Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 10;69(Pt 5):o683. doi: 10.1107/S1600536813009033

5-(Adamantan-1-yl)-N-methyl-1,3,4-thia­diazol-2-amine

Abdul-Malek S Al-Tamimi a, Ahmed M Alafeefy a, Ali A El-Emam b,, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3647877  PMID: 23723843

Abstract

In the title compound, C13H19N3S, the methyl­amine substituent is coplanar with the thia­diazole ring to which it is attached [C—N—C—S torsion angle = 175.9 (2)°] and the amine H atom is syn to the thia­diazole S atom. Supra­molecular chains along [101], sustained by N—H⋯N hydrogen bonding, feature in the crystal packing.

Related literature  

For the biological activity of 1,3,4-thia­diazol-2-amine derivatives, see: Carvalho et al. (2008); Foroumadi et al. (1999), and of adamantane derivatives, see: Togo et al. (1968); El-Emam et al. (2004). For related structures, see: El-Emam et al. (2012); Almutairi et al. (2012). For the synthesis of the title compound, see: El-Emam & Lehmann (1994).graphic file with name e-69-0o683-scheme1.jpg

Experimental  

Crystal data  

  • C13H19N3S

  • M r = 249.37

  • Monoclinic, Inline graphic

  • a = 10.4394 (12) Å

  • b = 13.0910 (13) Å

  • c = 10.8871 (15) Å

  • β = 118.008 (16)°

  • V = 1313.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.887, T max = 1.000

  • 6791 measured reflections

  • 3027 independent reflections

  • 1975 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.144

  • S = 1.04

  • 3027 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813009033/hg5305sup1.cif

e-69-0o683-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009033/hg5305Isup2.hkl

e-69-0o683-Isup2.hkl (148.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009033/hg5305Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1i 0.87 (1) 2.15 (1) 3.021 (3) 179 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research, Salman bin Abdulaziz University, Alkharj, Saudi Arabia, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/03).

supplementary crystallographic information

Comment

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, 1,3,4-thiadiazole derivatives were reported to exhibit marked anti-trypanosomal (Carvalho et al., 2008) and anti-microbial activities (Foroumadi et al., 1999). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies of these (El-Emam et al., 2012; Almutairi et al., 2012), we report herein the X-ray crystallographic data of the title compound, (I).

In (I), Fig. 1, the five-membered ring is planar (r.m.s. deviation = 0.009 Å) and the methylamine substituent is co-planar: the C13—N3—C2—S1 torsion angle is 175.9 (2)°. The amine-H atom is syn to the thiadiazole-S1 atom. N—H···N hydrogen bonds feature in the crystal packing, leading to supramolecular chains along [1 0 1], Fig. 2 and Table 1. Chains pack with no specific intermolecular interactions between them. Globally, the crystal structure comprises alternating layers of hydrophilic and hydrophobic regions, Fig. 3.

Experimental

The title compound was prepared by dehydrative cyclization of 1-(1-adamantylcarbonyl)-4-methylthiosemicarbazide using sulfuric acid at room temperature for 24 h as previously described (El-Emam & Lehmann, 1994). Single crystals were obtained by slow evaporation from its CHCl3:EtOH solution at room temperature; M.pt: 441–443 K.

Refinement

The C-bound H-atoms were placed in calculated positions [C—H = 0.96 to 0.98 Å, Uiso(H) = 1.2 or 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atom was refined with N—H = 0.88±0.01 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular chain in (I) sustained by N—H···N hydrogen bonds shown as orange dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents for (I).

Crystal data

C13H19N3S F(000) = 536
Mr = 249.37 Dx = 1.261 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1515 reflections
a = 10.4394 (12) Å θ = 3.1–27.5°
b = 13.0910 (13) Å µ = 0.23 mm1
c = 10.8871 (15) Å T = 295 K
β = 118.008 (16)° Prism, colourless
V = 1313.6 (3) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3027 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1975 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.039
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 3.1°
ω scan h = −13→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −16→17
Tmin = 0.887, Tmax = 1.000 l = −13→14
6791 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1967P] where P = (Fo2 + 2Fc2)/3
3027 reflections (Δ/σ)max < 0.001
159 parameters Δρmax = 0.24 e Å3
1 restraint Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21237 (6) 0.64435 (5) 0.41269 (6) 0.0480 (2)
N1 0.45652 (19) 0.66351 (15) 0.62872 (19) 0.0446 (5)
N2 0.43886 (18) 0.75355 (15) 0.55520 (19) 0.0455 (5)
N3 0.2711 (2) 0.83210 (16) 0.3481 (2) 0.0514 (5)
H3 0.1801 (12) 0.8326 (19) 0.2850 (19) 0.047 (7)*
C1 0.3500 (2) 0.60016 (19) 0.5713 (2) 0.0398 (5)
C2 0.3152 (2) 0.75433 (18) 0.4397 (2) 0.0404 (5)
C3 0.3392 (2) 0.49988 (18) 0.6325 (2) 0.0398 (5)
C4 0.4805 (3) 0.4770 (2) 0.7646 (3) 0.0614 (7)
H4A 0.5016 0.5321 0.8308 0.074*
H4B 0.5598 0.4725 0.7420 0.074*
C5 0.4676 (3) 0.3761 (2) 0.8298 (3) 0.0698 (9)
H5 0.5580 0.3627 0.9150 0.084*
C6 0.3426 (3) 0.3824 (3) 0.8635 (3) 0.0744 (9)
H6A 0.3359 0.3190 0.9062 0.089*
H6B 0.3600 0.4373 0.9292 0.089*
C7 0.2019 (3) 0.4013 (2) 0.7331 (3) 0.0614 (7)
H7 0.1221 0.4047 0.7564 0.074*
C8 0.2149 (3) 0.5035 (2) 0.6717 (3) 0.0566 (7)
H8A 0.2337 0.5575 0.7391 0.068*
H8B 0.1242 0.5188 0.5896 0.068*
C9 0.3080 (3) 0.4115 (2) 0.5300 (3) 0.0605 (7)
H9A 0.3848 0.4073 0.5040 0.073*
H9B 0.2175 0.4242 0.4465 0.073*
C10 0.2977 (3) 0.3098 (2) 0.5956 (3) 0.0682 (8)
H10 0.2792 0.2540 0.5294 0.082*
C11 0.1735 (3) 0.3176 (2) 0.6301 (3) 0.0675 (8)
H11A 0.0840 0.3314 0.5459 0.081*
H11B 0.1625 0.2533 0.6683 0.081*
C12 0.4399 (3) 0.2912 (3) 0.7263 (4) 0.0807 (10)
H12A 0.4358 0.2262 0.7671 0.097*
H12B 0.5187 0.2882 0.7028 0.097*
C13 0.3567 (3) 0.9237 (2) 0.3810 (3) 0.0619 (7)
H13A 0.3160 0.9693 0.3028 0.093*
H13B 0.4544 0.9068 0.4020 0.093*
H13C 0.3570 0.9562 0.4602 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0374 (3) 0.0496 (4) 0.0422 (4) −0.0049 (3) 0.0063 (3) 0.0015 (3)
N1 0.0365 (9) 0.0478 (12) 0.0403 (11) 0.0009 (9) 0.0105 (8) 0.0020 (9)
N2 0.0361 (9) 0.0460 (12) 0.0435 (11) −0.0023 (9) 0.0096 (8) 0.0033 (10)
N3 0.0380 (10) 0.0503 (13) 0.0490 (13) −0.0012 (10) 0.0063 (9) 0.0077 (11)
C1 0.0314 (10) 0.0487 (14) 0.0366 (12) 0.0015 (10) 0.0138 (9) −0.0020 (11)
C2 0.0327 (10) 0.0455 (14) 0.0396 (12) 0.0020 (10) 0.0142 (9) 0.0001 (11)
C3 0.0366 (11) 0.0435 (13) 0.0388 (12) 0.0010 (10) 0.0171 (9) 0.0007 (11)
C4 0.0435 (13) 0.0650 (18) 0.0611 (17) −0.0039 (13) 0.0125 (12) 0.0184 (14)
C5 0.0500 (14) 0.070 (2) 0.0689 (19) −0.0026 (15) 0.0110 (14) 0.0242 (17)
C6 0.089 (2) 0.081 (2) 0.0559 (18) −0.0179 (18) 0.0364 (17) 0.0018 (16)
C7 0.0560 (15) 0.073 (2) 0.0647 (18) −0.0040 (14) 0.0364 (14) 0.0026 (15)
C8 0.0556 (14) 0.0574 (17) 0.0643 (17) 0.0008 (13) 0.0344 (13) −0.0009 (14)
C9 0.0785 (18) 0.0535 (16) 0.0597 (17) −0.0018 (14) 0.0408 (15) −0.0035 (14)
C10 0.095 (2) 0.0474 (16) 0.070 (2) −0.0086 (16) 0.0448 (18) −0.0112 (15)
C11 0.0611 (16) 0.0589 (18) 0.075 (2) −0.0128 (15) 0.0254 (15) 0.0020 (16)
C12 0.081 (2) 0.066 (2) 0.115 (3) 0.0235 (18) 0.062 (2) 0.034 (2)
C13 0.0534 (14) 0.0537 (17) 0.0642 (18) −0.0072 (13) 0.0157 (13) 0.0063 (14)

Geometric parameters (Å, º)

S1—C2 1.737 (2) C6—H6B 0.9700
S1—C1 1.747 (2) C7—C11 1.495 (4)
N1—C1 1.289 (3) C7—C8 1.530 (4)
N1—N2 1.388 (3) C7—H7 0.9800
N2—C2 1.313 (3) C8—H8A 0.9700
N3—C2 1.346 (3) C8—H8B 0.9700
N3—C13 1.437 (3) C9—C10 1.538 (4)
N3—H3 0.872 (9) C9—H9A 0.9700
C1—C3 1.500 (3) C9—H9B 0.9700
C3—C4 1.530 (3) C10—C11 1.513 (4)
C3—C9 1.532 (3) C10—C12 1.518 (4)
C3—C8 1.545 (3) C10—H10 0.9800
C4—C5 1.535 (4) C11—H11A 0.9700
C4—H4A 0.9700 C11—H11B 0.9700
C4—H4B 0.9700 C12—H12A 0.9700
C5—C12 1.511 (4) C12—H12B 0.9700
C5—C6 1.514 (4) C13—H13A 0.9600
C5—H5 0.9800 C13—H13B 0.9600
C6—C7 1.509 (4) C13—H13C 0.9600
C6—H6A 0.9700
C2—S1—C1 87.21 (11) C11—C7—H7 109.5
C1—N1—N2 114.59 (18) C6—C7—H7 109.5
C2—N2—N1 111.34 (18) C8—C7—H7 109.5
C2—N3—C13 119.4 (2) C7—C8—C3 110.6 (2)
C2—N3—H3 117.1 (16) C7—C8—H8A 109.5
C13—N3—H3 120.7 (16) C3—C8—H8A 109.5
N1—C1—C3 125.1 (2) C7—C8—H8B 109.5
N1—C1—S1 112.82 (18) C3—C8—H8B 109.5
C3—C1—S1 122.04 (16) H8A—C8—H8B 108.1
N2—C2—N3 123.8 (2) C3—C9—C10 110.7 (2)
N2—C2—S1 114.02 (17) C3—C9—H9A 109.5
N3—C2—S1 122.18 (16) C10—C9—H9A 109.5
C1—C3—C4 110.38 (18) C3—C9—H9B 109.5
C1—C3—C9 111.84 (19) C10—C9—H9B 109.5
C4—C3—C9 108.5 (2) H9A—C9—H9B 108.1
C1—C3—C8 110.08 (19) C11—C10—C12 110.7 (2)
C4—C3—C8 108.1 (2) C11—C10—C9 108.1 (2)
C9—C3—C8 107.8 (2) C12—C10—C9 108.9 (2)
C3—C4—C5 110.3 (2) C11—C10—H10 109.7
C3—C4—H4A 109.6 C12—C10—H10 109.7
C5—C4—H4A 109.6 C9—C10—H10 109.7
C3—C4—H4B 109.6 C7—C11—C10 110.1 (2)
C5—C4—H4B 109.6 C7—C11—H11A 109.6
H4A—C4—H4B 108.1 C10—C11—H11A 109.6
C12—C5—C6 109.6 (2) C7—C11—H11B 109.6
C12—C5—C4 108.4 (3) C10—C11—H11B 109.6
C6—C5—C4 109.8 (3) H11A—C11—H11B 108.1
C12—C5—H5 109.7 C5—C12—C10 109.9 (2)
C6—C5—H5 109.7 C5—C12—H12A 109.7
C4—C5—H5 109.7 C10—C12—H12A 109.7
C7—C6—C5 110.5 (2) C5—C12—H12B 109.7
C7—C6—H6A 109.6 C10—C12—H12B 109.7
C5—C6—H6A 109.6 H12A—C12—H12B 108.2
C7—C6—H6B 109.6 N3—C13—H13A 109.5
C5—C6—H6B 109.6 N3—C13—H13B 109.5
H6A—C6—H6B 108.1 H13A—C13—H13B 109.5
C11—C7—C6 110.4 (3) N3—C13—H13C 109.5
C11—C7—C8 109.9 (2) H13A—C13—H13C 109.5
C6—C7—C8 108.0 (2) H13B—C13—H13C 109.5
C1—N1—N2—C2 −0.7 (3) C12—C5—C6—C7 −58.7 (3)
N2—N1—C1—C3 −177.1 (2) C4—C5—C6—C7 60.3 (3)
N2—N1—C1—S1 1.3 (2) C5—C6—C7—C11 58.9 (3)
C2—S1—C1—N1 −1.21 (18) C5—C6—C7—C8 −61.2 (3)
C2—S1—C1—C3 177.24 (19) C11—C7—C8—C3 −59.0 (3)
N1—N2—C2—N3 −179.5 (2) C6—C7—C8—C3 61.4 (3)
N1—N2—C2—S1 −0.3 (2) C1—C3—C8—C7 179.5 (2)
C13—N3—C2—N2 −5.0 (4) C4—C3—C8—C7 −59.9 (3)
C13—N3—C2—S1 175.9 (2) C9—C3—C8—C7 57.3 (3)
C1—S1—C2—N2 0.84 (18) C1—C3—C9—C10 179.9 (2)
C1—S1—C2—N3 −180.0 (2) C4—C3—C9—C10 57.9 (3)
N1—C1—C3—C4 −6.8 (3) C8—C3—C9—C10 −58.9 (3)
S1—C1—C3—C4 174.97 (17) C3—C9—C10—C11 61.2 (3)
N1—C1—C3—C9 −127.7 (2) C3—C9—C10—C12 −59.1 (3)
S1—C1—C3—C9 54.0 (3) C6—C7—C11—C10 −58.0 (3)
N1—C1—C3—C8 112.5 (2) C8—C7—C11—C10 60.9 (3)
S1—C1—C3—C8 −65.8 (2) C12—C10—C11—C7 57.7 (3)
C1—C3—C4—C5 178.1 (2) C9—C10—C11—C7 −61.5 (3)
C9—C3—C4—C5 −59.0 (3) C6—C5—C12—C10 57.9 (3)
C8—C3—C4—C5 57.7 (3) C4—C5—C12—C10 −61.9 (3)
C3—C4—C5—C12 61.2 (3) C11—C10—C12—C5 −57.8 (3)
C3—C4—C5—C6 −58.5 (3) C9—C10—C12—C5 61.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···N1i 0.87 (1) 2.15 (1) 3.021 (3) 179 (2)

Symmetry code: (i) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5305).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Carvalho, S. A., Lopes, F. A. S., Salomão, K., Romeiro, N. C., Wardell, S. M. S. V., de Castro, S. L., da Silva, E. F. & Fraga, C. A. M. (2008). Bioorg. Med. Chem. 16, 413–421. [DOI] [PubMed]
  5. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. [DOI] [PubMed]
  6. El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795. [DOI] [PMC free article] [PubMed]
  7. El-Emam, A. A. & Lehmann, J. (1994). Monatsh. Chem. 125, 587–591.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim.-Forsch. Drug. Res. 49, 1035–1038. [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813009033/hg5305sup1.cif

e-69-0o683-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009033/hg5305Isup2.hkl

e-69-0o683-Isup2.hkl (148.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009033/hg5305Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES