Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1993 Oct;13(10):6036–6043. doi: 10.1128/mcb.13.10.6036

Chromosome 7 suppresses indefinite division of nontumorigenic immortalized human fibroblast cell lines KMST-6 and SUSM-1.

T Ogata 1, D Ayusawa 1, M Namba 1, E Takahashi 1, M Oshimura 1, M Oishi 1
PMCID: PMC364663  PMID: 8105370

Abstract

Using nontumorigenic immortalized human cell lines KMST-6 (KMST) and SUSM-1 (SUSM), we attempted to identify the chromosome that carries a putative senescence-related gene(s). These cell lines are the only ones that have been established independently from normal human diploid fibroblasts following in vitro mutagenesis. We first examined restriction fragment length polymorphisms on each chromosome of these immortalized cell lines and their parental cell lines and found specific chromosomal alterations common to these cell lines (a loss of heterozygosity in KMST and a deletion in SUSM) on the long arm of chromosome 7. In addition to these, we also found that introduction of chromosome 7 into these cell lines by means of microcell fusion resulted in the cessation of cell division, giving rise to cells resembling cells in senescence. Introduction of other chromosomes, such as chromosomes 1 and 11, on which losses of heterozygosity were also detected in one of the cell lines (KMST), to either KMST or SUSM cells or of chromosome 7 to several tumor-derived cell lines had no effect on their division potential. These results strongly suggest that a gene(s) affecting limited-division potential or senescence of normal human fibroblasts is located on chromosome 7, probably at the long arm of the chromosome, representing the first case in which a specific chromosome reverses the immortal phenotype of otherwise normal human cell lines.

Full text

PDF
6036

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader S. A., Fasching C., Brodeur G. M., Stanbridge E. J. Dissociation of suppression of tumorigenicity and differentiation in vitro effected by transfer of single human chromosomes into human neuroblastoma cells. Cell Growth Differ. 1991 May;2(5):245–255. [PubMed] [Google Scholar]
  2. Bunn C. L., Tarrant G. M. Limited lifespan in somatic cell hybrids and cybrids. Exp Cell Res. 1980 Jun;127(2):385–396. doi: 10.1016/0014-4827(80)90443-7. [DOI] [PubMed] [Google Scholar]
  3. Chang S. E. In vitro transformation of human epithelial cells. Biochim Biophys Acta. 1986;823(3):161–194. doi: 10.1016/0304-419x(86)90001-6. [DOI] [PubMed] [Google Scholar]
  4. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  5. Hurlin P. J., Kaur P., Smith P. P., Perez-Reyes N., Blanton R. A., McDougall J. K. Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):570–574. doi: 10.1073/pnas.88.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ide T., Tsuji Y., Nakashima T., Ishibashi S. Progress of aging in human diploid cells transformed with a tsA mutant of simian virus 40. Exp Cell Res. 1984 Feb;150(2):321–328. doi: 10.1016/0014-4827(84)90575-5. [DOI] [PubMed] [Google Scholar]
  7. Junien C., McBride O. W. Report of the committee on the genetic constitution of chromosome 11. Cytogenet Cell Genet. 1989;51(1-4):226–258. doi: 10.1159/000132793. [DOI] [PubMed] [Google Scholar]
  8. Kaneda S., Nalbantoglu J., Takeishi K., Shimizu K., Gotoh O., Seno T., Ayusawa D. Structural and functional analysis of the human thymidylate synthase gene. J Biol Chem. 1990 Nov 25;265(33):20277–20284. [PubMed] [Google Scholar]
  9. Koi M., Shimizu M., Morita H., Yamada H., Oshimura M. Construction of mouse A9 clones containing a single human chromosome tagged with neomycin-resistance gene via microcell fusion. Jpn J Cancer Res. 1989 May;80(5):413–418. doi: 10.1111/j.1349-7006.1989.tb02329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lathrop G. M., O'Connell P., Leppert M., Nakamura Y., Farrall M., Tsui L. C., Lalouel J. M., White R. Twenty-five loci form a continuous linkage map of markers for human chromosome 7. Genomics. 1989 Nov;5(4):866–873. doi: 10.1016/0888-7543(89)90128-6. [DOI] [PubMed] [Google Scholar]
  11. Loh W. E., Jr, Scrable H. J., Livanos E., Arboleda M. J., Cavenee W. K., Oshimura M., Weissman B. E. Human chromosome 11 contains two different growth suppressor genes for embryonal rhabdomyosarcoma. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1755–1759. doi: 10.1073/pnas.89.5.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Namba M., Nishitani K., Fukushima F., Kimoto T. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes. Anticancer Res. 1988 Sep-Oct;8(5A):947–958. [PubMed] [Google Scholar]
  13. Namba M., Nishitani K., Hyodoh F., Fukushima F., Kimoto T. Neoplastic transformation of human diploid fibroblasts (KMST-6) by treatment with 60Co gamma rays. Int J Cancer. 1985 Feb 15;35(2):275–280. doi: 10.1002/ijc.2910350221. [DOI] [PubMed] [Google Scholar]
  14. Neufeld D. S., Ripley S., Henderson A., Ozer H. L. Immortalization of human fibroblasts transformed by origin-defective simian virus 40. Mol Cell Biol. 1987 Aug;7(8):2794–2802. doi: 10.1128/mcb.7.8.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ning Y., Weber J. L., Killary A. M., Ledbetter D. H., Smith J. R., Pereira-Smith O. M. Genetic analysis of indefinite division in human cells: evidence for a cell senescence-related gene(s) on human chromosome 4. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5635–5639. doi: 10.1073/pnas.88.13.5635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Brien W., Stenman G., Sager R. Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8659–8663. doi: 10.1073/pnas.83.22.8659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pereira-Smith O. M., Smith J. R. Evidence for the recessive nature of cellular immortality. Science. 1983 Sep 2;221(4614):964–966. doi: 10.1126/science.6879195. [DOI] [PubMed] [Google Scholar]
  18. Pereira-Smith O. M., Smith J. R. Expression of SV40 T antigen in finite life-span hybrids of normal and SV40-transformed fibroblasts. Somatic Cell Genet. 1981 Jul;7(4):411–421. doi: 10.1007/BF01542986. [DOI] [PubMed] [Google Scholar]
  19. Pereira-Smith O. M., Smith J. R. Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6042–6046. doi: 10.1073/pnas.85.16.6042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rommens J. M., Zengerling S., Burns J., Melmer G., Kerem B. S., Plavsic N., Zsiga M., Kennedy D., Markiewicz D., Rozmahel R. Identification and regional localization of DNA markers on chromosome 7 for the cloning of the cystic fibrosis gene. Am J Hum Genet. 1988 Nov;43(5):645–663. [PMC free article] [PubMed] [Google Scholar]
  21. Sager R. Tumor suppressor genes: the puzzle and the promise. Science. 1989 Dec 15;246(4936):1406–1412. doi: 10.1126/science.2574499. [DOI] [PubMed] [Google Scholar]
  22. Shay J. W., Wright W. E. Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T-antigen. Exp Cell Res. 1989 Sep;184(1):109–118. doi: 10.1016/0014-4827(89)90369-8. [DOI] [PubMed] [Google Scholar]
  23. Stampfer M. R., Bartley J. C. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2394–2398. doi: 10.1073/pnas.82.8.2394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stanbridge E. J. Human tumor suppressor genes. Annu Rev Genet. 1990;24:615–657. doi: 10.1146/annurev.ge.24.120190.003151. [DOI] [PubMed] [Google Scholar]
  25. Sugawara O., Oshimura M., Koi M., Annab L. A., Barrett J. C. Induction of cellular senescence in immortalized cells by human chromosome 1. Science. 1990 Feb 9;247(4943):707–710. doi: 10.1126/science.2300822. [DOI] [PubMed] [Google Scholar]
  26. Takahashi E., Ayusawa D., Kaneda S., Itoh Y., Seno T., Hori T. The human ubiquitin-activating enzyme E1 gene (UBE1) mapped to band Xp11.3----p11.23 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1992;59(4):268–269. doi: 10.1159/000133266. [DOI] [PubMed] [Google Scholar]
  27. Tuynder M., Godfrine S., Cornelis J. J., Rommelaere J. Dose-dependent induction of resistance to terminal differentiation in x-irradiated cultures of normal human keratinocytes. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2638–2642. doi: 10.1073/pnas.88.7.2638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weber J. L., Kwitek A. E., May P. E. Dinucleotide repeat polymorphisms at the D7S435 and D7S440 loci. Nucleic Acids Res. 1990 Jul 11;18(13):4039–4039. doi: 10.1093/nar/18.13.4039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  30. Yamada H., Wake N., Fujimoto S., Barrett J. C., Oshimura M. Multiple chromosomes carrying tumor suppressor activity for a uterine endometrial carcinoma cell line identified by microcell-mediated chromosome transfer. Oncogene. 1990 Aug;5(8):1141–1147. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES