Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 20;69(Pt 5):m280. doi: 10.1107/S1600536813010362

Pyridinium bis­(pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III)–pyrazine-2-carbo­nitrile–pyridine (1/4/1)

Sergii I Shylin a,*, Il’ya A Gural’skiy a, Matti Haukka b, Irina A Golenya a
PMCID: PMC3647816  PMID: 23723782

Abstract

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2]·4C5H3N3·C5H5N, the FeIII ion is located on an inversion centre and is six-coordinated by four N atoms of the thio­cyanate ligands and two pyridine N atoms in a trans arrangement, forming a slightly distorted octa­hedral geometry. A half-occupied H atom attached to a pyridinium cation forms an N—H⋯N hydrogen bond with a centrosymmetrically-related pyridine unit. Four pyrazine-2-carbo­nitrile mol­ecules crystallize per complex anion. In the crystal, π–π stacking inter­actions are present [centroid–centroid distances = 3.6220 (9), 3.6930 (9), 3.5532 (9), 3.5803 (9) and 3.5458 (8) Å].

Related literature  

For the use of mol­ecular assemblies comprising cationic and anionic modules, see: Fritsky et al. (1998, 2004); Kanderal et al. (2005). For FeII–thio­cyanate complexes with aromatic N-donor ligands indicating spin crossover, see: Gamez et al. (2009); Niel et al. (2001). For related structures, see: Moroz et al. (2010); Penkova et al. (2010); Petrusenko et al. (1997); Real et al. (1991).graphic file with name e-69-0m280-scheme1.jpg

Experimental  

Crystal data  

  • (C5H6N)[Fe(NCS)4(C5H5N)2]·4C5H3N3·C5H5N

  • M r = 1025.99

  • Triclinic, Inline graphic

  • a = 8.1766 (2) Å

  • b = 11.9362 (3) Å

  • c = 12.7519 (3) Å

  • α = 102.982 (1)°

  • β = 97.799 (1)°

  • γ = 97.684 (1)°

  • V = 1184.02 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 120 K

  • 0.38 × 0.19 × 0.17 mm

Data collection  

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.818, T max = 0.910

  • 18588 measured reflections

  • 5482 independent reflections

  • 4470 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.076

  • S = 1.01

  • 5482 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010362/hy2622sup1.cif

e-69-0m280-sup1.cif (27.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010362/hy2622Isup2.hkl

e-69-0m280-Isup2.hkl (268.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010362/hy2622Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯N4i 0.88 1.80 2.677 (3) 179

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Molecular assemblies comprising from cationic and anionic modules are of special interest for crystal engineering and molecular magnetism (Fritsky et al., 2004). Formation of such compounds often can be mediated by different types of intermolecular interactions, such as co-ordination and hydrogen bonds, ionic and van der Waals interactions (Fritsky et al., 1998; Kanderal et al., 2005). Such assemblies may possess interesting functional properties and, in particular, indicate spin crossover behavior. In this regard, FeII thiocyanate complexes with aromatic N-donor ligands attract much attention considering the possible metal ion spin state modulation by variation of a ligand (Gamez et al., 2009) accompanied by coordination polymer formation. Particularly, as one of the simplest bridging N-donor ligands to design coordination polymers, pyrazine (pz) is known for the construction of spin crossover Hofmann-like clathrates with general formula [FeIIMII(pz)(CN)4] (M = Ni, Pd or Pt) (Niel et al., 2001). A combination of pz and thiocyanate ligands leads to the formation of two-dimensional coordination polymer [Fe(NCS)2(pz)2] with an antiferromagnetic exchange between metal centres (Real et al., 1991). In this context, we attempted to synthesize FeII thiocyanate complex with pyrazine-2-carbonitrile (cnpz). However, the reaction of [FeII(NCS)2(py)4] (py = pyridine) and cnpz in an organic media in air led to oxidation of FeII and to the formation of the title compound.

The compound consists of one complex anion [Fe(NCS)4(py)2]-, one pyridinium cation, one pyridine and four pyrazine-2-carbonitrile molecules (Fig. 1). The FeIII ion is located on an inversion centre and is sixfold coordinated by four N atoms of four thiocyanate anions and two N atoms of two pyridine ligands in a trans arrangement, forming a slightly distorted octahedral coordination geometry. The thiocyanate ligands are bound through N atoms and are quasi-linear [S1—C1—N2 = 179.41 (14), S2—C9—N3 = 179.33 (15)°], while the Fe—NCS linkages are bent [Fe1—N2—C1 = 163.20 (12), Fe1—N3—C9 = 167.56 (12)°]. These structural features are typical for the complexes where the NCS group is N-bound (Petrusenko et al., 1997). The distances between FeIII ion and N atoms of the thiocyanate anions [Fe1—N2 = 2.0424 (13), Fe1—N3 = 2.0370 (13) Å] are considerably shorter than those between FeIII and N atoms of the pyridine ligands [Fe1—N1 = 2.1320 (12)Å], that could be related to the higher affinity of the metal ion to negatively charged thiocyanate comparing with the neutral organic ligand. The C—N and C—C bond lenths in the coordinated pyridine ligands are normal and close to the values observed in the related structures (Moroz et al., 2010; Penkova et al., 2010).

In the title compound there are four solvent molecules of pyrazine-2-carbonitrile per each FeIII ion that interact with one another through π–π stacking, with distances between the centroids of 3.5532 (9), 3.5803 (9) and 3.5458 (8) Å (Fig. 2). One of the uncoordinated pyridines is protonated and the N-bound H atom is disodered between two equally populated positions, forming N—H···N hydrogen bonds (Table 1). Coordinated and solvent pyridine molecules also interact with one another viaπ–π contacts, with distances between the centroids of 3.6220 (9) and 3.6930 (9) Å (Fig. 3).

Experimental

Crystals of the title compound were obtained by adding pyrazine-2-carbonitrile (52.5 mg, 0.5 mmol) to tetrakis(pyridine)bis(isothiocyanato)iron(II), [Fe(NCS)2(py)4], (48.8 mg, 0.1 mmol) in acetone (5 ml). The solution was left to evaporate in air. In one day this yielded red crystals that were collected, washed with water and dried in air (yield: 21 mg, 20%).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 and N—H = 0.88 Å and with Uiso(H) = 1.2Ueq(C,N). N-bound H atom of the uncoordinated pyridine is half-occupied due to the requirement of symmetry.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x+1, -y+1, -z+1.]

Fig. 2.

Fig. 2.

Crystal structure of the title compound, showing π–π contacts between the cnpz molecules as dashed lines (carmine: Fe, yellow: S, blue: N, grey: C, light-grey: H).

Fig. 3.

Fig. 3.

Crystal structure of the title compound, showing hydrogen bonds and π–π contacts between the pyridine molecules as dashed lines (carmine: Fe, yellow: S, blue: N, grey: C, light-grey: H).

Crystal data

(C5H6N)[Fe(NCS)4(C5H5N)2]·4C5H3N3·C5H5N Z = 1
Mr = 1025.99 F(000) = 527
Triclinic, P1 Dx = 1.439 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1766 (2) Å Cell parameters from 7810 reflections
b = 11.9362 (3) Å θ = 2.6–27.6°
c = 12.7519 (3) Å µ = 0.55 mm1
α = 102.982 (1)° T = 120 K
β = 97.799 (1)° Block, red
γ = 97.684 (1)° 0.38 × 0.19 × 0.17 mm
V = 1184.02 (5) Å3

Data collection

Bruker Kappa APEXII DUO CCD diffractometer 5482 independent reflections
Radiation source: fine-focus sealed tube 4470 reflections with I > 2σ(I)
Curved graphite crystal monochromator Rint = 0.024
Detector resolution: 16 pixels mm-1 θmax = 27.7°, θmin = 1.7°
φ and ω scans with κ offset h = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −15→15
Tmin = 0.818, Tmax = 0.910 l = −16→16
18588 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.3715P] where P = (Fo2 + 2Fc2)/3
5482 reflections (Δ/σ)max = 0.001
313 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Experimental. Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 Å, N—H = 0.88 Å, and Uiso = 1.2 Ueq(parent atom). The highest peak is located 0.70 Å from atom C18 and the deepest hole is located 0.48 Å from atom Fe1.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.5000 0.5000 0.5000 0.01474 (8)
S1 0.18557 (5) 0.25687 (4) 0.16391 (3) 0.02717 (11)
S2 0.31797 (5) 0.74869 (4) 0.27623 (4) 0.02695 (11)
N1 0.72282 (15) 0.50545 (11) 0.43036 (10) 0.0163 (3)
N2 0.38008 (16) 0.37328 (11) 0.36553 (11) 0.0200 (3)
N3 0.42809 (15) 0.62208 (11) 0.42297 (11) 0.0193 (3)
N4 0.86353 (18) 0.50989 (12) 0.04639 (11) 0.0279 (3)
H4N 0.9528 0.5042 0.0153 0.033* 0.50
N5 0.40216 (18) 0.10177 (12) 0.42369 (12) 0.0278 (3)
N6 0.09833 (17) −0.12537 (12) 0.62053 (11) 0.0271 (3)
N7 0.90967 (18) 0.11755 (13) −0.07429 (12) 0.0302 (3)
N8 0.59044 (17) −0.09046 (12) 0.13024 (11) 0.0237 (3)
N9 0.67103 (17) 0.14539 (11) 0.12764 (11) 0.0220 (3)
N10 0.15882 (17) 0.11284 (12) 0.62270 (11) 0.0224 (3)
C1 0.29957 (18) 0.32456 (13) 0.28113 (12) 0.0173 (3)
C2 0.80428 (18) 0.60594 (13) 0.41827 (12) 0.0193 (3)
H2 0.7656 0.6766 0.4459 0.023*
C3 0.94253 (19) 0.60979 (14) 0.36697 (13) 0.0213 (3)
H3 0.9981 0.6821 0.3597 0.026*
C4 0.99889 (19) 0.50744 (14) 0.32645 (13) 0.0214 (3)
H4 1.0925 0.5080 0.2897 0.026*
C5 0.9167 (2) 0.40386 (14) 0.34019 (13) 0.0225 (3)
H5 0.9541 0.3323 0.3142 0.027*
C6 0.77991 (19) 0.40658 (13) 0.39215 (12) 0.0197 (3)
H6 0.7235 0.3354 0.4014 0.024*
C7 0.6803 (2) 0.62600 (15) 0.12971 (14) 0.0297 (4)
H7 0.6508 0.7007 0.1539 0.036*
C8 0.5837 (2) 0.52690 (15) 0.14229 (13) 0.0271 (4)
H8 0.4869 0.5328 0.1754 0.032*
C9 0.38283 (18) 0.67553 (13) 0.36185 (12) 0.0176 (3)
C10 0.8197 (2) 0.61399 (15) 0.08152 (14) 0.0283 (4)
H10 0.8867 0.6817 0.0730 0.034*
C11 0.32510 (19) 0.07281 (13) 0.48410 (13) 0.0204 (3)
C12 0.22339 (18) 0.03216 (13) 0.55739 (12) 0.0183 (3)
C13 0.1944 (2) −0.08487 (14) 0.55571 (13) 0.0238 (3)
H13 0.2437 −0.1378 0.5074 0.029*
C14 0.0340 (2) −0.04577 (15) 0.68615 (13) 0.0255 (4)
H14 −0.0350 −0.0704 0.7338 0.031*
C15 0.0642 (2) 0.07162 (15) 0.68746 (13) 0.0252 (4)
H15 0.0157 0.1246 0.7363 0.030*
C16 0.7703 (2) 0.41443 (15) 0.05894 (15) 0.0309 (4)
H16 0.8024 0.3407 0.0344 0.037*
C17 0.6293 (2) 0.42005 (15) 0.10637 (14) 0.0292 (4)
H17 0.5645 0.3511 0.1142 0.035*
C18 0.72593 (18) 0.05927 (13) 0.06193 (12) 0.0182 (3)
C19 0.53568 (19) −0.00576 (14) 0.19602 (12) 0.0209 (3)
H19 0.4667 −0.0256 0.2456 0.025*
C20 0.5757 (2) 0.11054 (14) 0.19485 (12) 0.0221 (3)
H20 0.5334 0.1675 0.2439 0.026*
C21 0.68690 (19) −0.05677 (14) 0.06260 (12) 0.0211 (3)
H21 0.7296 −0.1138 0.0139 0.025*
C22 0.82945 (19) 0.09294 (14) −0.01369 (13) 0.0219 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.01377 (15) 0.01447 (15) 0.01549 (15) 0.00130 (11) 0.00307 (11) 0.00305 (12)
S1 0.0231 (2) 0.0345 (2) 0.0178 (2) 0.00335 (17) 0.00294 (16) −0.00485 (17)
S2 0.0290 (2) 0.0289 (2) 0.0305 (2) 0.00821 (18) 0.00977 (18) 0.01836 (18)
N1 0.0150 (6) 0.0167 (6) 0.0168 (6) 0.0016 (5) 0.0026 (5) 0.0042 (5)
N2 0.0187 (6) 0.0182 (7) 0.0213 (7) 0.0017 (5) 0.0032 (5) 0.0018 (5)
N3 0.0177 (6) 0.0178 (7) 0.0224 (7) 0.0020 (5) 0.0045 (5) 0.0050 (5)
N4 0.0315 (8) 0.0282 (8) 0.0275 (8) 0.0064 (6) 0.0127 (6) 0.0086 (6)
N5 0.0284 (8) 0.0291 (8) 0.0268 (7) 0.0039 (6) 0.0103 (6) 0.0062 (6)
N6 0.0268 (8) 0.0264 (8) 0.0279 (8) −0.0001 (6) 0.0022 (6) 0.0108 (6)
N7 0.0279 (8) 0.0364 (9) 0.0255 (7) −0.0008 (6) 0.0082 (6) 0.0076 (6)
N8 0.0275 (7) 0.0216 (7) 0.0223 (7) 0.0020 (6) 0.0076 (6) 0.0054 (6)
N9 0.0244 (7) 0.0212 (7) 0.0212 (7) 0.0048 (5) 0.0052 (6) 0.0054 (6)
N10 0.0244 (7) 0.0238 (7) 0.0204 (7) 0.0061 (6) 0.0061 (5) 0.0059 (6)
C1 0.0160 (7) 0.0161 (7) 0.0215 (8) 0.0043 (6) 0.0085 (6) 0.0041 (6)
C2 0.0181 (8) 0.0165 (7) 0.0228 (8) 0.0018 (6) 0.0025 (6) 0.0048 (6)
C3 0.0174 (8) 0.0209 (8) 0.0259 (8) −0.0004 (6) 0.0037 (6) 0.0083 (7)
C4 0.0145 (7) 0.0285 (9) 0.0223 (8) 0.0026 (6) 0.0059 (6) 0.0076 (7)
C5 0.0210 (8) 0.0217 (8) 0.0257 (8) 0.0070 (6) 0.0064 (7) 0.0045 (7)
C6 0.0206 (8) 0.0166 (8) 0.0219 (8) 0.0018 (6) 0.0045 (6) 0.0054 (6)
C7 0.0383 (10) 0.0239 (9) 0.0268 (9) 0.0102 (8) 0.0048 (8) 0.0038 (7)
C8 0.0264 (9) 0.0330 (10) 0.0236 (8) 0.0089 (7) 0.0064 (7) 0.0073 (7)
C9 0.0144 (7) 0.0164 (7) 0.0219 (8) 0.0011 (6) 0.0081 (6) 0.0023 (6)
C10 0.0363 (10) 0.0226 (9) 0.0265 (9) 0.0023 (7) 0.0065 (7) 0.0081 (7)
C11 0.0201 (8) 0.0194 (8) 0.0204 (8) 0.0036 (6) 0.0017 (6) 0.0029 (6)
C12 0.0158 (7) 0.0227 (8) 0.0158 (7) 0.0024 (6) 0.0007 (6) 0.0054 (6)
C13 0.0231 (8) 0.0232 (8) 0.0238 (8) 0.0032 (7) 0.0029 (7) 0.0042 (7)
C14 0.0191 (8) 0.0380 (10) 0.0202 (8) 0.0004 (7) 0.0017 (6) 0.0124 (7)
C15 0.0238 (8) 0.0337 (10) 0.0202 (8) 0.0080 (7) 0.0072 (7) 0.0073 (7)
C16 0.0364 (10) 0.0219 (9) 0.0371 (10) 0.0087 (7) 0.0108 (8) 0.0081 (8)
C17 0.0307 (9) 0.0255 (9) 0.0337 (10) 0.0032 (7) 0.0079 (8) 0.0119 (8)
C18 0.0153 (7) 0.0238 (8) 0.0149 (7) 0.0019 (6) 0.0016 (6) 0.0049 (6)
C19 0.0179 (8) 0.0277 (9) 0.0168 (7) 0.0021 (6) 0.0038 (6) 0.0055 (6)
C20 0.0228 (8) 0.0263 (9) 0.0178 (8) 0.0085 (7) 0.0056 (6) 0.0028 (6)
C21 0.0231 (8) 0.0211 (8) 0.0187 (8) 0.0045 (6) 0.0056 (6) 0.0021 (6)
C22 0.0207 (8) 0.0235 (8) 0.0197 (8) 0.0014 (6) 0.0025 (6) 0.0039 (6)

Geometric parameters (Å, º)

Fe1—N3 2.0370 (13) C6—H6 0.9500
Fe1—N2 2.0424 (13) C7—C10 1.375 (2)
Fe1—N1 2.1320 (12) C7—C8 1.385 (2)
S1—C1 1.6229 (16) C7—H7 0.9500
S2—C9 1.6220 (16) C8—C17 1.374 (2)
N1—C6 1.3412 (19) C8—H8 0.9500
N1—C2 1.3430 (19) C10—H10 0.9500
N2—C1 1.164 (2) C11—C12 1.452 (2)
N3—C9 1.166 (2) C12—N10 1.340 (2)
N4—C10 1.336 (2) C12—C13 1.380 (2)
N4—C16 1.337 (2) C13—H13 0.9500
N4—H4N 0.8800 C14—C15 1.386 (2)
N5—C11 1.142 (2) C14—H14 0.9500
N6—C14 1.332 (2) C15—N10 1.333 (2)
N6—C13 1.337 (2) C15—H15 0.9500
N7—C22 1.141 (2) C16—C17 1.375 (2)
N8—C19 1.330 (2) C16—H16 0.9500
N8—C21 1.3355 (19) C17—H17 0.9500
C2—C3 1.381 (2) C18—N9 1.3411 (19)
C2—H2 0.9500 C19—C20 1.387 (2)
C3—C4 1.380 (2) C19—H19 0.9500
C3—H3 0.9500 C20—N9 1.331 (2)
C4—C5 1.385 (2) C20—H20 0.9500
C4—H4 0.9500 C21—C18 1.381 (2)
C5—C6 1.376 (2) C21—H21 0.9500
C5—H5 0.9500 C22—C18 1.453 (2)
N3i—Fe1—N3 179.999 (1) N1—C6—H6 118.6
N3i—Fe1—N2i 88.77 (5) C5—C6—H6 118.6
N3—Fe1—N2i 91.23 (5) C10—C7—C8 118.63 (16)
N3i—Fe1—N2 91.23 (5) C10—C7—H7 120.7
N3—Fe1—N2 88.77 (5) C8—C7—H7 120.7
N2i—Fe1—N2 180.0 C17—C8—C7 119.32 (16)
N3i—Fe1—N1 90.30 (5) C17—C8—H8 120.3
N3—Fe1—N1 89.70 (5) C7—C8—H8 120.3
N2i—Fe1—N1 90.58 (5) N3—C9—S2 179.33 (15)
N2—Fe1—N1 89.42 (5) N4—C10—C7 121.91 (16)
N3i—Fe1—N1i 89.70 (5) N4—C10—H10 119.0
N3—Fe1—N1i 90.30 (5) C7—C10—H10 119.0
N2i—Fe1—N1i 89.42 (5) N5—C11—C12 177.71 (17)
N2—Fe1—N1i 90.58 (5) N10—C12—C13 123.29 (14)
N1—Fe1—N1i 180.0 N10—C12—C11 116.65 (14)
C6—N1—C2 118.34 (13) C13—C12—C11 120.04 (14)
C6—N1—Fe1 120.20 (10) N6—C13—C12 121.47 (15)
C2—N1—Fe1 121.37 (10) N6—C13—H13 119.3
C1—N2—Fe1 163.20 (12) C12—C13—H13 119.3
C9—N3—Fe1 167.56 (12) N6—C14—C15 122.38 (15)
C10—N4—C16 119.32 (15) N6—C14—H14 118.8
C10—N4—H4N 120.3 C15—C14—H14 118.8
C16—N4—H4N 120.3 N10—C15—C14 122.39 (15)
C14—N6—C13 115.74 (14) N10—C15—H15 118.8
C19—N8—C21 115.86 (14) C14—C15—H15 118.8
N2—C1—S1 179.41 (14) C15—N10—C12 114.73 (14)
N7—C22—C18 178.82 (18) N4—C16—C17 121.84 (16)
N8—C21—C18 121.37 (14) N4—C16—H16 119.1
N8—C21—H21 119.3 C17—C16—H16 119.1
C18—C21—H21 119.3 C8—C17—C16 118.98 (16)
N1—C2—C3 122.04 (14) C8—C17—H17 120.5
N1—C2—H2 119.0 C16—C17—H17 120.5
C3—C2—H2 119.0 N9—C18—C21 123.30 (14)
C4—C3—C2 119.23 (14) N9—C18—C22 116.67 (14)
C4—C3—H3 120.4 C21—C18—C22 120.03 (14)
C2—C3—H3 120.4 N8—C19—C20 122.36 (14)
C3—C4—C5 118.89 (14) N8—C19—H19 118.8
C3—C4—H4 120.6 C20—C19—H19 118.8
C5—C4—H4 120.6 N9—C20—C19 122.46 (14)
C6—C5—C4 118.72 (15) N9—C20—H20 118.8
C6—C5—H5 120.6 C19—C20—H20 118.8
C4—C5—H5 120.6 C20—N9—C18 114.64 (13)
N1—C6—C5 122.77 (14)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4N···N4ii 0.88 1.80 2.677 (3) 179

Symmetry code: (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2622).

References

  1. Brandenburg, K. (1997). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.
  4. Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.
  5. Gamez, P., Costa, J. S., Quesada, M. & Aromí, G. (2009). Dalton Trans. pp. 7845–7853. [DOI] [PubMed]
  6. Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
  7. Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. [DOI] [PubMed]
  8. Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839. [DOI] [PubMed]
  9. Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.
  10. Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
  11. Real, J. A., Munno, G., Muñoz, M. C. & Julve, M. (1991). Inorg. Chem. 30, 2701–2704.
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010362/hy2622sup1.cif

e-69-0m280-sup1.cif (27.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010362/hy2622Isup2.hkl

e-69-0m280-Isup2.hkl (268.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010362/hy2622Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES