Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 13;69(Pt 5):m265–m266. doi: 10.1107/S160053681300946X

catena-Poly[silver(I)-bis­[μ-4-methyl-1H-1,2,4-triazole-3(4H)-thione-κ2 S:S]-silver(I)-di-μ-thio­cyanato-κ2 S:N2 N:S]

Kultida Kodcharat a, Chaveng Pakawatchai a, Saowanit Saithong a,*
PMCID: PMC3647807  PMID: 23723773

Abstract

In the title one-dimensional coordination polymer, [Ag2(NCS)2(C3H5N3S)2]n, the AgI atom adopts a distorted tetra­hedral AgNS3 geometry. Adjacent AgI atoms in the [001] chain are alternately linked by pairs of bridging 4-methyl-1H-1,2,4-triazole-3(4H)-thione (Hmptrz) ligands (via their S atoms) and double thio­cyanate bridges linking through both S and N atoms (μ-1,3-SCN). An intra­chain N—H⋯N hydrogen bond occurs between the NH group of the triazole ring and the N atom of the thio­cyanate bridging ligand. A (101) sheet structure arises from inter­chain S⋯N short contacts [3.239 (3) Å] involving the thio­cyanate S atom and the triazole-ring N atom and possible very weak π–π stacking [centroid–centroid separation = 4.0762 (18) Å] between the triazole rings.

Related literature  

For examples of complexes with multifunctional ligand donors, see: Zhang et al.(2009); Wang et al. (2011). For background to complexes containing derivatives of the 1,2,4-triazole ligand, see: Zhang et al. (1999); Jiang et al. (2011). For the thio­cyanate bridging ligand, end-to-end mode, see: Vicente et al. (1997); Chen et al. (1999); Diaz et al. (1999); Goher et al. (2000); Song et al. (2000); Cai et al. (2007); Saithong et al. (2007).graphic file with name e-69-0m265-scheme1.jpg

Experimental  

Crystal data  

  • [Ag2(NCS)2(C3H5N3S)2]

  • M r = 562.22

  • Triclinic, Inline graphic

  • a = 7.4842 (6) Å

  • b = 7.5420 (6) Å

  • c = 8.4262 (7) Å

  • α = 79.985 (2)°

  • β = 84.329 (2)°

  • γ = 64.508 (1)°

  • V = 422.62 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 293 K

  • 0.31 × 0.12 × 0.05 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.682, T max = 0.879

  • 5887 measured reflections

  • 2083 independent reflections

  • 1904 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.070

  • S = 1.05

  • 2083 reflections

  • 104 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681300946X/hb7066sup1.cif

e-69-0m265-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300946X/hb7066Isup2.hkl

e-69-0m265-Isup2.hkl (102.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300946X/hb7066Isup3.mol

Supplementary material file. DOI: 10.1107/S160053681300946X/hb7066Isup4.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ag1—N4i 2.354 (3)
Ag1—S2 2.4987 (8)
Ag1—S1 2.5554 (8)
Ag1—S1ii 2.6688 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.86 (2) 2.10 (2) 2.954 (4) 171 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Center of Excellent for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, and Graduate School, Prince of Songkla University, are gratefully acknowledge.

supplementary crystallographic information

Comment

One of the active areas of meterial research is the coordination compounds of the metal ions with the multifunctional ligands leading to the structural diversities and properties (Zhang et al., 2009; Wang et al., 2011). For this work, we report the mixed ligands Ag(I) complex containg multidonor atoms, 4-methyl-1,2,4-triazole-3-thiol (Hmptrz) and thiocyanate ligands. The Hmptrz is one of 1,2,4-triazole derivative ligands - based heterocyclic thioamide containing thiol group which has three potential donor atoms. Both Hmptrz and thiocyanate group are amphidentate ligands, which can bind to the metal center with either the N or S atom or both of them (Zhang et al., 1999; Jiang et al., 2011).

The title complex exhibits a one-dimensional chain polymeric structure and the asymmetric unit consists of one Ag(I) atom, one Hmptrz molecule and one SCN- anion. The chemical structure of this complex is shown in Scheme I and the crystal structure is depicted in Figure 1.

The Ag atom features a distorted tetrahedral environment with the range of angles from 101.00 (2) to 124.52 (3)o. Each Ag is bonded by two µ2-S-bridging atoms of two Hmptrz molecules with the distances of 2.5554 (8) and 2.6688 (8) Å. The other two coordination sites are occupied by S and N atoms from the different µ2-1,3-SCN bridges coordinated as a pair alternating bidentate end to end fashion similar to those complexes of the same thiocyanate bridges (Chen et al., 1999; Diaz et al., 1999; Goher et al., 2000; Song et al., 2000; Cai et al., 2007; Saithong et al. 2007). The Cu—Sthiocyanato and Cu—Nthiocyanato bond distances are 2.4987 (8) and 2.2354 (4) Å, respectively. The SCN bond angle is almost perfectly linear [178.6 (3)°] as compare with the same µ2-1,3-SCN configuration mode of those complexes (Vicente et al.,1997; Song et al., 2000). The S2—C4 and C4—N4 distances [1.646 (3) and 1.150 (4) Å] refer to thiocyanate resonance form which indicate to a π-delocalized system along the metal-thiocyanate chain (Zhang et al., 1999).

An infintite one-dimensional structure of this complex is based on [Ag(µ2-Hmptrz)(µ2-1,3-SCN)] double-bridges, in which both Hmptrz and SCN- ligands adopt the µ2-end-on and µ2-end-to-end bridging mode, respectively. As illustated in Figure 2, the Hmptrz and thiocyanato ligands interconnect the Ag(I) ions into an infinite chain generated by the unit c translation runing parallel to c axis, which consist of four-membered ring [—Ag—S—Ag—S—] and eight-membered ring [—Ag—S═C═N—Ag—S═C═N—]. In addition, The Ag···Ag separation with the distances of 3.3241 (5) Å in the four-membered ring is slighty shorter than the sum of the van der Waals radii of Ag atoms (3.44 Å), which indicates that there is the Ag···Ag interaction.

The weak intra-molecular hydrogen bonding interaction [N1—H1···N4i, (i) = -x + 1, -y, -z + 1] is found between N(1) of triazole ring and N(4) of thiocyanate bridging ligand at 2.954 (4) Å. The inter-short contact at 3.239 (3) Å arises from S2 donor of triazole ring with N2 acceptor from the thiocyanate bridge of the neighbouring adjacent chain which is smaller than the sum of S and N van der Waals radii (1.80 + 1.55 Å). In addition, the π···π stacking between the triazole rings of the neighbouring chain is observed with the centroid-centriod distance of 4.0762 (18) Å. Both of these interactions generate the supramolecular layer interactions related by ac-plane. A view of intra-molecular hydrogen bonding is depected in Figure 3 and The layered network interactions in crystal packing are shown in Figure 4.

Experimental

A mixture of AgNO3 (0.15 g, 0.88 mmol), KSCN (0.09 g, 0.87 mmol) in EtOH 30 ml was heated and stirred to 75 °C for 1 h. After that, the Hmptrz ligand (0.1 g, 0.087 mmol was added to the mixture and further continuous stirring for 12 h. The colorless crystals of the complex were obtained after the colorless filtrate was kept to stand at room temperature for a day. The complex melts at 130–132°C.

Refinement

All carbon H-atom of the triazole ring and the methyl group were placed in calculated positions (C-sp2—H = 0.93 and C-sp3= 0.96 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C), respectively. The H atom of triazole ring N atom is located in a difference map and restrained, N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The structure of the title complex with displacement ellipsoids plotted at the 30% probability level.

Fig. 2.

Fig. 2.

The one-dimensional chain of the title complex.

Fig. 3.

Fig. 3.

The intra-chain hydrogen-bonding interactions of the title complex.

Fig. 4.

Fig. 4.

The two-dimensional-layer inter-interactions of the title complex. All H atoms not involving the interactions are omitted.

Crystal data

[Ag2(NCS)2(C3H5N3S)2] Z = 1
Mr = 562.22 F(000) = 272
Triclinic, P1 Dx = 2.209 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4842 (6) Å Cell parameters from 3160 reflections
b = 7.5420 (6) Å θ = 2.5–28.1°
c = 8.4262 (7) Å µ = 2.82 mm1
α = 79.985 (2)° T = 293 K
β = 84.329 (2)° Block, colourless
γ = 64.508 (1)° 0.31 × 0.12 × 0.05 mm
V = 422.62 (6) Å3

Data collection

Bruker APEX CCD diffractometer 2083 independent reflections
Radiation source: fine-focus sealed tube 1904 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Frames, each covering 0.3 ° in ω scans θmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −9→9
Tmin = 0.682, Tmax = 0.879 k = −10→10
5887 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.3652P] where P = (Fo2 + 2Fc2)/3
2083 reflections (Δ/σ)max < 0.001
104 parameters Δρmax = 0.79 e Å3
1 restraint Δρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.43439 (4) 0.06942 (4) 0.18148 (3) 0.06373 (11)
S1 0.45768 (10) 0.28186 (11) −0.08435 (10) 0.04902 (17)
N1 0.8089 (4) 0.2218 (4) 0.0367 (3) 0.0471 (5)
H1 0.784 (5) 0.168 (5) 0.130 (3) 0.057*
N2 0.9737 (4) 0.2569 (4) −0.0040 (3) 0.0580 (7)
N3 0.7724 (3) 0.3598 (3) −0.2066 (3) 0.0443 (5)
C1 0.6839 (4) 0.2840 (4) −0.0829 (3) 0.0399 (5)
C2 0.9452 (4) 0.3410 (5) −0.1505 (4) 0.0548 (7)
H2 1.0329 0.3844 −0.2120 0.066*
C3 0.6939 (6) 0.4444 (6) −0.3672 (4) 0.0614 (8)
H3A 0.6677 0.3493 −0.4116 0.092*
H3B 0.7889 0.4779 −0.4352 0.092*
H3C 0.5733 0.5619 −0.3608 0.092*
S2 0.13129 (11) 0.14847 (14) 0.36025 (10) 0.0576 (2)
C4 0.2341 (4) 0.0469 (5) 0.5367 (4) 0.0479 (6)
N4 0.3024 (4) −0.0245 (5) 0.6610 (3) 0.0661 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.06481 (18) 0.0881 (2) 0.05807 (16) −0.04888 (16) 0.01183 (12) −0.02344 (13)
S1 0.0410 (4) 0.0516 (4) 0.0602 (4) −0.0237 (3) −0.0010 (3) −0.0116 (3)
N1 0.0437 (12) 0.0499 (13) 0.0494 (13) −0.0240 (11) −0.0036 (10) 0.0014 (10)
N2 0.0431 (13) 0.0646 (16) 0.0680 (17) −0.0281 (12) −0.0086 (12) 0.0049 (13)
N3 0.0451 (12) 0.0457 (12) 0.0454 (12) −0.0225 (10) 0.0004 (9) −0.0069 (10)
C1 0.0400 (13) 0.0357 (12) 0.0466 (13) −0.0172 (10) 0.0015 (10) −0.0107 (10)
C2 0.0427 (15) 0.0599 (18) 0.0645 (19) −0.0275 (14) −0.0007 (13) −0.0007 (15)
C3 0.073 (2) 0.072 (2) 0.0447 (15) −0.0374 (18) −0.0050 (15) −0.0028 (14)
S2 0.0427 (4) 0.0772 (5) 0.0541 (4) −0.0308 (4) −0.0013 (3) 0.0023 (4)
C4 0.0431 (14) 0.0621 (17) 0.0496 (15) −0.0326 (13) 0.0082 (12) −0.0135 (13)
N4 0.0619 (17) 0.100 (2) 0.0501 (15) −0.0486 (17) −0.0010 (13) −0.0081 (15)

Geometric parameters (Å, º)

Ag1—N4i 2.354 (3) N3—C1 1.354 (3)
Ag1—S2 2.4987 (8) N3—C2 1.363 (4)
Ag1—S1 2.5554 (8) N3—C3 1.455 (4)
Ag1—S1ii 2.6688 (8) C2—H2 0.9300
Ag1—Ag1ii 3.3241 (5) C3—H3A 0.9600
S1—C1 1.701 (3) C3—H3B 0.9600
S1—Ag1ii 2.6688 (8) C3—H3C 0.9600
N1—C1 1.325 (3) S2—C4 1.646 (3)
N1—N2 1.369 (3) C4—N4 1.150 (4)
N1—H1 0.860 (18) N4—Ag1i 2.354 (3)
N2—C2 1.278 (4)
N4i—Ag1—S2 107.73 (7) C1—N3—C3 125.5 (2)
N4i—Ag1—S1 106.91 (7) C2—N3—C3 127.7 (3)
S2—Ag1—S1 124.52 (3) N1—C1—N3 104.4 (2)
N4i—Ag1—S1ii 104.55 (9) N1—C1—S1 129.2 (2)
S2—Ag1—S1ii 110.41 (3) N3—C1—S1 126.3 (2)
S1—Ag1—S1ii 101.00 (2) N2—C2—N3 112.6 (3)
N4i—Ag1—Ag1ii 115.17 (8) N2—C2—H2 123.7
S2—Ag1—Ag1ii 135.70 (2) N3—C2—H2 123.7
S1—Ag1—Ag1ii 52.010 (19) N3—C3—H3A 109.5
S1ii—Ag1—Ag1ii 48.991 (18) N3—C3—H3B 109.5
C1—S1—Ag1 104.45 (10) H3A—C3—H3B 109.5
C1—S1—Ag1ii 99.55 (9) N3—C3—H3C 109.5
Ag1—S1—Ag1ii 79.00 (2) H3A—C3—H3C 109.5
C1—N1—N2 113.0 (2) H3B—C3—H3C 109.5
C1—N1—H1 122 (2) C4—S2—Ag1 100.04 (10)
N2—N1—H1 125 (2) N4—C4—S2 178.6 (3)
C2—N2—N1 103.3 (2) C4—N4—Ag1i 142.0 (2)
C1—N3—C2 106.7 (2)
N4i—Ag1—S1—C1 11.91 (13) C3—N3—C1—S1 −3.5 (4)
S2—Ag1—S1—C1 138.45 (9) Ag1—S1—C1—N1 −10.7 (3)
S1ii—Ag1—S1—C1 −97.15 (9) Ag1ii—S1—C1—N1 −91.7 (3)
Ag1ii—Ag1—S1—C1 −97.15 (9) Ag1—S1—C1—N3 172.3 (2)
N4i—Ag1—S1—Ag1ii 109.06 (9) Ag1ii—S1—C1—N3 91.3 (2)
S2—Ag1—S1—Ag1ii −124.40 (3) N1—N2—C2—N3 −0.6 (4)
S1ii—Ag1—S1—Ag1ii 0.0 C1—N3—C2—N2 1.2 (4)
C1—N1—N2—C2 −0.2 (4) C3—N3—C2—N2 −178.9 (3)
N2—N1—C1—N3 0.9 (3) N4i—Ag1—S2—C4 −24.14 (14)
N2—N1—C1—S1 −176.7 (2) S1—Ag1—S2—C4 −150.33 (11)
C2—N3—C1—N1 −1.2 (3) S1ii—Ag1—S2—C4 89.46 (11)
C3—N3—C1—N1 178.9 (3) Ag1ii—Ag1—S2—C4 141.07 (11)
C2—N3—C1—S1 176.4 (2)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N4i 0.86 (2) 2.10 (2) 2.954 (4) 171 (3)

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7066).

References

  1. Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cai, H., Guo, Y., Li, Y. & Li, J.-G. (2007). Acta Cryst. E63, m936–m938.
  3. Chen, H.-J., Yang, G. & Chen, X.-M. (1999). Acta Cryst. C55, 2012–2014.
  4. Diaz, C., Ribas, J., Sanz, N., Solans, X. & Font-Bardı’a, M. (1999). Inorg. Chim. Acta, 286, 169–174.
  5. Goher, M. A. S., Yang, Q.-C. & Mak, T. C. W. (2000). Polyhedron, 19, 615–621.
  6. Jiang, Y.-L., Wang, Y.-L., Lin, J.-X., Liu, Q.-Y., Lu, Z.-H., Zhang, N., Wei, J.-J. & Li, L.-Q. (2011). CrystEngComm, 13, 1697–1706.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Saithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857–m858.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Song, Y., Zhu, D.-R., Zhang, K.-L., Xu, Y., Duan, C.-Y. & You, X.-Z. (2000). Polyhedron, 19, 1461–1464.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Vicente, R., Escuer, A., Penalba, E., Solans, X. & Bardia, M. F. (1997). Inorg. Chim. Acta, 255 :, 7–12.
  13. Wang, Y.-L., Zhang, N., Liu, Q.-Y., Shan, Z.-M., Cao, R., Wang, M.-S., Luo, J.-J. & Yang, E.-L. (2011). Cryst. Growth Des. 11, 130–138.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Zhang, H., Wang, X., Zhang, K. & Teo, B. K. (1999). Coord. Chem. Rev. 183, 157–195.
  16. Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980–2997.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681300946X/hb7066sup1.cif

e-69-0m265-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300946X/hb7066Isup2.hkl

e-69-0m265-Isup2.hkl (102.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300946X/hb7066Isup3.mol

Supplementary material file. DOI: 10.1107/S160053681300946X/hb7066Isup4.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES