Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 10;69(Pt 5):o677. doi: 10.1107/S1600536813008696

N,N′-[2,2′-(Phenyl­aza­nedi­yl)bis­(ethane-2,1-di­yl)]dipicolinamide

Gao-Nan Li a,*, Zhi-Gang Niu a, Mei-Qi Huang a, Ying Zou a, Liang-Jiang Hu a
PMCID: PMC3647871  PMID: 23723837

Abstract

The asymmetric unit of the title compound, C22H23N5O2, contains two independent mol­ecules with similar conformations; the terminal pyridine rings are oriented at dihedral angles of 23.99 (8) and 18.07 (8)° with respect to the central benzene ring in one mol­ecule and 28.99 (8) and 23.22 (8)° in the other. In the crystal, N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular structure. Weak inter­molecular C—H⋯π inter­actions are also observed in the crystal.

Related literature  

For background to bis­(pyridine­carboxamide) derivatives, see: Cornman et al. (1999); Song et al. (2010); Singh et al. (2008). For the synthesis, see: Jain et al. (2004); Lee et al. (2006); Barnes et al. (1978). For related structures, see: Adolph et al. (2012); Munro & Wilson (2010); Yan et al. (2012).graphic file with name e-69-0o677-scheme1.jpg

Experimental  

Crystal data  

  • C22H23N5O2

  • M r = 389.45

  • Monoclinic, Inline graphic

  • a = 8.64349 (7) Å

  • b = 24.8210 (3) Å

  • c = 18.40861 (18) Å

  • β = 90.5648 (8)°

  • V = 3949.20 (7) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.12 × 0.08 × 0.07 mm

Data collection  

  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.886, T max = 0.950

  • 28468 measured reflections

  • 7050 independent reflections

  • 6128 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.097

  • S = 1.14

  • 7050 reflections

  • 523 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813008696/xu5691sup1.cif

e-69-0o677-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813008696/xu5691Isup2.hkl

e-69-0o677-Isup2.hkl (345KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg5 and Cg6 are the centroids of the C9–C14 benzene and C31–C36 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.86 2.44 3.1099 (18) 135
N7—H7⋯O1i 0.86 2.42 3.0998 (18) 136
C24—H24⋯O2ii 0.93 2.48 3.311 (2) 149
C25—H25⋯O4iii 0.93 2.54 3.213 (2) 129
C8—H8ACg6iv 0.97 2.72 3.6468 (18) 161
C30—H30BCg5v 0.97 2.74 3.6584 (18) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported financially by the Natural Science Foundation of Hainan Province, China (grant 212014) and the Scientific Research Foundation of Hainan Normal University.

supplementary crystallographic information

Comment

Bis(2-pyridinecarboxamide) derivatives comprise a large group of organic compounds that are ideal for the mono- or dinuclear chelation of metal ions (Cornman et al., 1999; Song et al., 2010; Singh et al., 2008). In order to explore coordination chemistry of bis(pyridinecarboxamide) ligands, we have synthesized the title compound (I) and report here its crystal structure.

The asymmetric unit of the title compound (I), C22H23N5O2, contains two independent molecules with the similar structure, two terminal pyridine rings are oriented with respect to the central benzene ring at 23.99 (8) and 18.07 (8)° in one molecule and at 28.99 (8) and 23.22 (8)° in the other (Fig. 1). Every independent molecule contains two symmetrical N-ethyl(pyridine-2-carboxiamide) moieties linked by a phenylamino bridge. It is noteworthy that the C═O bonds are oriented trans to the pyridine nitrogen atom, which are in accord with those reported for previous structures (Munro et al., 2010; Yan et al., 2012). In the crystal, intermolecular N–H···O (Fig. 2) and weak C—H···O hydrogen bonds (Fig. 3) link the molecules into the three-dimensional supramolecular structure. The crystal packing exhibits also weak intermolecular C–H···π interaction, proved by short distance C30–H30B···Cg5 [3.6584 (18) Å] and C8–H8A···Cg6 [3.6468 (18) Å], where Cg5 and Cg6 are the centroids of the C9–benzene and C31–benzene rings, respectively [symmetry code: (iv) x+1/2, –y+1/2, z+1/2; (v) x–1/2, –y+1/2, z–1/2] (Table 1).

Experimental

N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDCI, 375 mg, 1.95 mmol) and hydroxybenzotriazole (HOBt, 440 mg, 3.26 mmol) were added to a solution of picolinic acid (200 mg, 1.62 mmol) in dry DMF (10 ml) at room temperature. After the mixture was stirred for 30 min, N1-(2-aminoethyl)-N1-phenylethane-1,2-diamine (133 mg, 0.74 mmol) was added (Lee et al., 2006). The reaction mixture was stirred overnight under N2 atmosphere. H2O (30 ml) was added to quench the reaction, and the mixture was extracted with ethyl acetate (3×20 ml). The combined organic phase was washed with brine, dried over Na2SO4, filtrated and concentrated in vacuum. The residue was purified by column chromatography (PE:EA = 2:1~1:2) to give compound (I) (264 mg, yield: 91.8%) as a white solid. Colorless single crystals suitable for X-ray structural analysis were obtained by slow evaporation of a mixture solution of dichloromethane and methanol at room temperature. 1H NMR (400 MHz, CDCl3): 3.48~3.61 (m, 8H), 6.62 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 7.2 Hz, 2H), 7.15 (t, J = 8.0 Hz, 2H), 7.28~7.32 (m, 2H), 7.73 (t, J = 8.0 Hz, 2H), 8.09 (d, J = 7.2 Hz, 2H), 8.30~8.40 (m, 4H).

Refinement

H-atoms were placed in calculated positions (C–H 0.93–0.97 Å, N–H 0.86 Å), and were included in the refinement in the riding model, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Representation of part of the lattice contents of (I), viewed approximately down the cell diagonal bisecting the b O a angle. Only selected interactions are shown for clarity. Atoms involved in hydrogen bonds are shown as balls of arbitrary radii. All other atoms and covalent bonds are represented as wires or sticks. [symmetry code: (i) 1+ x, y, z].

Fig. 3.

Fig. 3.

Representation of part of the lattice contents of (I), along the a axis, showing the hydrogen-bonded chains. Only selected interactions are shown for clarity. Atoms involved in hydrogen bonds are shown as balls of arbitrary radii. All other atoms and covalent bonds are represented as wires or sticks. [symmetry code: (i) 1–x, 1–y, 1–z; (ii) 1/2–x, 1/2+y, 3/2–z; (iii) 1/2+x, 1/2–y, –1/2+z].

Crystal data

C22H23N5O2 F(000) = 1648
Mr = 389.45 Dx = 1.310 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yn Cell parameters from 13020 reflections
a = 8.64349 (7) Å θ = 3.0–67.1°
b = 24.8210 (3) Å µ = 0.70 mm1
c = 18.40861 (18) Å T = 100 K
β = 90.5648 (8)° Block, colorless
V = 3949.20 (7) Å3 0.12 × 0.08 × 0.07 mm
Z = 8

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer 7050 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 6128 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.038
Detector resolution: 10.5095 pixels mm-1 θmax = 67.2°, θmin = 3.0°
ω scans h = −8→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −29→29
Tmin = 0.886, Tmax = 0.950 l = −21→21
28468 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.7734P] where P = (Fo2 + 2Fc2)/3
7050 reflections (Δ/σ)max < 0.001
523 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.01667 (13) 0.20717 (5) 0.70802 (6) 0.0213 (3)
O4 0.42663 (14) 0.41541 (5) 0.43618 (7) 0.0262 (3)
N10 0.72634 (16) 0.38111 (6) 0.56121 (7) 0.0211 (3)
N8 0.05731 (16) 0.30231 (6) 0.48259 (8) 0.0210 (3)
N6 −0.24832 (18) 0.10919 (6) 0.64032 (8) 0.0253 (3)
N9 0.47932 (15) 0.33680 (6) 0.49331 (7) 0.0194 (3)
H9 0.5429 0.3194 0.5208 0.023*
C40 0.64956 (18) 0.41244 (7) 0.51379 (8) 0.0189 (3)
N7 −0.14356 (16) 0.20756 (6) 0.60938 (7) 0.0211 (3)
H7 −0.2159 0.1904 0.5868 0.025*
C39 0.50887 (18) 0.38841 (7) 0.47694 (9) 0.0195 (3)
C28 −0.08427 (18) 0.18567 (7) 0.66985 (8) 0.0172 (3)
C27 −0.15311 (18) 0.13184 (7) 0.68976 (8) 0.0178 (3)
C36 −0.02993 (18) 0.32728 (7) 0.42846 (8) 0.0177 (3)
C41 0.6897 (2) 0.46544 (8) 0.49946 (10) 0.0251 (4)
H41 0.6331 0.4858 0.4661 0.030*
C32 −0.26386 (18) 0.33195 (7) 0.35478 (9) 0.0195 (3)
H32 −0.3619 0.3187 0.3437 0.023*
C37 0.19986 (18) 0.32603 (7) 0.50953 (9) 0.0194 (3)
H37A 0.2156 0.3153 0.5597 0.023*
H37B 0.1901 0.3650 0.5085 0.023*
C23 −0.3065 (2) 0.06086 (8) 0.65665 (10) 0.0282 (4)
H23 −0.3722 0.0445 0.6230 0.034*
C26 −0.11910 (18) 0.10871 (7) 0.75624 (9) 0.0187 (3)
H26 −0.0554 0.1263 0.7896 0.022*
C31 −0.17940 (18) 0.30923 (7) 0.41132 (8) 0.0175 (3)
H31 −0.2227 0.2815 0.4384 0.021*
C24 −0.2747 (2) 0.03374 (7) 0.72098 (10) 0.0256 (4)
H24 −0.3149 −0.0004 0.7293 0.031*
C30 0.01142 (18) 0.25116 (7) 0.51395 (9) 0.0186 (3)
H30A 0.1032 0.2313 0.5285 0.022*
H30B −0.0431 0.2301 0.4775 0.022*
C33 −0.20453 (19) 0.37409 (8) 0.31463 (9) 0.0238 (4)
H33 −0.2608 0.3889 0.2762 0.029*
C34 −0.0595 (2) 0.39369 (8) 0.33289 (10) 0.0262 (4)
H34 −0.0198 0.4228 0.3073 0.031*
C43 0.8975 (2) 0.45549 (8) 0.58395 (10) 0.0259 (4)
H43 0.9832 0.4691 0.6088 0.031*
C44 0.8496 (2) 0.40288 (7) 0.59447 (9) 0.0241 (4)
H44 0.9063 0.3814 0.6265 0.029*
C29 −0.0926 (2) 0.25855 (7) 0.57982 (9) 0.0210 (4)
H29A −0.0365 0.2783 0.6171 0.025*
H29B −0.1823 0.2797 0.5658 0.025*
C42 0.8154 (2) 0.48745 (8) 0.53567 (10) 0.0272 (4)
H42 0.8442 0.5230 0.5277 0.033*
C38 0.34208 (19) 0.30960 (7) 0.46552 (9) 0.0211 (4)
H38A 0.3565 0.2709 0.4686 0.025*
H38B 0.3260 0.3190 0.4149 0.025*
C35 0.02825 (19) 0.37092 (7) 0.38850 (9) 0.0218 (4)
H35 0.1259 0.3846 0.3994 0.026*
C25 −0.18174 (19) 0.05870 (7) 0.77240 (9) 0.0218 (4)
H25 −0.1616 0.0423 0.8169 0.026*
O1 0.51720 (13) 0.20741 (5) 0.55318 (6) 0.0224 (3)
O2 0.92905 (13) 0.41536 (5) 0.82007 (6) 0.0233 (3)
N5 1.22283 (16) 0.37938 (6) 0.69577 (7) 0.0204 (3)
N3 0.55536 (15) 0.30360 (6) 0.77265 (7) 0.0206 (3)
N2 0.35218 (16) 0.20593 (6) 0.64857 (7) 0.0210 (3)
H2 0.2804 0.1881 0.6699 0.025*
N4 0.97851 (15) 0.33578 (6) 0.76493 (7) 0.0183 (3)
H4 1.0416 0.3178 0.7385 0.022*
N1 0.24906 (17) 0.10774 (6) 0.61151 (8) 0.0251 (3)
C5 0.35355 (18) 0.13041 (7) 0.56756 (9) 0.0183 (3)
C6 0.41614 (18) 0.18486 (7) 0.58916 (8) 0.0175 (3)
C17 1.00987 (18) 0.38738 (7) 0.78022 (8) 0.0179 (3)
C18 1.15194 (18) 0.41036 (7) 0.74477 (9) 0.0179 (3)
C9 0.47424 (18) 0.32890 (7) 0.82781 (8) 0.0174 (3)
C11 0.24738 (19) 0.33473 (7) 0.90377 (9) 0.0201 (3)
H11 0.1500 0.3219 0.9160 0.024*
C22 1.3487 (2) 0.39964 (7) 0.66449 (9) 0.0225 (4)
H22 1.4002 0.3784 0.6308 0.027*
C21 1.4069 (2) 0.45028 (8) 0.67933 (10) 0.0259 (4)
H21 1.4951 0.4628 0.6562 0.031*
C14 0.53710 (19) 0.37270 (7) 0.86626 (9) 0.0223 (4)
H14 0.6336 0.3863 0.8538 0.027*
C15 0.69885 (18) 0.32599 (7) 0.74607 (9) 0.0190 (3)
H15A 0.6910 0.3650 0.7458 0.023*
H15B 0.7138 0.3142 0.6964 0.023*
C8 0.50815 (18) 0.25151 (7) 0.74369 (9) 0.0188 (3)
H8A 0.4570 0.2311 0.7814 0.023*
H8B 0.5992 0.2316 0.7291 0.023*
C13 0.4555 (2) 0.39580 (8) 0.92285 (10) 0.0258 (4)
H13 0.4988 0.4247 0.9480 0.031*
C10 0.32600 (18) 0.31133 (7) 0.84680 (8) 0.0176 (3)
H10 0.2797 0.2835 0.8207 0.021*
C12 0.3113 (2) 0.37699 (7) 0.94294 (9) 0.0241 (4)
H12 0.2588 0.3923 0.9817 0.029*
C7 0.39857 (19) 0.25749 (7) 0.67850 (9) 0.0208 (3)
H7A 0.3071 0.2771 0.6933 0.025*
H7B 0.4493 0.2784 0.6411 0.025*
C16 0.84045 (19) 0.30946 (7) 0.79192 (9) 0.0198 (3)
H16A 0.8245 0.3195 0.8422 0.024*
H16B 0.8536 0.2707 0.7898 0.024*
C1 0.1974 (2) 0.05894 (8) 0.59321 (10) 0.0290 (4)
H1 0.1244 0.0427 0.6229 0.035*
C4 0.40508 (19) 0.10617 (7) 0.50462 (9) 0.0219 (4)
H4A 0.4750 0.1237 0.4747 0.026*
C3 0.3509 (2) 0.05546 (8) 0.48688 (10) 0.0269 (4)
H3 0.3842 0.0381 0.4451 0.032*
C19 1.2014 (2) 0.46160 (8) 0.76317 (10) 0.0272 (4)
H19 1.1488 0.4819 0.7975 0.033*
C20 1.3310 (2) 0.48193 (8) 0.72935 (11) 0.0310 (4)
H20 1.3666 0.5164 0.7401 0.037*
C2 0.2463 (2) 0.03102 (7) 0.53257 (10) 0.0285 (4)
H2A 0.2095 −0.0035 0.5228 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0171 (6) 0.0243 (6) 0.0225 (6) −0.0026 (5) −0.0031 (5) −0.0003 (5)
O4 0.0194 (6) 0.0311 (7) 0.0280 (6) 0.0025 (5) −0.0047 (5) 0.0053 (5)
N10 0.0197 (7) 0.0244 (8) 0.0191 (7) −0.0006 (6) −0.0016 (5) −0.0002 (6)
N8 0.0154 (7) 0.0250 (8) 0.0226 (7) −0.0057 (6) −0.0056 (5) 0.0064 (6)
N6 0.0304 (8) 0.0253 (8) 0.0200 (7) −0.0056 (6) −0.0018 (6) −0.0029 (6)
N9 0.0112 (7) 0.0268 (8) 0.0203 (7) 0.0014 (5) −0.0017 (5) 0.0021 (6)
C40 0.0159 (8) 0.0244 (9) 0.0164 (8) 0.0026 (7) 0.0040 (6) 0.0003 (7)
N7 0.0205 (7) 0.0231 (8) 0.0196 (7) −0.0061 (6) −0.0039 (5) 0.0019 (6)
C39 0.0156 (8) 0.0264 (9) 0.0166 (8) 0.0031 (7) 0.0022 (6) −0.0003 (7)
C28 0.0147 (8) 0.0208 (8) 0.0163 (8) 0.0016 (6) 0.0031 (6) −0.0018 (6)
C27 0.0156 (8) 0.0195 (9) 0.0184 (8) 0.0007 (6) 0.0020 (6) −0.0029 (6)
C36 0.0148 (8) 0.0224 (9) 0.0157 (8) 0.0014 (6) 0.0001 (6) −0.0013 (6)
C41 0.0189 (9) 0.0280 (10) 0.0284 (9) 0.0027 (7) 0.0011 (7) 0.0054 (7)
C32 0.0130 (8) 0.0256 (9) 0.0198 (8) 0.0029 (6) −0.0012 (6) −0.0037 (7)
C37 0.0155 (8) 0.0240 (9) 0.0187 (8) −0.0035 (6) −0.0024 (6) 0.0016 (7)
C23 0.0348 (10) 0.0245 (10) 0.0253 (9) −0.0089 (8) −0.0011 (8) −0.0053 (7)
C26 0.0134 (8) 0.0222 (9) 0.0205 (8) 0.0020 (6) 0.0013 (6) −0.0013 (7)
C31 0.0155 (8) 0.0202 (8) 0.0170 (8) 0.0003 (6) 0.0023 (6) −0.0020 (6)
C24 0.0270 (9) 0.0190 (9) 0.0310 (10) −0.0018 (7) 0.0059 (7) −0.0005 (7)
C30 0.0149 (8) 0.0206 (9) 0.0201 (8) −0.0001 (6) −0.0036 (6) 0.0021 (7)
C33 0.0189 (9) 0.0315 (10) 0.0209 (8) 0.0065 (7) −0.0015 (7) 0.0043 (7)
C34 0.0233 (9) 0.0285 (10) 0.0269 (9) 0.0007 (7) 0.0022 (7) 0.0093 (8)
C43 0.0217 (9) 0.0307 (10) 0.0254 (9) −0.0055 (7) −0.0003 (7) −0.0031 (8)
C44 0.0219 (9) 0.0292 (10) 0.0209 (8) −0.0017 (7) −0.0047 (7) 0.0017 (7)
C29 0.0244 (9) 0.0206 (9) 0.0181 (8) −0.0013 (7) −0.0006 (7) 0.0012 (7)
C42 0.0222 (9) 0.0243 (10) 0.0353 (10) −0.0037 (7) 0.0042 (7) 0.0014 (8)
C38 0.0188 (8) 0.0254 (9) 0.0191 (8) −0.0002 (7) −0.0018 (6) −0.0010 (7)
C35 0.0145 (8) 0.0266 (9) 0.0243 (9) −0.0023 (7) 0.0000 (6) 0.0028 (7)
C25 0.0198 (8) 0.0220 (9) 0.0238 (9) 0.0040 (7) 0.0029 (7) 0.0037 (7)
O1 0.0169 (6) 0.0250 (6) 0.0253 (6) −0.0022 (5) 0.0045 (5) −0.0001 (5)
O2 0.0182 (6) 0.0255 (7) 0.0262 (6) 0.0028 (5) 0.0042 (5) −0.0038 (5)
N5 0.0199 (7) 0.0221 (8) 0.0192 (7) −0.0011 (6) 0.0012 (5) −0.0008 (6)
N3 0.0152 (7) 0.0252 (8) 0.0214 (7) −0.0044 (6) 0.0057 (5) −0.0062 (6)
N2 0.0204 (7) 0.0239 (8) 0.0187 (7) −0.0054 (6) 0.0038 (5) −0.0026 (6)
N4 0.0126 (6) 0.0212 (7) 0.0211 (7) 0.0018 (5) 0.0015 (5) −0.0030 (6)
N1 0.0278 (8) 0.0275 (8) 0.0199 (7) −0.0065 (6) 0.0022 (6) 0.0007 (6)
C5 0.0146 (8) 0.0220 (9) 0.0183 (8) 0.0008 (6) −0.0011 (6) 0.0026 (7)
C6 0.0131 (8) 0.0218 (9) 0.0177 (8) 0.0015 (6) −0.0027 (6) 0.0004 (6)
C17 0.0146 (8) 0.0226 (9) 0.0165 (8) 0.0032 (6) −0.0032 (6) 0.0004 (7)
C18 0.0159 (8) 0.0210 (9) 0.0168 (8) 0.0026 (6) −0.0033 (6) 0.0010 (6)
C9 0.0145 (8) 0.0207 (9) 0.0172 (8) 0.0026 (6) 0.0003 (6) 0.0015 (6)
C11 0.0156 (8) 0.0251 (9) 0.0197 (8) 0.0050 (7) 0.0016 (6) 0.0042 (7)
C22 0.0214 (9) 0.0273 (9) 0.0188 (8) −0.0027 (7) 0.0035 (6) −0.0019 (7)
C21 0.0233 (9) 0.0286 (10) 0.0260 (9) −0.0062 (7) 0.0043 (7) 0.0012 (7)
C14 0.0160 (8) 0.0250 (9) 0.0257 (9) −0.0005 (7) 0.0009 (7) −0.0039 (7)
C15 0.0146 (8) 0.0240 (9) 0.0185 (8) −0.0029 (6) 0.0033 (6) −0.0022 (7)
C8 0.0161 (8) 0.0215 (9) 0.0190 (8) 0.0001 (6) 0.0037 (6) −0.0029 (7)
C13 0.0199 (9) 0.0261 (10) 0.0312 (10) 0.0028 (7) −0.0015 (7) −0.0093 (8)
C10 0.0164 (8) 0.0198 (8) 0.0166 (8) 0.0007 (6) −0.0013 (6) 0.0021 (6)
C12 0.0231 (9) 0.0275 (9) 0.0216 (8) 0.0081 (7) 0.0021 (7) −0.0040 (7)
C7 0.0203 (8) 0.0216 (9) 0.0205 (8) −0.0005 (7) 0.0011 (6) −0.0017 (7)
C16 0.0182 (8) 0.0214 (9) 0.0198 (8) 0.0001 (7) 0.0033 (6) 0.0009 (7)
C1 0.0351 (10) 0.0271 (10) 0.0250 (9) −0.0109 (8) 0.0020 (8) 0.0043 (8)
C4 0.0189 (8) 0.0243 (9) 0.0225 (8) 0.0006 (7) 0.0020 (6) −0.0002 (7)
C3 0.0299 (10) 0.0250 (10) 0.0260 (9) 0.0030 (7) 0.0010 (7) −0.0057 (7)
C19 0.0217 (9) 0.0260 (10) 0.0339 (10) −0.0010 (7) 0.0048 (7) −0.0086 (8)
C20 0.0259 (10) 0.0246 (10) 0.0427 (11) −0.0076 (8) 0.0060 (8) −0.0068 (8)
C2 0.0345 (10) 0.0199 (9) 0.0310 (10) −0.0042 (8) −0.0046 (8) 0.0006 (8)

Geometric parameters (Å, º)

O3—C28 1.236 (2) O1—C6 1.235 (2)
O4—C39 1.227 (2) O2—C17 1.232 (2)
N10—C40 1.340 (2) N5—C18 1.338 (2)
N10—C44 1.337 (2) N5—C22 1.335 (2)
N8—C36 1.390 (2) N3—C9 1.390 (2)
N8—C37 1.449 (2) N3—C15 1.449 (2)
N8—C30 1.452 (2) N3—C8 1.455 (2)
N6—C27 1.344 (2) N2—H2 0.8600
N6—C23 1.336 (2) N2—C6 1.337 (2)
N9—H9 0.8600 N2—C7 1.448 (2)
N9—C39 1.341 (2) N4—H4 0.8600
N9—C38 1.454 (2) N4—C17 1.338 (2)
C40—C39 1.509 (2) N4—C16 1.452 (2)
C40—C41 1.387 (3) N1—C5 1.342 (2)
N7—H7 0.8600 N1—C1 1.333 (2)
N7—C28 1.336 (2) C5—C6 1.508 (2)
N7—C29 1.448 (2) C5—C4 1.383 (2)
C28—C27 1.509 (2) C17—C18 1.508 (2)
C27—C26 1.381 (2) C18—C19 1.383 (3)
C36—C31 1.400 (2) C9—C14 1.404 (2)
C36—C35 1.405 (2) C9—C10 1.401 (2)
C41—H41 0.9300 C11—H11 0.9300
C41—C42 1.382 (3) C11—C10 1.383 (2)
C32—H32 0.9300 C11—C12 1.385 (3)
C32—C31 1.385 (2) C22—H22 0.9300
C32—C33 1.382 (3) C22—C21 1.380 (3)
C37—H37A 0.9700 C21—H21 0.9300
C37—H37B 0.9700 C21—C20 1.381 (3)
C37—C38 1.534 (2) C14—H14 0.9300
C23—H23 0.9300 C14—C13 1.388 (2)
C23—C24 1.387 (3) C15—H15A 0.9700
C26—H26 0.9300 C15—H15B 0.9700
C26—C25 1.388 (2) C15—C16 1.536 (2)
C31—H31 0.9300 C8—H8A 0.9700
C24—H24 0.9300 C8—H8B 0.9700
C24—C25 1.382 (3) C8—C7 1.529 (2)
C30—H30A 0.9700 C13—H13 0.9300
C30—H30B 0.9700 C13—C12 1.384 (3)
C30—C29 1.528 (2) C10—H10 0.9300
C33—H33 0.9300 C12—H12 0.9300
C33—C34 1.383 (3) C7—H7A 0.9700
C34—H34 0.9300 C7—H7B 0.9700
C34—C35 1.388 (3) C16—H16A 0.9700
C43—H43 0.9300 C16—H16B 0.9700
C43—C44 1.384 (3) C1—H1 0.9300
C43—C42 1.382 (3) C1—C2 1.384 (3)
C44—H44 0.9300 C4—H4A 0.9300
C29—H29A 0.9700 C4—C3 1.381 (3)
C29—H29B 0.9700 C3—H3 0.9300
C42—H42 0.9300 C3—C2 1.381 (3)
C38—H38A 0.9700 C19—H19 0.9300
C38—H38B 0.9700 C19—C20 1.382 (3)
C35—H35 0.9300 C20—H20 0.9300
C25—H25 0.9300 C2—H2A 0.9300
C44—N10—C40 116.80 (15) C22—N5—C18 117.06 (15)
C36—N8—C37 121.20 (14) C9—N3—C15 120.88 (14)
C36—N8—C30 121.79 (13) C9—N3—C8 121.83 (13)
C37—N8—C30 117.01 (13) C15—N3—C8 117.07 (13)
C23—N6—C27 116.90 (15) C6—N2—H2 118.6
C39—N9—H9 119.3 C6—N2—C7 122.80 (14)
C39—N9—C38 121.41 (14) C7—N2—H2 118.6
C38—N9—H9 119.3 C17—N4—H4 119.2
N10—C40—C39 117.07 (15) C17—N4—C16 121.59 (13)
N10—C40—C41 123.47 (16) C16—N4—H4 119.2
C41—C40—C39 119.42 (15) C1—N1—C5 117.02 (15)
C28—N7—H7 118.2 N1—C5—C6 117.30 (14)
C28—N7—C29 123.57 (14) N1—C5—C4 123.14 (16)
C29—N7—H7 118.2 C4—C5—C6 119.55 (14)
O4—C39—N9 123.26 (16) O1—C6—N2 124.18 (16)
O4—C39—C40 121.20 (16) O1—C6—C5 121.22 (14)
N9—C39—C40 115.52 (14) N2—C6—C5 114.60 (14)
O3—C28—N7 124.11 (15) O2—C17—N4 123.34 (15)
O3—C28—C27 121.46 (14) O2—C17—C18 120.88 (15)
N7—C28—C27 114.42 (14) N4—C17—C18 115.78 (14)
N6—C27—C28 116.48 (14) N5—C18—C17 117.03 (15)
N6—C27—C26 123.36 (15) N5—C18—C19 123.43 (15)
C26—C27—C28 120.16 (15) C19—C18—C17 119.54 (15)
N8—C36—C31 120.78 (15) N3—C9—C14 121.52 (14)
N8—C36—C35 121.65 (15) N3—C9—C10 120.73 (15)
C31—C36—C35 117.57 (15) C10—C9—C14 117.75 (15)
C40—C41—H41 120.7 C10—C11—H11 119.5
C42—C41—C40 118.70 (17) C10—C11—C12 121.09 (16)
C42—C41—H41 120.7 C12—C11—H11 119.5
C31—C32—H32 119.5 N5—C22—H22 118.1
C33—C32—H32 119.5 N5—C22—C21 123.70 (16)
C33—C32—C31 120.95 (15) C21—C22—H22 118.1
N8—C37—H37A 108.9 C22—C21—H21 120.8
N8—C37—H37B 108.9 C22—C21—C20 118.38 (16)
N8—C37—C38 113.23 (14) C20—C21—H21 120.8
H37A—C37—H37B 107.7 C9—C14—H14 120.0
C38—C37—H37A 108.9 C13—C14—C9 120.08 (16)
C38—C37—H37B 108.9 C13—C14—H14 120.0
N6—C23—H23 118.1 N3—C15—H15A 109.0
N6—C23—C24 123.76 (17) N3—C15—H15B 109.0
C24—C23—H23 118.1 N3—C15—C16 113.09 (14)
C27—C26—H26 120.6 H15A—C15—H15B 107.8
C27—C26—C25 118.81 (16) C16—C15—H15A 109.0
C25—C26—H26 120.6 C16—C15—H15B 109.0
C36—C31—H31 119.4 N3—C8—H8A 109.3
C32—C31—C36 121.14 (15) N3—C8—H8B 109.3
C32—C31—H31 119.4 N3—C8—C7 111.76 (14)
C23—C24—H24 120.8 H8A—C8—H8B 107.9
C25—C24—C23 118.43 (17) C7—C8—H8A 109.3
C25—C24—H24 120.8 C7—C8—H8B 109.3
N8—C30—H30A 109.2 C14—C13—H13 119.1
N8—C30—H30B 109.2 C12—C13—C14 121.79 (17)
N8—C30—C29 112.07 (14) C12—C13—H13 119.1
H30A—C30—H30B 107.9 C9—C10—H10 119.5
C29—C30—H30A 109.2 C11—C10—C9 121.06 (16)
C29—C30—H30B 109.2 C11—C10—H10 119.5
C32—C33—H33 120.8 C11—C12—H12 120.9
C32—C33—C34 118.44 (16) C13—C12—C11 118.16 (15)
C34—C33—H33 120.8 C13—C12—H12 120.9
C33—C34—H34 119.2 N2—C7—C8 112.33 (14)
C33—C34—C35 121.54 (16) N2—C7—H7A 109.1
C35—C34—H34 119.2 N2—C7—H7B 109.1
C44—C43—H43 120.7 C8—C7—H7A 109.1
C42—C43—H43 120.7 C8—C7—H7B 109.1
C42—C43—C44 118.59 (17) H7A—C7—H7B 107.9
N10—C44—C43 123.74 (17) N4—C16—C15 110.18 (13)
N10—C44—H44 118.1 N4—C16—H16A 109.6
C43—C44—H44 118.1 N4—C16—H16B 109.6
N7—C29—C30 112.14 (14) C15—C16—H16A 109.6
N7—C29—H29A 109.2 C15—C16—H16B 109.6
N7—C29—H29B 109.2 H16A—C16—H16B 108.1
C30—C29—H29A 109.2 N1—C1—H1 118.2
C30—C29—H29B 109.2 N1—C1—C2 123.69 (17)
H29A—C29—H29B 107.9 C2—C1—H1 118.2
C41—C42—C43 118.68 (17) C5—C4—H4A 120.5
C41—C42—H42 120.7 C3—C4—C5 118.91 (16)
C43—C42—H42 120.7 C3—C4—H4A 120.5
N9—C38—C37 110.24 (13) C4—C3—H3 120.7
N9—C38—H38A 109.6 C4—C3—C2 118.60 (17)
N9—C38—H38B 109.6 C2—C3—H3 120.7
C37—C38—H38A 109.6 C18—C19—H19 120.8
C37—C38—H38B 109.6 C20—C19—C18 118.40 (17)
H38A—C38—H38B 108.1 C20—C19—H19 120.8
C36—C35—H35 119.9 C21—C20—C19 119.02 (18)
C34—C35—C36 120.28 (16) C21—C20—H20 120.5
C34—C35—H35 119.9 C19—C20—H20 120.5
C26—C25—H25 120.7 C1—C2—H2A 120.7
C24—C25—C26 118.65 (16) C3—C2—C1 118.58 (17)
C24—C25—H25 120.7 C3—C2—H2A 120.7

Hydrogen-bond geometry (Å, º)

Cg5 and Cg6 are the centroids of the C9–C14 benzene and C31–C36 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
N2—H2···O3 0.86 2.44 3.1099 (18) 135
N7—H7···O1i 0.86 2.42 3.0998 (18) 136
C24—H24···O2ii 0.93 2.48 3.311 (2) 149
C25—H25···O4iii 0.93 2.54 3.213 (2) 129
C8—H8A···Cg6iv 0.97 2.72 3.6468 (18) 161
C30—H30B···Cg5v 0.97 2.74 3.6584 (18) 159

Symmetry codes: (i) x−1, y, z; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z+1/2; (v) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5691).

References

  1. Adolph, M., Zevaco, T. A., Walter, O., Dinjus, E. & Döring, M. (2012). Polyhedron, 48, 92–98.
  2. Agilent (2012). CrysAlis PRO Agilent Technologies Inc., Santa Clara, CA, USA.
  3. Barnes, D. J., Chapman, R. L., Vagg, R. S. & Watton, E. C. (1978). J. Chem. Eng. Data, 23, 349–350.
  4. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Cornman, C. R., Zovinka, E. P., Boyajian, Y. D., Olmstead, M. M. & Noll, B. C. (1999). Inorg. Chim. Acta, 285, 134–137.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. A., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871. [DOI] [PubMed]
  8. Lee, S. J., Lee, S. S., Lee, J. Y. & Jung, J. H. (2006). Chem. Mater. 18, 4713–4715.
  9. Munro, O. Q. & Wilson, C. (2010). Acta Cryst. C66, o535–o539. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Singh, A. K., Jacob, W., Boudalis, A. K., Tuchagues, J.-P. & Mukherjee, R. (2008). Eur. J. Inorg. Chem. pp. 2820–2829.
  12. Song, Y. J., Lee, J. H., Koo, H. G., Lee, T. G., Myoung, S.-H., Kim, C., Kim, S.-J. & Kim, Y. (2010). Inorg. Chem. Commun. 13, 753–756.
  13. Yan, Y., Zhao, W., Bhagavathy, G. V., Faurie, A., Mosey, N. J. & Petitjean, A. (2012). Chem. Commun. 48, 7829–7831. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813008696/xu5691sup1.cif

e-69-0o677-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813008696/xu5691Isup2.hkl

e-69-0o677-Isup2.hkl (345KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES