Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 28;69(Pt 4):o621–o622. doi: 10.1107/S1600536813008222

4-(Dec­yloxy)phenyl 2-oxo-7-trifluoro­methyl-2H-chromene-3-carboxyl­ate

B S Palakshamurthy a,*, H C Devarajegowda a, H T Srinivasa b, S Sreenivasa c, Vijithkumar d
PMCID: PMC3629656  PMID: 23634143

Abstract

The title compound, C27H29F3O5, is a liquid crystal (LC) and exhibits enanti­otropic SmA phase transitions. In the crystal, the dihedral angle between the 2H-chromene ring system and the benzene ring is 62.97 (2)°. The three F atoms of the –CF3 group are disordered over two sets of sites with occupancy factors 0.71 (4):0.29 (4). In the crystal, pairs of C—H⋯O hydrogen bonds form inversion dimers and generate R 2 2(10) rings. The structure also features C—H⋯F and C—H⋯π inter­actions along [100] and [010], respectively.

Related literature  

For the synthesis and liquid crystal behaviour of the title compound, see: Mahadevan et al. (2013). For the biological activity of coumarins and their derivatives, see: Borges et al. (2005); Kontogiorgis & Hadjipavlou-Litina (2005) and for their industrial applications, see: Hejchman et al. (2011). For the structure of 4-(oct­yloxy)phenyl 2-oxo-2H-chromene-3-carboxyl­ate, see: Palakshamurthy et al. (2013). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-0o621-scheme1.jpg

Experimental  

Crystal data  

  • C27H29F3O5

  • M r = 490.50

  • Monoclinic, Inline graphic

  • a = 27.85 (3) Å

  • b = 9.281 (10) Å

  • c = 9.981 (11) Å

  • β = 94.849 (18)°

  • V = 2571 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 99 K

  • 0.52 × 0.42 × 0.40 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.950, T max = 0.961

  • 21163 measured reflections

  • 4448 independent reflections

  • 2547 reflections with I > 2σ(I)

  • R int = 0.073

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.221

  • S = 1.07

  • 4448 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813008222/sj5309sup1.cif

e-69-0o621-sup1.cif (31.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813008222/sj5309Isup2.hkl

e-69-0o621-Isup2.hkl (217.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813008222/sj5309Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C7 and C12–C17 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3i 0.95 2.56 3.396 (5) 146
C27—H27C⋯F1ii 0.98 2.52 3.432 (13) 154
C6—H6⋯Cg2i 0.95 3.09 3.899 144
C16—H16⋯Cg2iii 0.95 3.33 4.120 142
C3—H3⋯Cg1iv 0.95 3.43 4.325 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, and G. B. Sadananda, Department of Studies and Research in Physics, U·C.S. Tumkur University, Tumkur.

supplementary crystallographic information

Comment

The title compound is a liquid crystal (LC) exhibiting enantiotropic SmA phase transitions at 203.9(22.64) on heating and at 135.1(47.57) on cooling [The transition temperature in °C and the associated enthalpy values in kJ mol-1 (in italics)] (Mahadevan et al., 2013).

Organic compounds with a 2H-chromene ring system and their derivatives display a wide range of biological activities such as antiviral (Borges et al.., 2005) and anti-inflammatory (Kontogiorgis et al., 2005) activity. They also display photochemical and photophysical properties, acting as molecular fluorescent sensors, laser dyes and have many industrial applications (Hejchman et al., 2011). Keeping this in mind we report here the structure of the 4-(decyloxy)phenyl 7-(trifluoromethyl)-2-oxo-2H-chromene-3-carboxylate(I), and its comparision with 4-(octyloxy)phenyl 2-oxo-2H-chromene-3 –carboxylate(II) (Palakshamurthy et al., 2013).

The asymmetric unit of 4-(decyloxy)phenyl 7-(trifluoromethyl)-2-oxo-2H-chromene-3-carboxylate is shown in Fig.1. The three F atoms of the –CF3 group are disordered over two sets of sites with occupancy factors 0.71 (4):0.29 (4). The dihedral angles between the 2H-chromene ring and the benzene ring are 62.97 (2)o and 21.11 (1)° in the compounds I and II respectively. The crystal structure is characterized by intermolecular C10—H10···O3 hydrogen bonds that form inversion dimers and generate a R22(10) ring pattern (Bernstein et al., 1995). C27—H27···F1 hydrogen bonds then link the dimers into chains along a . The structure is further stabilized by C3—H3···Cg1, C6—H6···Cg2 and C16—H16···Cg2 interactions, Table 1.

Experimental

A mixture of 7-(trifluoromethyl)-2-oxo-2H-chromene-3-carboxylic acid (0.100 g, 0.1 mmol), 4-(decyloxy) phenol (0.100 g, 0.1 mmol) dicyclohexylcarbodiimide (DCC) (0.100 g, 0.1 mmol) and catalytic quantity of DMAP (N,N-dimethyl amino pyridine) were stirred at room temperature for 48hrs in dry dichloromethane. Progress of the reaction was monitored by TLC (ethyl acetate: pet ether 2:8). After the completion of the reaction, the reaction mass was diluted with water and extracted into dichloromethane (25 ml). The organic layer was washed with water and dried over anhydrous sodium sulfate. The crude product thus obtained was purified by column chromatography using ethyl acetate: petroleum ether (2:8) as eluent followed by recrystallization from ethanol. A single crystal suitable for X-ray diffraction was grown from ethanol.

Refinement

The H atoms bound to carbon were positioned with idealized geometry using a riding model with d(C–H) = 0.93- 0.99 Å. All C–H atoms were refined with isotropic displacement parameters set to 1.2–1.5 Ueq(C). The F1, F2, and F3 fluorine atoms of the –CF3 group were disordered over two sites and refined with site occupancy factors 0.71 (4):0.29 (4). The crystals were not of high quality which accounts for the high uncertainties in the lengths of the unit cell axes and the relatively high residuals.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Only the major component of the disordered CF3 group is shown.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.

Fig. 3.

Fig. 3.

Packing of the title compound. C—H···π interactions are shown as dashed lines.

Crystal data

C27H29F3O5 prism
Mr = 490.50 Dx = 1.267 Mg m3
Monoclinic, P21/c Melting point: 418 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 27.85 (3) Å Cell parameters from 2547 reflections
b = 9.281 (10) Å θ = 2.2–25°
c = 9.981 (11) Å µ = 0.10 mm1
β = 94.849 (18)° T = 99 K
V = 2571 (5) Å3 Prism, colourless
Z = 4 0.52 × 0.42 × 0.40 mm
F(000) = 1032

Data collection

Bruker APEXII diffractometer 4448 independent reflections
Radiation source: fine-focus sealed tube 2547 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.073
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −33→33
Tmin = 0.950, Tmax = 0.961 k = −11→11
21163 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0928P)2 + 0.7006P] where P = (Fo2 + 2Fc2)/3
4448 reflections (Δ/σ)max = 0.004
344 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.17 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C25 1.0692 (2) 0.6151 (7) −0.3351 (7) 0.150 (2)
H25A 1.0867 0.6580 −0.2543 0.179*
H25B 1.0716 0.5093 −0.3241 0.179*
C24 1.0184 (2) 0.6518 (7) −0.3292 (7) 0.153 (2)
H24A 1.0162 0.7579 −0.3381 0.184*
H24B 1.0012 0.6110 −0.4113 0.184*
C2 0.31670 (15) 0.6261 (4) 0.2849 (4) 0.0741 (11)
C1 0.26593 (19) 0.6458 (7) 0.3228 (6) 0.0935 (13)
C27 1.1456 (2) 0.6184 (9) −0.4560 (9) 0.208 (4)
H27A 1.1556 0.6545 −0.5417 0.312*
H27B 1.1502 0.5138 −0.4514 0.312*
H27C 1.1652 0.6643 −0.3816 0.312*
C26 1.0960 (3) 0.6514 (10) −0.4462 (8) 0.213 (4)
H26A 1.0783 0.6082 −0.5265 0.256*
H26B 1.0931 0.7571 −0.4572 0.256*
F1 0.2363 (3) 0.694 (2) 0.2215 (10) 0.137 (6) 0.71 (4)
F2 0.2468 (5) 0.5236 (12) 0.361 (3) 0.159 (9) 0.71 (4)
F3 0.2620 (2) 0.739 (2) 0.4226 (19) 0.145 (8) 0.71 (4)
F1A 0.2625 (6) 0.621 (7) 0.450 (2) 0.154 (19) 0.29 (4)
F2A 0.2343 (8) 0.556 (5) 0.269 (5) 0.147 (17) 0.29 (4)
F3A 0.2475 (14) 0.766 (3) 0.303 (7) 0.18 (3) 0.29 (4)
O1 0.43973 (9) 0.6693 (2) 0.4333 (2) 0.0641 (7)
O4 0.57932 (9) 0.6725 (3) 0.2856 (2) 0.0709 (7)
C10 0.46005 (13) 0.5620 (3) 0.1853 (3) 0.0632 (10)
H10 0.4667 0.5224 0.1011 0.076*
C5 0.41071 (13) 0.5803 (3) 0.2142 (3) 0.0589 (9)
O2 0.51778 (10) 0.6830 (3) 0.4977 (2) 0.0840 (8)
C3 0.35544 (15) 0.6606 (4) 0.3744 (4) 0.0694 (10)
H3 0.3503 0.7004 0.4597 0.083*
C8 0.48791 (14) 0.6551 (3) 0.4068 (3) 0.0577 (9)
C4 0.40217 (13) 0.6371 (3) 0.3396 (3) 0.0576 (9)
C9 0.49690 (13) 0.5990 (3) 0.2735 (3) 0.0551 (8)
O3 0.55682 (9) 0.4843 (3) 0.1529 (3) 0.0868 (9)
C6 0.37051 (14) 0.5468 (4) 0.1238 (4) 0.0765 (11)
H6 0.3755 0.5086 0.0378 0.092*
C11 0.54679 (13) 0.5768 (4) 0.2315 (3) 0.0611 (9)
C7 0.32407 (15) 0.5687 (4) 0.1581 (4) 0.0843 (12)
H7 0.2973 0.5451 0.0965 0.101*
C12 0.62703 (14) 0.6568 (4) 0.2462 (4) 0.0668 (10)
C17 0.64238 (15) 0.7362 (4) 0.1429 (4) 0.0784 (11)
H17 0.6206 0.8001 0.0944 0.094*
C15 0.72109 (15) 0.6315 (5) 0.1777 (5) 0.0847 (12)
C16 0.68960 (15) 0.7248 (4) 0.1077 (4) 0.0831 (12)
H16 0.7000 0.7809 0.0360 0.100*
O5 0.76854 (11) 0.6082 (4) 0.1512 (4) 0.1166 (11)
C13 0.65845 (18) 0.5638 (5) 0.3158 (4) 0.0971 (14)
H13 0.6480 0.5083 0.3878 0.117*
C14 0.70536 (18) 0.5511 (6) 0.2811 (5) 0.1108 (16)
H14 0.7269 0.4863 0.3292 0.133*
C19 0.83692 (17) 0.6115 (6) 0.0247 (5) 0.1171 (17)
H19A 0.8573 0.6386 0.1070 0.141*
H19B 0.8350 0.5050 0.0225 0.141*
C18 0.78703 (16) 0.6698 (5) 0.0363 (5) 0.1025 (15)
H18A 0.7882 0.7760 0.0450 0.123*
H18B 0.7659 0.6451 −0.0453 0.123*
C20 0.86150 (18) 0.6598 (6) −0.0933 (6) 0.1232 (18)
H20A 0.8609 0.7665 −0.0952 0.148*
H20B 0.8425 0.6257 −0.1754 0.148*
C23 0.99056 (18) 0.6129 (7) −0.2183 (6) 0.134 (2)
H23A 1.0081 0.6518 −0.1357 0.161*
H23B 0.9920 0.5066 −0.2107 0.161*
C21 0.91271 (18) 0.6116 (7) −0.1003 (6) 0.1294 (19)
H21A 0.9313 0.6457 −0.0174 0.155*
H21B 0.9128 0.5050 −0.0969 0.155*
C22 0.9393 (2) 0.6543 (7) −0.2135 (6) 0.137 (2)
H22A 0.9377 0.7607 −0.2197 0.165*
H22B 0.9216 0.6160 −0.2960 0.165*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C25 0.088 (4) 0.175 (6) 0.191 (6) 0.014 (4) 0.044 (4) 0.019 (5)
C24 0.103 (4) 0.190 (6) 0.172 (6) 0.028 (4) 0.051 (4) 0.016 (5)
C2 0.076 (3) 0.068 (2) 0.081 (3) 0.002 (2) 0.025 (2) 0.011 (2)
C1 0.090 (4) 0.099 (4) 0.095 (4) 0.004 (3) 0.026 (3) 0.011 (3)
C27 0.108 (5) 0.243 (9) 0.282 (10) 0.012 (5) 0.066 (6) 0.009 (8)
C26 0.137 (7) 0.279 (10) 0.235 (9) 0.037 (6) 0.088 (6) 0.023 (8)
F1 0.097 (4) 0.197 (15) 0.118 (6) 0.045 (6) 0.021 (4) 0.027 (6)
F2 0.103 (8) 0.120 (6) 0.26 (2) 0.014 (5) 0.083 (12) 0.075 (10)
F3 0.094 (4) 0.190 (15) 0.158 (11) 0.008 (6) 0.043 (5) −0.069 (11)
F1A 0.106 (11) 0.25 (5) 0.117 (13) 0.009 (18) 0.061 (9) 0.032 (18)
F2A 0.083 (10) 0.15 (3) 0.21 (3) −0.011 (12) 0.038 (14) −0.03 (2)
F3A 0.18 (2) 0.12 (2) 0.27 (6) 0.079 (18) 0.10 (4) 0.07 (3)
O1 0.0811 (17) 0.0674 (15) 0.0456 (13) 0.0026 (12) 0.0160 (12) −0.0070 (11)
O4 0.0756 (17) 0.0752 (16) 0.0639 (15) −0.0077 (13) 0.0181 (12) −0.0240 (13)
C10 0.083 (3) 0.067 (2) 0.0423 (19) −0.0066 (18) 0.0218 (19) −0.0059 (16)
C5 0.072 (2) 0.059 (2) 0.0467 (19) −0.0125 (17) 0.0157 (18) −0.0017 (15)
O2 0.089 (2) 0.115 (2) 0.0480 (14) 0.0021 (16) 0.0037 (14) −0.0223 (14)
C3 0.086 (3) 0.064 (2) 0.061 (2) 0.004 (2) 0.025 (2) 0.0030 (17)
C8 0.078 (3) 0.0537 (19) 0.0421 (19) 0.0018 (17) 0.0112 (18) −0.0019 (15)
C4 0.076 (2) 0.0484 (18) 0.050 (2) −0.0019 (16) 0.0143 (18) 0.0045 (15)
C9 0.077 (2) 0.0517 (18) 0.0377 (18) −0.0050 (16) 0.0124 (17) −0.0009 (14)
O3 0.0876 (19) 0.0923 (19) 0.0828 (18) −0.0046 (15) 0.0212 (15) −0.0405 (15)
C6 0.081 (3) 0.091 (3) 0.060 (2) −0.017 (2) 0.019 (2) −0.006 (2)
C11 0.080 (3) 0.062 (2) 0.0414 (18) −0.0022 (19) 0.0086 (17) −0.0041 (16)
C7 0.078 (3) 0.102 (3) 0.074 (3) −0.013 (2) 0.011 (2) −0.001 (2)
C12 0.071 (2) 0.070 (2) 0.059 (2) 0.002 (2) 0.0062 (19) −0.0184 (19)
C17 0.078 (3) 0.072 (2) 0.086 (3) 0.002 (2) 0.011 (2) 0.004 (2)
C15 0.069 (3) 0.096 (3) 0.090 (3) 0.002 (2) 0.012 (2) −0.013 (3)
C16 0.070 (3) 0.081 (3) 0.100 (3) −0.005 (2) 0.017 (2) 0.005 (2)
O5 0.076 (2) 0.146 (3) 0.129 (3) 0.0163 (19) 0.013 (2) 0.006 (2)
C13 0.105 (4) 0.118 (4) 0.070 (3) 0.015 (3) 0.019 (2) 0.016 (3)
C14 0.094 (4) 0.144 (4) 0.096 (3) 0.037 (3) 0.011 (3) 0.018 (3)
C19 0.067 (3) 0.150 (5) 0.135 (4) 0.004 (3) 0.016 (3) 0.000 (4)
C18 0.077 (3) 0.105 (3) 0.128 (4) −0.007 (3) 0.026 (3) −0.015 (3)
C20 0.085 (3) 0.138 (4) 0.151 (5) 0.009 (3) 0.035 (3) −0.007 (4)
C23 0.077 (3) 0.161 (5) 0.166 (5) 0.012 (3) 0.028 (3) 0.015 (4)
C21 0.076 (3) 0.160 (5) 0.154 (5) 0.011 (3) 0.022 (3) 0.013 (4)
C22 0.091 (4) 0.171 (5) 0.154 (5) 0.020 (4) 0.036 (4) 0.003 (4)

Geometric parameters (Å, º)

C25—C26 1.429 (8) C9—C11 1.499 (5)
C25—C24 1.460 (8) O3—C11 1.212 (4)
C25—H25A 0.9900 C6—C7 1.381 (5)
C25—H25B 0.9900 C6—H6 0.9500
C24—C23 1.451 (7) C7—H7 0.9500
C24—H24A 0.9900 C12—C17 1.365 (5)
C24—H24B 0.9900 C12—C13 1.375 (5)
C2—C3 1.379 (5) C17—C16 1.394 (5)
C2—C7 1.404 (5) C17—H17 0.9500
C2—C1 1.506 (6) C15—C14 1.375 (6)
C1—F3A 1.234 (17) C15—C16 1.380 (6)
C1—F1A 1.300 (18) C15—O5 1.387 (5)
C1—F2A 1.30 (2) C16—H16 0.9500
C1—F2 1.323 (11) O5—C18 1.417 (5)
C1—F1 1.329 (9) C13—C14 1.385 (6)
C1—F3 1.332 (9) C13—H13 0.9500
C27—C26 1.426 (9) C14—H14 0.9500
C27—H27A 0.9800 C19—C20 1.481 (7)
C27—H27B 0.9800 C19—C18 1.505 (6)
C27—H27C 0.9800 C19—H19A 0.9900
C26—H26A 0.9900 C19—H19B 0.9900
C26—H26B 0.9900 C18—H18A 0.9900
O1—C4 1.376 (4) C18—H18B 0.9900
O1—C8 1.396 (4) C20—C21 1.502 (7)
O4—C11 1.349 (4) C20—H20A 0.9900
O4—C12 1.425 (4) C20—H20B 0.9900
C10—C9 1.339 (5) C23—C22 1.482 (7)
C10—C5 1.438 (5) C23—H23A 0.9900
C10—H10 0.9500 C23—H23B 0.9900
C5—C4 1.397 (4) C21—C22 1.458 (7)
C5—C6 1.412 (5) C21—H21A 0.9900
O2—C8 1.206 (4) C21—H21B 0.9900
C3—C4 1.392 (5) C22—H22A 0.9900
C3—H3 0.9500 C22—H22B 0.9900
C8—C9 1.469 (4)
C26—C25—C24 123.3 (7) C10—C9—C11 117.2 (3)
C26—C25—H25A 106.5 C8—C9—C11 122.3 (3)
C24—C25—H25A 106.5 C7—C6—C5 121.2 (4)
C26—C25—H25B 106.5 C7—C6—H6 119.4
C24—C25—H25B 106.5 C5—C6—H6 119.4
H25A—C25—H25B 106.5 O3—C11—O4 122.8 (3)
C23—C24—C25 123.7 (6) O3—C11—C9 123.3 (3)
C23—C24—H24A 106.4 O4—C11—C9 113.9 (3)
C25—C24—H24A 106.4 C6—C7—C2 119.4 (4)
C23—C24—H24B 106.4 C6—C7—H7 120.3
C25—C24—H24B 106.4 C2—C7—H7 120.3
H24A—C24—H24B 106.5 C17—C12—C13 119.6 (4)
C3—C2—C7 120.4 (4) C17—C12—O4 120.8 (3)
C3—C2—C1 120.6 (4) C13—C12—O4 119.6 (4)
C7—C2—C1 119.0 (4) C12—C17—C16 120.8 (4)
F3A—C1—F1A 104.7 (15) C12—C17—H17 119.6
F3A—C1—F2A 104.9 (19) C16—C17—H17 119.6
F1A—C1—F2A 100.8 (14) C14—C15—C16 119.4 (4)
F3A—C1—F2 130.3 (12) C14—C15—O5 115.4 (4)
F1A—C1—F2 60.1 (18) C16—C15—O5 125.2 (4)
F2A—C1—F2 44.9 (18) C15—C16—C17 119.5 (4)
F3A—C1—F1 50 (3) C15—C16—H16 120.2
F1A—C1—F1 135.3 (10) C17—C16—H16 120.2
F2A—C1—F1 63 (2) C15—O5—C18 120.6 (4)
F2—C1—F1 105.6 (10) C12—C13—C14 120.1 (4)
F3A—C1—F3 58 (3) C12—C13—H13 120.0
F1A—C1—F3 51 (2) C14—C13—H13 120.0
F2A—C1—F3 129.4 (10) C15—C14—C13 120.6 (4)
F2—C1—F3 106.4 (8) C15—C14—H14 119.7
F1—C1—F3 105.3 (7) C13—C14—H14 119.7
F3A—C1—C2 117.1 (10) C20—C19—C18 116.3 (5)
F1A—C1—C2 111.8 (10) C20—C19—H19A 108.2
F2A—C1—C2 115.8 (9) C18—C19—H19A 108.2
F2—C1—C2 112.2 (6) C20—C19—H19B 108.2
F1—C1—C2 112.7 (5) C18—C19—H19B 108.2
F3—C1—C2 113.9 (6) H19A—C19—H19B 107.4
C26—C27—H27A 109.5 O5—C18—C19 108.5 (4)
C26—C27—H27B 109.5 O5—C18—H18A 110.0
H27A—C27—H27B 109.5 C19—C18—H18A 110.0
C26—C27—H27C 109.5 O5—C18—H18B 110.0
H27A—C27—H27C 109.5 C19—C18—H18B 110.0
H27B—C27—H27C 109.5 H18A—C18—H18B 108.4
C27—C26—C25 125.2 (8) C19—C20—C21 116.8 (5)
C27—C26—H26A 106.0 C19—C20—H20A 108.1
C25—C26—H26A 106.0 C21—C20—H20A 108.1
C27—C26—H26B 106.0 C19—C20—H20B 108.1
C25—C26—H26B 106.0 C21—C20—H20B 108.1
H26A—C26—H26B 106.3 H20A—C20—H20B 107.3
C4—O1—C8 122.6 (3) C24—C23—C22 122.6 (5)
C11—O4—C12 115.6 (3) C24—C23—H23A 106.7
C9—C10—C5 122.1 (3) C22—C23—H23A 106.7
C9—C10—H10 119.0 C24—C23—H23B 106.7
C5—C10—H10 119.0 C22—C23—H23B 106.7
C4—C5—C6 118.0 (3) H23A—C23—H23B 106.6
C4—C5—C10 117.5 (3) C22—C21—C20 120.2 (5)
C6—C5—C10 124.5 (3) C22—C21—H21A 107.3
C2—C3—C4 119.9 (3) C20—C21—H21A 107.3
C2—C3—H3 120.0 C22—C21—H21B 107.3
C4—C3—H3 120.0 C20—C21—H21B 107.3
O2—C8—O1 116.8 (3) H21A—C21—H21B 106.9
O2—C8—C9 126.7 (3) C21—C22—C23 120.6 (5)
O1—C8—C9 116.4 (3) C21—C22—H22A 107.2
O1—C4—C3 118.0 (3) C23—C22—H22A 107.2
O1—C4—C5 120.9 (3) C21—C22—H22B 107.2
C3—C4—C5 121.1 (4) C23—C22—H22B 107.2
C10—C9—C8 120.4 (3) H22A—C22—H22B 106.8

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C2–C7 and C12–C17 rings respectively.

D—H···A D—H H···A D···A D—H···A
C10—H10···O3i 0.95 2.56 3.396 (5) 146
C27—H27C···F1ii 0.98 2.52 3.432 (13) 154
C6—H6···Cg2i 0.95 3.09 3.899 144
C16—H16···Cg2iii 0.95 3.33 4.120 142
C3—H3···Cg1iv 0.95 3.43 4.325 163

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, −y+3/2, z−1/2; (iii) x, −y+3/2, z−1/2; (iv) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5309).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Hejchman, E. B., Konc, J. T., Maciejewska, D. & Kruszewska, H. (2011). Synth. Commun. 41, 2392–2402.
  6. Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2005). J. Med. Chem. 48, 6400–6408. [DOI] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Mahadevan, K. M., Harish Kumar, H. N., Masagalli, J. N. & Srinivasa, H. T. (2013). Mol. Cryst. Liq. Cryst. 570, 20–35.
  9. Palakshamurthy, B. S., Sreenivasa, S., Srinivasa, H. T., Roopashree, K. R. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o212. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813008222/sj5309sup1.cif

e-69-0o621-sup1.cif (31.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813008222/sj5309Isup2.hkl

e-69-0o621-Isup2.hkl (217.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813008222/sj5309Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES