Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1988 Aug;8(8):3311–3315. doi: 10.1128/mcb.8.8.3311

Effect of mitochondrial protein synthesis inhibitors on erythroid differentiation of mouse erythroleukemia (Friend) cells.

T Kaneko 1, T Watanabe 1, M Oishi 1
PMCID: PMC363565  PMID: 3211144

Abstract

When mouse erythroleukemia (MEL) cells were incubated in the presence of chloramphenicol (a specific inhibitor for mitochondrial protein synthesis) during the early stage of in vitro erythroid differentiation, the number of induced erythroid cells was greatly reduced. By use of cell fusion between two genetically marked MEL cells, this finding was further investigated. We found that the drug, along with other agents which inhibit mitochondrial protein synthesis, blocked the induction and turnover of the DMSO-inducible intracellular-erythroid-inducing activity (differentiation-inducing factor II) in a manner similar to that of cycloheximide, an inhibitor for nuclear protein synthesis. The inhibitory effect was confirmed by directly assaying differentiation-inducing factor II in the cell extracts. These results strongly suggest that mitochondrial protein synthesis is closely associated with in vitro erythroid differentiation of MEL cells.

Full text

PDF
3311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Friend C., Patuleia M. C., De Harven E. Erythrocytic maturation in vitro of murine (Friend) virus-induced leukemic cells. Natl Cancer Inst Monogr. 1966 Sep;22:505–522. [PubMed] [Google Scholar]
  2. Friend C., Scher W., Holland J. G., Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971 Feb;68(2):378–382. doi: 10.1073/pnas.68.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gusella J., Geller R., Clarke B., Weeks V., Housman D. Commitment to erythroid differentiation by friend erythroleukemia cells: a stochastic analysis. Cell. 1976 Oct;9(2):221–229. doi: 10.1016/0092-8674(76)90113-6. [DOI] [PubMed] [Google Scholar]
  4. Kaneko T., Nomura S., Oishi M. Early events leading to erythroid differentiation in mouse Friend cells revealed by cell fusion experiments. Cancer Res. 1984 May;44(5):1756–1760. [PubMed] [Google Scholar]
  5. Leder A., Leder P. Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell. 1975 Jul;5(3):319–322. doi: 10.1016/0092-8674(75)90107-5. [DOI] [PubMed] [Google Scholar]
  6. Lindahl K. F., Hausmann B., Robinson P. J., Guénet J. L., Wharton D. C., Winking H. Mta, the maternally transmitted antigen, is determined jointly by the chromosomal Hmt and the extrachromosomal Mtf genes. J Exp Med. 1986 Feb 1;163(2):334–346. doi: 10.1084/jem.163.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nomura S., Kamiya T., Oishi M. A procedure to introduce protein molecules into living mammalian cells. Exp Cell Res. 1986 Apr;163(2):434–444. doi: 10.1016/0014-4827(86)90074-1. [DOI] [PubMed] [Google Scholar]
  8. Nomura S., Oishi M. Indirect induction of erythroid differentiation in mouse Friend cells: evidence for two intracellular reactions involved in the differentiation. Proc Natl Acad Sci U S A. 1983 Jan;80(1):210–214. doi: 10.1073/pnas.80.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nomura S., Yamagoe S., Kamiya T., Oishi M. An intracellular factor that induces erythroid differentiation in mouse erythroleukemia (Friend) cells. Cell. 1986 Feb 28;44(4):663–669. doi: 10.1016/0092-8674(86)90275-8. [DOI] [PubMed] [Google Scholar]
  10. Orkin S. H., Harosi F. I., Leder P. Differentiation in erythroleukemic cells and their somatic hybrids. Proc Natl Acad Sci U S A. 1975 Jan;72(1):98–102. doi: 10.1073/pnas.72.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pontecorvo G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell Genet. 1975 Oct;1(4):397–400. doi: 10.1007/BF01538671. [DOI] [PubMed] [Google Scholar]
  12. Reuben R. C., Wife R. L., Breslow R., Rifkind R. A., Marks P. A. A new group of potent inducers of differentiation in murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1976 Mar;73(3):862–866. doi: 10.1073/pnas.73.3.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Takahashi E., Yamada M., Saito M., Kuboyama M., Ogasa K. Differentiation of cultured Friend leukemia cells induced by short-chain fatty acids. Gan. 1975 Oct;66(5):577–580. [PubMed] [Google Scholar]
  14. Watanabe T., Nomura S., Oishi M. Induction of erythroid differentiation by cytoplast fusion in mouse erythroleukemia (Friend) cells. Exp Cell Res. 1985 Jul;159(1):224–234. doi: 10.1016/s0014-4827(85)80051-3. [DOI] [PubMed] [Google Scholar]
  15. Watanabe T., Oishi M. Dimethyl sulfoxide-inducible cytoplasmic factor involved in erythroid differentiation in mouse erythroleukemia (Friend) cells. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6481–6485. doi: 10.1073/pnas.84.18.6481. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES