Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 13;69(Pt 5):m255–m256. doi: 10.1107/S1600536813009203

catena-Poly[[(1,10-phenanthroline-κ2 N,N′)copper(II)]-μ-2,2′-iminodibenzoato-κ4 O,O′:O′′,O′′′]

Consuelo Yuste-Vivas a,*, Joana T Coutinho b, Laura C J Pereira b, Manuela Ramos Silva a
PMCID: PMC3647802  PMID: 23723768

Abstract

The structure of the title compound, [Cu(C14H9NO4)(C12H8N2)]n, consists of zigzag polymeric chains along the c axis. The asymmetric unit contains one CuII atom which is coordinated by one 2,2′-imino­dibenzoate ligand and a one phenanthroline unit. Two intra­molecular N—H⋯O hydrogen bonds occur. The supra­molecular structure is characterized by weak C—H⋯O hydrogen bonds and π–π stacking inter­actions, forming a three-dimensional supramolecular network. The shortest centroid–centroid distances between neighbouring phenanthroline aromatic rings and 2,2′-imino­dibenzoate rings are 3.684 (1) and 3.640 Å, respectively. The shortest intra­chain Cu⋯Cu distance is 7.2885 (9) and the shortest Cu⋯Cu distance between Cu atoms in different chains is 7.1103 (6) Å.

Related literature  

For general background to CuII low-dimensional polynuclear magnetic materials, see: Fabelo et al. (2009); Martins et al. (2008a ,b ); Silva et al. (2001); Yuste et al. (2007, 2008). For structural and coordination information for 2,2′-iminodi­benzoic acid, see: Field & Venkataraman (2002); Gao et al. (2009); Lin et al. (2006).graphic file with name e-69-0m255-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C14H9NO4)(C12H8N2)]

  • M r = 498.98

  • Monoclinic, Inline graphic

  • a = 31.7536 (6) Å

  • b = 9.8492 (2) Å

  • c = 14.4865 (3) Å

  • β = 113.222 (1)°

  • V = 4163.56 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.1 × 0.08 × 0.07 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.898, T max = 0.971

  • 36778 measured reflections

  • 3976 independent reflections

  • 2900 reflections with I > 2σ(I)

  • R int = 0.061

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.089

  • S = 1.02

  • 3976 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009203/bt6890sup1.cif

e-69-0m255-sup1.cif (32.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009203/bt6890Isup2.hkl

e-69-0m255-Isup2.hkl (191KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.07 2.708 (5) 131
N1—H1⋯O3 0.86 2.06 2.701 (5) 130
C17—H17⋯O2i 0.93 2.55 3.308 (4) 139
C23—H23⋯O3ii 0.93 2.38 3.185 (4) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Fundo Europeu de Desenvolvimento Regional-QREN-Compete through projects PTDC/FIS/102284/2008 and PEst-C/FIS/UI0036/2011 – Fundação para a Ciência e Tecnologia (FCT).

supplementary crystallographic information

Comment

This work is part of a project of synthesizing low dimensional polynuclear magnetic materials with Copper(II) and oxygen-donors bridging ligands (Fabelo et al., 2009; Martins et al., 2008a; Martins et al., 2008b; Silva et al., 2001; Yuste et al., 2007, 2008).

The target of this work is the use of an aromatic dicarboxylic acid, such as the 2,2'-iminodibenzoic acid, (H2IDC) and another quelate, known as ''coligand'' that will block some coordination positions of the Copper(II) metal ion, modulating the dimensionality of the resulting compound. (Gao et al., 2009; Lin et al., 2006; Yuste et al., 2008).

The structure of this compound consists of neutral chains of formula [Cu(C14H9NO4)(C12H8N2)]n, growing along the c-axis, in a zigzag mode, where the 2,2'-iminodibenzoate (IDC2-) units act as linkers between two Cu(II) ions, in a bis-bidentate mode, and the phenanthroline molecules are placed out-of-chain. The whole compound adopts a three dimensional supramolecular structure by weak π-π stacking. The shortest intra- and interchain copper···copper distances are 7.2885 (9) Å [Cu1···Cu1i; (i) = x, 1 - y, -1/2 + z] and 7.1103 (6) Å [Cu1···Cu1v; (v) = 1/2 - x, 1/2 - y, 1 - z], respectively.

The Copper(II) ion shows a distorted octahedral environment, CuN2O4, due to the Jahn-Teller effect. The equatorial positions are occupied by the two nitrogen atoms from the phenanthroline ligand, [N1 and N2], and two oxygen atoms [O1 and O4], from two different carboxylate units of the IDC2- ligand, varying the distances in a very narrow range of [1.940–2.026 Å]. Another two oxygen atoms [O2 and O3], with bond length values 2.618 (2) and 2.438 (3) Å respectively, are placed in the axial positions. The 2,2'-iminodibenzoate links two neighboring Copper(II) metal ions, being the bite angle 55.19 (11)° [O1—Cu1—O2] and 58.92 (11)° [O3—Cu1ii—O4]. [(ii) = x, -y, -1/2 + z]. The ligand is not planar, with a maximum deviation of 1.472 (5) Å for C10 from the mean plane, being the dihedral angle between the two aromatic rings 52.25 (3)°, which is greater than those already reported (Field et al., 2002; Gao et al., 2009).

Intramolecular hydrogen bond interactions exist inside the 2,2'-iminodibenzoate unit between the nitrogen atom [N1] from the amino group and two oxygen atoms [O2 and O3] from the carboxylate groups. The intermolecular π-π stacking interaction exists in between two aromatic rings of two neighbor phenantrolines and also between the aromatic rings of two neighbor 2,2'-iminodibenzoate moieties. These weak π-π interactions, stabilize the crystal structure of the complex. The shortest distances 'centroid-to-centroid' between neighbor aromatic ring of two phenantrolines and two neighbor 2,2'-iminodibenzoate are 3.684 (1) and 3.640 Å respectively.

Experimental

All the reagents, phenanthroline, 2,2'-Iminodibenzoic acid, and the metallic salt Cu(NO3)2.3H2O, were purchased from commercial sources and used as received with no further purifications.

An aqueous solution containing Cu(NO3)2.3H2O (1 mmol, 0.0242 g), Iminodibenzoic acid (1 mmol, 0.0257 g) and phenanthroline, ((2 mmol, 0.0361 g), was stirred during 30 minutes and placed in a 25 mL Teflon-lined autoclave and then heated at 120°C during 48 h. Dark green crystals were obtained by filtration, washed with water and dried in air. Ca. 36% yield based on Cu.

Refinement

All H atoms could be located in a difference Fourier synthesis but were placed in calculated positions and refined as riding on their parent atoms, using SHELXL (Sheldrick, 2008) defaults.

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) x, 1 - y, 1/2 - z; (ii) x, 1 - y, 1/2 + z.]

Fig. 2.

Fig. 2.

: View of the crystal packing of the title compound, projected along c.

Fig. 3.

Fig. 3.

: A view showing part of the three-dimensional supramolecular network linked by weak π-π stacking interactions (yellow dotted lines).

Crystal data

[Cu(C14H9NO4)(C12H8N2)] F(000) = 2040
Mr = 498.98 Dx = 1.592 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6606 reflections
a = 31.7536 (6) Å θ = 2.2–20.8°
b = 9.8492 (2) Å µ = 1.09 mm1
c = 14.4865 (3) Å T = 293 K
β = 113.222 (1)° Blocks, green
V = 4163.56 (14) Å3 0.1 × 0.08 × 0.07 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer 3976 independent reflections
Radiation source: fine-focus sealed tube 2900 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.061
φ and ω scans θmax = 25.8°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −38→38
Tmin = 0.898, Tmax = 0.971 k = −12→12
36778 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.037P)2 + 5.032P] where P = (Fo2 + 2Fc2)/3
3976 reflections (Δ/σ)max < 0.001
307 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.172485 (11) 0.45882 (4) 0.30778 (3) 0.03710 (12)
N1 0.07823 (8) 0.7287 (3) 0.46195 (18) 0.0466 (6)
H1 0.1021 0.6781 0.4882 0.056*
N2 0.20508 (7) 0.2788 (2) 0.35164 (16) 0.0361 (5)
N3 0.23714 (7) 0.5223 (2) 0.34707 (17) 0.0370 (5)
O4 0.11136 (6) 0.6223 (2) 0.75794 (15) 0.0448 (5)
O1 0.14757 (7) 0.6413 (2) 0.27927 (16) 0.0479 (5)
O2 0.14659 (7) 0.6025 (2) 0.42821 (15) 0.0495 (5)
O3 0.13160 (6) 0.5939 (2) 0.63028 (15) 0.0441 (5)
C1 0.13485 (9) 0.6710 (3) 0.3501 (2) 0.0387 (7)
C2 0.10555 (8) 0.7946 (3) 0.3344 (2) 0.0361 (7)
C3 0.10490 (9) 0.8884 (3) 0.2622 (2) 0.0444 (7)
H3 0.1217 0.8703 0.2237 0.053*
C4 0.08029 (11) 1.0071 (3) 0.2458 (3) 0.0539 (9)
H4 0.0798 1.0670 0.1957 0.065*
C5 0.05662 (10) 1.0354 (3) 0.3043 (3) 0.0560 (9)
H5 0.0414 1.1179 0.2967 0.067*
C6 0.05500 (10) 0.9437 (3) 0.3744 (3) 0.0528 (8)
H6 0.0379 0.9641 0.4120 0.063*
C7 0.07871 (9) 0.8197 (3) 0.3902 (2) 0.0384 (7)
C8 0.04358 (9) 0.7090 (3) 0.4972 (2) 0.0414 (7)
C9 −0.00235 (10) 0.7313 (4) 0.4351 (3) 0.0537 (9)
H9 −0.0099 0.7659 0.3708 0.064*
C10 −0.03645 (10) 0.7024 (4) 0.4680 (3) 0.0603 (10)
H10 −0.0669 0.7152 0.4249 0.072*
C11 −0.02635 (10) 0.6550 (4) 0.5636 (3) 0.0605 (10)
H11 −0.0497 0.6372 0.5855 0.073*
C12 0.01899 (10) 0.6343 (3) 0.6269 (3) 0.0492 (8)
H12 0.0262 0.6032 0.6919 0.059*
C13 0.05402 (9) 0.6595 (3) 0.5942 (2) 0.0383 (7)
C14 0.10206 (9) 0.6238 (3) 0.6641 (2) 0.0381 (7)
C15 0.18760 (10) 0.1574 (3) 0.3531 (2) 0.0440 (7)
H15 0.1561 0.1494 0.3341 0.053*
C16 0.21466 (11) 0.0407 (3) 0.3820 (2) 0.0502 (8)
H16 0.2012 −0.0432 0.3822 0.060*
C17 0.26097 (11) 0.0504 (3) 0.4102 (2) 0.0500 (8)
H17 0.2793 −0.0266 0.4299 0.060*
C18 0.28067 (10) 0.1772 (3) 0.4090 (2) 0.0421 (7)
C19 0.32883 (10) 0.2002 (4) 0.4383 (2) 0.0519 (8)
H19 0.3491 0.1273 0.4580 0.062*
C20 0.34496 (10) 0.3263 (4) 0.4376 (2) 0.0515 (8)
H20 0.3764 0.3388 0.4582 0.062*
C21 0.31555 (9) 0.4409 (3) 0.4063 (2) 0.0409 (7)
C22 0.32977 (11) 0.5755 (4) 0.4042 (2) 0.0516 (9)
H22 0.3607 0.5948 0.4229 0.062*
C23 0.29850 (11) 0.6773 (3) 0.3750 (2) 0.0523 (8)
H23 0.3080 0.7664 0.3737 0.063*
C24 0.25214 (10) 0.6482 (3) 0.3469 (2) 0.0454 (7)
H24 0.2311 0.7190 0.3274 0.055*
C25 0.26837 (9) 0.4207 (3) 0.3767 (2) 0.0357 (6)
C26 0.25100 (9) 0.2879 (3) 0.3789 (2) 0.0351 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03325 (18) 0.0380 (2) 0.0386 (2) 0.00164 (16) 0.01251 (14) −0.00015 (17)
N1 0.0341 (13) 0.0582 (17) 0.0465 (16) 0.0182 (12) 0.0148 (11) 0.0099 (13)
N2 0.0334 (12) 0.0379 (14) 0.0331 (13) −0.0015 (10) 0.0091 (10) −0.0031 (11)
N3 0.0373 (12) 0.0364 (14) 0.0364 (13) −0.0009 (11) 0.0137 (10) −0.0022 (11)
O4 0.0373 (10) 0.0534 (13) 0.0395 (12) 0.0011 (10) 0.0106 (9) −0.0050 (10)
O1 0.0541 (12) 0.0437 (12) 0.0529 (13) 0.0095 (10) 0.0286 (11) 0.0050 (11)
O2 0.0522 (12) 0.0514 (13) 0.0428 (13) 0.0222 (10) 0.0166 (10) 0.0085 (11)
O3 0.0325 (10) 0.0517 (13) 0.0484 (13) 0.0064 (9) 0.0162 (9) 0.0097 (10)
C1 0.0311 (14) 0.0354 (16) 0.0434 (18) 0.0016 (12) 0.0081 (13) −0.0023 (14)
C2 0.0276 (13) 0.0328 (16) 0.0384 (16) 0.0010 (11) 0.0029 (12) −0.0023 (13)
C3 0.0379 (15) 0.0434 (18) 0.0443 (18) −0.0045 (14) 0.0081 (13) −0.0003 (15)
C4 0.0439 (17) 0.0402 (18) 0.063 (2) −0.0025 (14) 0.0055 (16) 0.0098 (16)
C5 0.0418 (17) 0.0348 (18) 0.071 (2) 0.0068 (15) −0.0001 (16) 0.0034 (18)
C6 0.0398 (16) 0.051 (2) 0.059 (2) 0.0143 (15) 0.0105 (15) −0.0053 (17)
C7 0.0285 (14) 0.0407 (17) 0.0370 (17) 0.0064 (12) 0.0033 (12) 0.0004 (14)
C8 0.0330 (15) 0.0418 (17) 0.0445 (18) 0.0066 (13) 0.0101 (13) −0.0051 (14)
C9 0.0355 (16) 0.067 (2) 0.052 (2) 0.0124 (15) 0.0096 (14) −0.0008 (17)
C10 0.0299 (16) 0.072 (3) 0.069 (3) 0.0086 (16) 0.0089 (16) −0.005 (2)
C11 0.0356 (17) 0.068 (2) 0.083 (3) −0.0017 (16) 0.0282 (17) −0.006 (2)
C12 0.0401 (16) 0.052 (2) 0.056 (2) −0.0007 (15) 0.0197 (15) −0.0052 (16)
C13 0.0289 (14) 0.0340 (16) 0.0484 (18) 0.0012 (12) 0.0113 (12) −0.0069 (14)
C14 0.0334 (15) 0.0320 (16) 0.0460 (19) −0.0047 (12) 0.0125 (13) −0.0006 (14)
C15 0.0420 (16) 0.0425 (19) 0.0415 (18) −0.0063 (14) 0.0100 (13) −0.0033 (14)
C16 0.064 (2) 0.0330 (17) 0.0458 (18) −0.0072 (16) 0.0138 (15) −0.0010 (15)
C17 0.060 (2) 0.0400 (18) 0.0423 (18) 0.0115 (16) 0.0119 (15) −0.0002 (15)
C18 0.0449 (16) 0.0439 (18) 0.0341 (17) 0.0076 (14) 0.0120 (13) −0.0006 (14)
C19 0.0391 (17) 0.064 (2) 0.050 (2) 0.0151 (16) 0.0141 (14) 0.0007 (17)
C20 0.0322 (15) 0.073 (2) 0.050 (2) 0.0047 (16) 0.0167 (14) −0.0047 (18)
C21 0.0343 (14) 0.056 (2) 0.0358 (16) −0.0040 (14) 0.0170 (12) −0.0041 (15)
C22 0.0399 (17) 0.070 (2) 0.048 (2) −0.0164 (16) 0.0203 (14) −0.0093 (17)
C23 0.060 (2) 0.050 (2) 0.051 (2) −0.0174 (17) 0.0258 (16) −0.0057 (16)
C24 0.0505 (18) 0.0392 (18) 0.0472 (19) −0.0048 (14) 0.0200 (15) −0.0043 (15)
C25 0.0356 (14) 0.0425 (17) 0.0295 (15) −0.0012 (12) 0.0135 (12) −0.0031 (12)
C26 0.0361 (14) 0.0399 (16) 0.0284 (15) 0.0021 (12) 0.0117 (12) −0.0006 (13)

Geometric parameters (Å, º)

Cu1—O1 1.942 (2) C8—C13 1.397 (4)
Cu1—O4i 1.9548 (19) C9—C10 1.375 (4)
Cu1—N3 2.002 (2) C9—H9 0.9300
Cu1—N2 2.025 (2) C10—C11 1.374 (5)
Cu1—O3i 2.4360 (19) C10—H10 0.9300
Cu1—C14i 2.515 (3) C11—C12 1.383 (4)
N1—C7 1.377 (4) C11—H11 0.9300
N1—C8 1.398 (4) C12—C13 1.392 (4)
N1—H1 0.8600 C12—H12 0.9300
N2—C15 1.322 (4) C13—C14 1.503 (4)
N2—C26 1.355 (3) C14—Cu1ii 2.515 (3)
N3—C24 1.329 (4) C15—C16 1.397 (4)
N3—C25 1.354 (3) C15—H15 0.9300
O4—C14 1.272 (3) C16—C17 1.366 (4)
O4—Cu1ii 1.9548 (19) C16—H16 0.9300
O1—C1 1.276 (3) C17—C18 1.399 (4)
O2—C1 1.241 (3) C17—H17 0.9300
O3—C14 1.253 (3) C18—C26 1.393 (4)
O3—Cu1ii 2.4360 (19) C18—C19 1.435 (4)
C1—C2 1.494 (4) C19—C20 1.345 (5)
C2—C3 1.389 (4) C19—H19 0.9300
C2—C7 1.409 (4) C20—C21 1.421 (4)
C3—C4 1.373 (4) C20—H20 0.9300
C3—H3 0.9300 C21—C25 1.400 (4)
C4—C5 1.366 (5) C21—C22 1.404 (4)
C4—H4 0.9300 C22—C23 1.357 (4)
C5—C6 1.374 (5) C22—H22 0.9300
C5—H5 0.9300 C23—C24 1.394 (4)
C6—C7 1.406 (4) C23—H23 0.9300
C6—H6 0.9300 C24—H24 0.9300
C8—C9 1.397 (4) C25—C26 1.425 (4)
O1—Cu1—O4i 92.16 (9) C11—C10—C9 121.2 (3)
O1—Cu1—N3 93.31 (9) C11—C10—H10 119.4
O4i—Cu1—N3 171.94 (9) C9—C10—H10 119.4
O1—Cu1—N2 172.92 (9) C10—C11—C12 119.1 (3)
O4i—Cu1—N2 93.93 (9) C10—C11—H11 120.5
N3—Cu1—N2 81.03 (9) C12—C11—H11 120.5
O1—Cu1—O3i 88.28 (8) C11—C12—C13 120.7 (3)
O4i—Cu1—O3i 58.99 (7) C11—C12—H12 119.6
N3—Cu1—O3i 115.25 (8) C13—C12—H12 119.6
N2—Cu1—O3i 97.95 (8) C12—C13—C8 120.0 (3)
O1—Cu1—C14i 88.22 (9) C12—C13—C14 117.6 (3)
O4i—Cu1—C14i 29.85 (8) C8—C13—C14 122.3 (2)
N3—Cu1—C14i 144.48 (9) O3—C14—O4 121.4 (2)
N2—Cu1—C14i 98.86 (9) O3—C14—C13 120.6 (3)
O3i—Cu1—C14i 29.27 (8) O4—C14—C13 118.0 (2)
C7—N1—C8 127.7 (2) O3—C14—Cu1ii 71.87 (15)
C7—N1—H1 116.1 O4—C14—Cu1ii 49.89 (13)
C8—N1—H1 116.1 C13—C14—Cu1ii 165.6 (2)
C15—N2—C26 117.7 (2) N2—C15—C16 122.5 (3)
C15—N2—Cu1 129.13 (19) N2—C15—H15 118.8
C26—N2—Cu1 113.09 (18) C16—C15—H15 118.8
C24—N3—C25 118.2 (2) C17—C16—C15 119.6 (3)
C24—N3—Cu1 128.2 (2) C17—C16—H16 120.2
C25—N3—Cu1 113.59 (18) C15—C16—H16 120.2
C14—O4—Cu1ii 100.26 (16) C16—C17—C18 119.5 (3)
C1—O1—Cu1 105.80 (18) C16—C17—H17 120.2
C14—O3—Cu1ii 78.86 (16) C18—C17—H17 120.2
O2—C1—O1 122.2 (3) C26—C18—C17 116.8 (3)
O2—C1—C2 121.8 (3) C26—C18—C19 118.6 (3)
O1—C1—C2 116.0 (3) C17—C18—C19 124.5 (3)
C3—C2—C7 118.8 (3) C20—C19—C18 120.5 (3)
C3—C2—C1 118.7 (3) C20—C19—H19 119.7
C7—C2—C1 122.4 (3) C18—C19—H19 119.7
C4—C3—C2 122.4 (3) C19—C20—C21 122.1 (3)
C4—C3—H3 118.8 C19—C20—H20 118.9
C2—C3—H3 118.8 C21—C20—H20 118.9
C5—C4—C3 118.7 (3) C25—C21—C22 116.2 (3)
C5—C4—H4 120.6 C25—C21—C20 118.3 (3)
C3—C4—H4 120.6 C22—C21—C20 125.5 (3)
C4—C5—C6 121.0 (3) C23—C22—C21 120.2 (3)
C4—C5—H5 119.5 C23—C22—H22 119.9
C6—C5—H5 119.5 C21—C22—H22 119.9
C5—C6—C7 121.1 (3) C22—C23—C24 119.8 (3)
C5—C6—H6 119.4 C22—C23—H23 120.1
C7—C6—H6 119.4 C24—C23—H23 120.1
N1—C7—C6 121.6 (3) N3—C24—C23 122.0 (3)
N1—C7—C2 120.6 (2) N3—C24—H24 119.0
C6—C7—C2 117.8 (3) C23—C24—H24 119.0
C9—C8—C13 118.5 (3) N3—C25—C21 123.6 (3)
C9—C8—N1 121.0 (3) N3—C25—C26 116.4 (2)
C13—C8—N1 120.5 (2) C21—C25—C26 120.1 (3)
C10—C9—C8 120.6 (3) N2—C26—C18 123.8 (3)
C10—C9—H9 119.7 N2—C26—C25 115.8 (2)
C8—C9—H9 119.7 C18—C26—C25 120.3 (2)
O1—Cu1—N2—C15 142.7 (7) C11—C12—C13—C14 −175.1 (3)
O4i—Cu1—N2—C15 −6.5 (3) C9—C8—C13—C12 −0.3 (4)
N3—Cu1—N2—C15 179.8 (3) N1—C8—C13—C12 −177.0 (3)
O3i—Cu1—N2—C15 −65.8 (3) C9—C8—C13—C14 175.9 (3)
C14i—Cu1—N2—C15 −36.2 (3) N1—C8—C13—C14 −0.8 (4)
O1—Cu1—N2—C26 −40.2 (8) Cu1ii—O3—C14—O4 6.4 (2)
O4i—Cu1—N2—C26 170.57 (18) Cu1ii—O3—C14—C13 −172.1 (3)
N3—Cu1—N2—C26 −3.10 (18) Cu1ii—O4—C14—O3 −7.9 (3)
O3i—Cu1—N2—C26 111.35 (18) Cu1ii—O4—C14—C13 170.6 (2)
C14i—Cu1—N2—C26 140.93 (18) C12—C13—C14—O3 152.6 (3)
O1—Cu1—N3—C24 −1.7 (3) C8—C13—C14—O3 −23.8 (4)
O4i—Cu1—N3—C24 130.9 (6) C12—C13—C14—O4 −26.0 (4)
N2—Cu1—N3—C24 −177.4 (3) C8—C13—C14—O4 157.7 (3)
O3i—Cu1—N3—C24 88.0 (3) C12—C13—C14—Cu1ii 4.3 (10)
C14i—Cu1—N3—C24 89.9 (3) C8—C13—C14—Cu1ii −172.1 (7)
O1—Cu1—N3—C25 178.62 (19) C26—N2—C15—C16 0.4 (4)
O4i—Cu1—N3—C25 −48.8 (7) Cu1—N2—C15—C16 177.4 (2)
N2—Cu1—N3—C25 2.88 (18) N2—C15—C16—C17 0.0 (5)
O3i—Cu1—N3—C25 −91.73 (19) C15—C16—C17—C18 −0.4 (5)
C14i—Cu1—N3—C25 −89.8 (2) C16—C17—C18—C26 0.3 (4)
O4i—Cu1—O1—C1 77.83 (18) C16—C17—C18—C19 179.0 (3)
N3—Cu1—O1—C1 −108.10 (18) C26—C18—C19—C20 0.6 (5)
N2—Cu1—O1—C1 −71.5 (8) C17—C18—C19—C20 −178.1 (3)
O3i—Cu1—O1—C1 136.70 (18) C18—C19—C20—C21 −1.3 (5)
C14i—Cu1—O1—C1 107.42 (18) C19—C20—C21—C25 0.8 (5)
Cu1—O1—C1—O2 13.4 (3) C19—C20—C21—C22 179.5 (3)
Cu1—O1—C1—C2 −167.57 (18) C25—C21—C22—C23 0.2 (4)
O2—C1—C2—C3 160.8 (3) C20—C21—C22—C23 −178.4 (3)
O1—C1—C2—C3 −18.2 (4) C21—C22—C23—C24 −0.1 (5)
O2—C1—C2—C7 −19.0 (4) C25—N3—C24—C23 0.7 (4)
O1—C1—C2—C7 162.0 (3) Cu1—N3—C24—C23 −179.0 (2)
C7—C2—C3—C4 2.3 (4) C22—C23—C24—N3 −0.4 (5)
C1—C2—C3—C4 −177.5 (3) C24—N3—C25—C21 −0.5 (4)
C2—C3—C4—C5 1.8 (4) Cu1—N3—C25—C21 179.2 (2)
C3—C4—C5—C6 −3.9 (5) C24—N3—C25—C26 178.0 (3)
C4—C5—C6—C7 1.9 (5) Cu1—N3—C25—C26 −2.2 (3)
C8—N1—C7—C6 29.3 (5) C22—C21—C25—N3 0.1 (4)
C8—N1—C7—C2 −154.7 (3) C20—C21—C25—N3 178.8 (3)
C5—C6—C7—N1 178.4 (3) C22—C21—C25—C26 −178.4 (3)
C5—C6—C7—C2 2.3 (4) C20—C21—C25—C26 0.3 (4)
C3—C2—C7—N1 179.6 (2) C15—N2—C26—C18 −0.5 (4)
C1—C2—C7—N1 −0.6 (4) Cu1—N2—C26—C18 −178.0 (2)
C3—C2—C7—C6 −4.2 (4) C15—N2—C26—C25 −179.7 (3)
C1—C2—C7—C6 175.5 (2) Cu1—N2—C26—C25 2.8 (3)
C7—N1—C8—C9 30.5 (5) C17—C18—C26—N2 0.2 (4)
C7—N1—C8—C13 −152.8 (3) C19—C18—C26—N2 −178.6 (3)
C13—C8—C9—C10 −1.3 (5) C17—C18—C26—C25 179.3 (3)
N1—C8—C9—C10 175.4 (3) C19—C18—C26—C25 0.6 (4)
C8—C9—C10—C11 2.0 (5) N3—C25—C26—N2 −0.4 (4)
C9—C10—C11—C12 −1.0 (5) C21—C25—C26—N2 178.2 (2)
C10—C11—C12—C13 −0.7 (5) N3—C25—C26—C18 −179.6 (2)
C11—C12—C13—C8 1.3 (5) C21—C25—C26—C18 −1.0 (4)

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y+1, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 2.07 2.708 (5) 131
N1—H1···O3 0.86 2.06 2.701 (5) 130
C17—H17···O2iii 0.93 2.55 3.308 (4) 139
C23—H23···O3iv 0.93 2.38 3.185 (4) 145

Symmetry codes: (iii) −x+1/2, −y+1/2, −z+1; (iv) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6890).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Winsconsin, USA.
  3. Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Yuste, C., Lloret, F., Julve, M. & Ruiz-Perez, C. (2009). CrystEngComm, 11, 2169–2179.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Field, J. E. & Venkataraman, D. (2002). Chem. Commun. pp. 306–307. [DOI] [PubMed]
  6. Gao, E., Huang, Y., Zhu, M., Wang, L., Liu, F., Liu, H., Ma, S., Shi, Q., Wang, N. & Shi, C. (2009). Inorg. Chem. Commun. 12, 872–874.
  7. Lin, Y.-Y., Chen, Z.-Y., Yu, X.-L. & Chen, X.-M. (2006). Wuji Huaxue Xuebao, 22, 1467–1470.
  8. Martins, N. D., Silva, J. A., Ramos Silva, M., Matos Beja, A. & Sobral, A. J. F. N. (2008a). Acta Cryst E64, m394. [DOI] [PMC free article] [PubMed]
  9. Martins, N. D., Ramos Silva, M., Silva, J. A., Matos Beja, A. & Sobral, A. J. F. N. (2008b). Acta Cryst. E64, m829–m830. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Silva, M. R., Paixão, J. A., Matos Beja, A., Alte da Beja, L. & Martin-Gil, J. (2001). J. Chem. Crystallogr. 31, 167–171.
  13. Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Perez, C., Rilema, P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 1583–1596. [DOI] [PubMed]
  14. Yuste, C., Bentama, A. S.-E., Stiriba, S.-E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190–5200. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009203/bt6890sup1.cif

e-69-0m255-sup1.cif (32.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009203/bt6890Isup2.hkl

e-69-0m255-Isup2.hkl (191KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES