—C6'A 177.1 (6) Cl3B—C4'B—C5'B—C6'B −178.8 (6)
C4'A—C5'A—C6'A—C1'A 2.0 (12) C2'B—C1'B—C6'B—C5'B −1.1 (12)
C2'A—C1'A—C6'A—C5'A −0.8 (11) C1B—C1'B—C6'B—C5'B 179.2 (7)
C1A—C1'A—C6'A—C5'A −177.8 (7) C4'B—C5'B—C6'B—C1'B 0.5 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2088).

References

  1. Brandao, T. A. S., Priebe, J. P., Damasceno, A. S., Bortoluzzi, A. J., Kirby, A. J. & Nome, F. (2005). J. Mol. Struct. 734, 205–209.
  2. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Denehy, E., White, J. M. & Williams, S. J. (2006). Chem. Commun. pp. 314–316. [DOI] [PubMed]
  4. Dhakal, K., He, X., Lehmler, H. J., Teesch, L. M., Duffel, M. W. & Robertson, L. W. (2012). Chem. Res. Toxicol. 25, 2796–2804. [DOI] [PMC free article] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010a). Acta Cryst. E66, o1073. [DOI] [PMC free article] [PubMed]
  7. Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010b). Environ. Int. 36, 843–848. [DOI] [PMC free article] [PubMed]
  8. Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010c). Acta Cryst. E66, o1615–o1616. [DOI] [PMC free article] [PubMed]
  9. Li, X., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o2464. [DOI] [PMC free article] [PubMed]
  10. Liu, Y., Apak, T. I., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2006). Chem. Res. Toxicol. 19, 1420–1425. [DOI] [PubMed]
  11. Liu, Y., Smart, J. T., Song, Y., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2009). Drug Metab. Dispos. 37, 1065–1072. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Wang, L.-Q., Lehmler, H.-J., Robertson, L. W. & James, M. O. (2006). Chem. Biol. Interact. 159, 235–246. [DOI] [PubMed]
  14. Zhai, G., Lehmler, H. J. & Schnoor, J. L. (2013). Environ. Sci. Technol. 47, 557–562. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007976/yk2088sup1.cif

e-69-0o620-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007976/yk2088Isup2.hkl

e-69-0o620-Isup2.hkl (325.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007976/yk2088Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES