Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 10;69(Pt 5):o694. doi: 10.1107/S1600536813009227

4-(4-Bromo­styr­yl)-1-methylpyridinium tosyl­ate

M Krishna Kumar a, S Sudhahar a, B M Sornamurthy a, G Chakkaravarthi b,*, R Mohan Kumar a,*
PMCID: PMC3648231  PMID: 23723851

Abstract

In the cation of the title compound, C14H13BrN+·C7H7O3S, the dihedral angle between the benzene and pyridine rings is 8.34 (11)°. The Br atom is disordered over two positions with site occupancies of 0.74 (2) and 0.26 (2). The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O inter­actions. The crystal structure exhibits weak C—H⋯O and π–π [centroid–centroid distance = 3.7466 (17) Å] inter­actions, forming a three dimensional network.

Related literature  

For mol­ecular compounds with non-linear optical properties, see: Bosshard et al. (1995); Nalwa & Miyata (1997). For similar structures, see: Krishnakumar et al. (2012); Okada et al. (1990); Sivakumar et al. (2012).graphic file with name e-69-0o694-scheme1.jpg

Experimental  

Crystal data  

  • C14H13BrN+·C7H7O3S

  • M r = 446.35

  • Monoclinic, Inline graphic

  • a = 9.0502 (2) Å

  • b = 6.4201 (1) Å

  • c = 33.9280 (7) Å

  • β = 94.469 (1)°

  • V = 1965.33 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 295 K

  • 0.28 × 0.22 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.575, T max = 0.665

  • 22764 measured reflections

  • 5596 independent reflections

  • 3012 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.130

  • S = 1.01

  • 5596 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813009227/bt6900sup1.cif

e-69-0o694-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009227/bt6900Isup2.hkl

e-69-0o694-Isup2.hkl (268.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009227/bt6900Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1 0.93 2.57 3.415 (3) 151
C12—H12⋯O2i 0.93 2.39 3.247 (3) 153
C14—H14B⋯O1ii 0.96 2.53 3.438 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MK would like to thank the Council of Scientific and Industrial Research, New Delhi, India, for providing financial support [project No. 03 (1200)/11/EMR-II)].

supplementary crystallographic information

Comment

In continuation of our studies of molecular compounds with non linear optical properties which are used in optoelectronic and photonic devices (Bosshard et al., 1995; Nalwa & Miyata, 1997), we herewith report the crystal structure of the title compound (I) (Fig. 1).

The asymmetric unit of the title compound consists of C14H13BrN+ cations and C7H7O3S- anios. The geometric parameters of the title compound are agree well with those of reported structures (Krishnakumar et al., 2012; Sivakumar et al., 2012; Okada et al., 1990). In the cation, the bromine atom is disordered over two positions, with the site occupancies of 0.74 (2) and 0.26 (2). The cation is planar [torision angle C4-C7=C8-C9 = 178.1 (3)°] about the double bond between the two rings in the cation. The dihedral angle between the benzene ring and pyridinium ring in the cation is 8.34 (11)°.

The molecular structure is stabilized by weak intramolecular C-H···O interactions. In the crystal structure, adjacent anions and cations are linked by weak C—H···O (Table 1 & Fig.2) and π···π [Cg1···Cg2 (x,-1/2-y,1/2+z) = 3.7466 (17)Å and Cg2···Cg1 (x,1+y,z) distance = 3.7468 (17)Å; Cg1 and Cg2 are the centroids of the rings (C9/C10/C11/N1/C12/C13) and (C1-C6), respectively] interactions.

Experimental

The title compound was synthesized by the condensation of 4-methyl-N-methyl pyridinium tosylate, which was prepared from 4-picoline (4.65g, 5 mmol) and methyl p-toluenesulfonate (9.31g, 5 mmol), and 4-bromobenzaldehyde (9.24 g, 5 mmol) in the presence of piperidine. The single crystals suitable for X-ray diffraction were grown by slow evaporation method in room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C-H, C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The components of the anisotropic displacement parameters in the direction of C4 and C7 were restrained to be equal within an effective deviation of 0.001 using DELU command in SHELXL (Sheldrick, 2008). The disorder of the bromine ligand suggests also disorder of the aromatic ring to which it is attached, but no split model for this ring could be found.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of (I), viewed down b axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C14H13BrN+·C7H7O3S F(000) = 912
Mr = 446.35 Dx = 1.509 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4367 reflections
a = 9.0502 (2) Å θ = 2.4–24.1°
b = 6.4201 (1) Å µ = 2.22 mm1
c = 33.9280 (7) Å T = 295 K
β = 94.469 (1)° Block, orange
V = 1965.33 (7) Å3 0.28 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 5596 independent reflections
Radiation source: fine-focus sealed tube 3012 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
ω and φ scan θmax = 29.8°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.575, Tmax = 0.665 k = −8→8
22764 measured reflections l = −47→47

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.7449P] where P = (Fo2 + 2Fc2)/3
5596 reflections (Δ/σ)max < 0.001
256 parameters Δρmax = 0.34 e Å3
1 restraint Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.6169 (3) 0.7372 (4) 0.03376 (7) 0.0820 (5) 0.74 (2)
Br1A 0.661 (3) 0.7520 (14) 0.0342 (2) 0.114 (3) 0.26 (2)
S1 1.20686 (7) 0.07504 (10) 0.18347 (2) 0.04224 (18)
O1 1.07764 (19) −0.0120 (3) 0.19985 (6) 0.0565 (5)
O2 1.34369 (19) −0.0096 (3) 0.20147 (6) 0.0577 (5)
O3 1.2060 (3) 0.3000 (3) 0.18168 (7) 0.0682 (6)
N1 0.7301 (2) −0.7025 (3) 0.21855 (6) 0.0415 (5)
C1 0.6600 (4) 0.5062 (5) 0.06660 (8) 0.0565 (8)
C2 0.7976 (4) 0.4692 (5) 0.08326 (10) 0.0673 (9)
H2 0.8749 0.5597 0.0788 0.081*
C3 0.8230 (3) 0.2970 (5) 0.10686 (10) 0.0627 (8)
H3 0.9181 0.2728 0.1183 0.075*
C4 0.7112 (3) 0.1586 (4) 0.11408 (8) 0.0473 (6)
C5 0.5724 (3) 0.2032 (5) 0.09664 (11) 0.0670 (9)
H5 0.4941 0.1143 0.1009 0.080*
C6 0.5463 (4) 0.3750 (5) 0.07309 (11) 0.0714 (9)
H6 0.4514 0.4017 0.0616 0.086*
C7 0.7449 (3) −0.0240 (4) 0.13914 (8) 0.0504 (7)
H7 0.8441 −0.0491 0.1469 0.061*
C8 0.6481 (3) −0.1545 (5) 0.15144 (9) 0.0521 (7)
H8 0.5487 −0.1269 0.1443 0.063*
C9 0.6818 (3) −0.3409 (4) 0.17554 (8) 0.0455 (6)
C10 0.8234 (3) −0.4050 (4) 0.18908 (8) 0.0493 (7)
H10 0.9046 −0.3240 0.1837 0.059*
C11 0.8453 (3) −0.5847 (4) 0.21009 (8) 0.0470 (6)
H11 0.9411 −0.6258 0.2186 0.056*
C12 0.5923 (3) −0.6440 (5) 0.20655 (9) 0.0512 (7)
H12 0.5127 −0.7259 0.2128 0.061*
C13 0.5670 (3) −0.4672 (4) 0.18542 (9) 0.0530 (7)
H13 0.4700 −0.4300 0.1774 0.064*
C14 0.7558 (3) −0.8921 (4) 0.24243 (9) 0.0569 (7)
H14A 0.7714 −0.8550 0.2698 0.085*
H14B 0.8416 −0.9633 0.2343 0.085*
H14C 0.6709 −0.9818 0.2387 0.085*
C15 1.1957 (2) −0.0120 (4) 0.13392 (7) 0.0364 (5)
C16 1.1865 (3) −0.2225 (4) 0.12499 (9) 0.0510 (7)
H16 1.1866 −0.3207 0.1451 0.061*
C17 1.1773 (4) −0.2852 (4) 0.08614 (10) 0.0608 (8)
H17 1.1720 −0.4269 0.0805 0.073*
C18 1.1756 (3) −0.1453 (5) 0.05514 (9) 0.0552 (7)
C19 1.1841 (3) 0.0620 (4) 0.06475 (9) 0.0581 (8)
H19 1.1825 0.1602 0.0446 0.070*
C20 1.1949 (3) 0.1286 (4) 0.10329 (9) 0.0506 (7)
H20 1.2017 0.2703 0.1088 0.061*
C21 1.1620 (5) −0.2217 (6) 0.01292 (11) 0.0876 (12)
H21A 1.2117 −0.1265 −0.0034 0.131*
H21B 1.0592 −0.2301 0.0037 0.131*
H21C 1.2065 −0.3571 0.0117 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1112 (16) 0.0651 (6) 0.0679 (8) −0.0001 (6) −0.0054 (9) 0.0221 (5)
Br1A 0.221 (9) 0.0675 (15) 0.056 (2) −0.014 (4) 0.035 (3) 0.0058 (14)
S1 0.0401 (3) 0.0448 (3) 0.0418 (4) −0.0058 (3) 0.0029 (3) 0.0025 (3)
O1 0.0419 (10) 0.0793 (14) 0.0494 (12) −0.0104 (9) 0.0113 (9) 0.0024 (10)
O2 0.0403 (10) 0.0760 (13) 0.0552 (13) −0.0059 (9) −0.0076 (9) 0.0081 (11)
O3 0.0979 (16) 0.0441 (11) 0.0628 (15) −0.0029 (11) 0.0076 (12) −0.0069 (10)
N1 0.0467 (13) 0.0424 (11) 0.0358 (12) −0.0019 (9) 0.0053 (10) −0.0073 (9)
C1 0.081 (2) 0.0525 (16) 0.0361 (16) 0.0023 (15) 0.0046 (15) −0.0002 (13)
C2 0.064 (2) 0.070 (2) 0.069 (2) −0.0132 (16) 0.0120 (17) 0.0067 (17)
C3 0.0457 (17) 0.076 (2) 0.066 (2) 0.0034 (15) 0.0024 (15) 0.0074 (17)
C4 0.0510 (16) 0.0518 (14) 0.0388 (15) 0.0038 (12) 0.0018 (12) −0.0070 (11)
C5 0.0480 (17) 0.073 (2) 0.079 (2) −0.0073 (15) −0.0014 (16) 0.0167 (18)
C6 0.061 (2) 0.076 (2) 0.075 (2) 0.0052 (17) −0.0104 (17) 0.0167 (19)
C7 0.0467 (15) 0.0560 (15) 0.0480 (17) 0.0027 (13) −0.0005 (13) −0.0029 (12)
C8 0.0437 (15) 0.0581 (16) 0.0536 (18) 0.0031 (13) −0.0022 (13) −0.0059 (14)
C9 0.0499 (16) 0.0482 (14) 0.0382 (15) −0.0011 (12) 0.0026 (12) −0.0095 (12)
C10 0.0436 (15) 0.0543 (15) 0.0497 (17) −0.0118 (12) 0.0026 (12) 0.0000 (13)
C11 0.0361 (13) 0.0595 (16) 0.0449 (16) −0.0010 (12) −0.0010 (11) −0.0060 (13)
C12 0.0409 (15) 0.0594 (17) 0.0534 (18) −0.0091 (12) 0.0052 (13) −0.0055 (14)
C13 0.0393 (15) 0.0634 (18) 0.0561 (19) 0.0012 (13) 0.0025 (13) 0.0013 (14)
C14 0.076 (2) 0.0468 (15) 0.0483 (18) 0.0000 (14) 0.0070 (15) 0.0009 (13)
C15 0.0309 (12) 0.0393 (12) 0.0389 (14) 0.0003 (9) 0.0024 (10) 0.0049 (10)
C16 0.0661 (18) 0.0366 (13) 0.0499 (18) 0.0002 (12) 0.0017 (14) 0.0081 (12)
C17 0.082 (2) 0.0402 (15) 0.060 (2) −0.0009 (14) 0.0030 (17) −0.0045 (14)
C18 0.0548 (17) 0.0639 (18) 0.0465 (18) 0.0039 (14) 0.0019 (14) −0.0039 (15)
C19 0.077 (2) 0.0534 (16) 0.0438 (18) −0.0008 (15) 0.0046 (15) 0.0125 (14)
C20 0.0622 (17) 0.0384 (13) 0.0515 (18) −0.0031 (12) 0.0069 (14) 0.0067 (12)
C21 0.111 (3) 0.097 (3) 0.054 (2) 0.002 (2) 0.003 (2) −0.016 (2)

Geometric parameters (Å, º)

Br1—C1 1.878 (4) C9—C10 1.390 (4)
Br1A—C1 1.924 (9) C10—C11 1.362 (4)
S1—O2 1.4435 (19) C10—H10 0.9300
S1—O3 1.445 (2) C11—H11 0.9300
S1—O1 1.4458 (19) C12—C13 1.352 (4)
S1—C15 1.767 (3) C12—H12 0.9300
N1—C12 1.335 (3) C13—H13 0.9300
N1—C11 1.337 (3) C14—H14A 0.9600
N1—C14 1.471 (3) C14—H14B 0.9600
C1—C2 1.348 (4) C14—H14C 0.9600
C1—C6 1.361 (4) C15—C20 1.376 (4)
C2—C3 1.374 (4) C15—C16 1.387 (3)
C2—H2 0.9300 C16—C17 1.375 (4)
C3—C4 1.383 (4) C16—H16 0.9300
C3—H3 0.9300 C17—C18 1.382 (4)
C4—C5 1.376 (4) C17—H17 0.9300
C4—C7 1.466 (4) C18—C19 1.371 (4)
C5—C6 1.372 (4) C18—C21 1.510 (5)
C5—H5 0.9300 C19—C20 1.372 (4)
C6—H6 0.9300 C19—H19 0.9300
C7—C8 1.304 (4) C20—H20 0.9300
C7—H7 0.9300 C21—H21A 0.9600
C8—C9 1.468 (4) C21—H21B 0.9600
C8—H8 0.9300 C21—H21C 0.9600
C9—C13 1.380 (4)
O2—S1—O3 113.31 (13) C9—C10—H10 119.5
O2—S1—O1 112.63 (12) N1—C11—C10 120.5 (2)
O3—S1—O1 113.60 (13) N1—C11—H11 119.8
O2—S1—C15 105.49 (12) C10—C11—H11 119.8
O3—S1—C15 106.03 (12) N1—C12—C13 120.9 (3)
O1—S1—C15 104.81 (11) N1—C12—H12 119.6
C12—N1—C11 120.1 (2) C13—C12—H12 119.6
C12—N1—C14 120.3 (2) C12—C13—C9 121.5 (3)
C11—N1—C14 119.6 (2) C12—C13—H13 119.2
C2—C1—C6 120.6 (3) C9—C13—H13 119.2
C2—C1—Br1 122.0 (3) N1—C14—H14A 109.5
C6—C1—Br1 117.4 (3) N1—C14—H14B 109.5
C2—C1—Br1A 109.9 (10) H14A—C14—H14B 109.5
C6—C1—Br1A 129.5 (10) N1—C14—H14C 109.5
C1—C2—C3 119.5 (3) H14A—C14—H14C 109.5
C1—C2—H2 120.2 H14B—C14—H14C 109.5
C3—C2—H2 120.2 C20—C15—C16 118.5 (3)
C2—C3—C4 122.0 (3) C20—C15—S1 120.5 (2)
C2—C3—H3 119.0 C16—C15—S1 120.9 (2)
C4—C3—H3 119.0 C17—C16—C15 119.5 (3)
C5—C4—C3 116.5 (3) C17—C16—H16 120.2
C5—C4—C7 123.9 (3) C15—C16—H16 120.2
C3—C4—C7 119.6 (2) C16—C17—C18 122.4 (3)
C6—C5—C4 121.9 (3) C16—C17—H17 118.8
C6—C5—H5 119.1 C18—C17—H17 118.8
C4—C5—H5 119.1 C19—C18—C17 116.9 (3)
C1—C6—C5 119.6 (3) C19—C18—C21 122.7 (3)
C1—C6—H6 120.2 C17—C18—C21 120.4 (3)
C5—C6—H6 120.2 C18—C19—C20 121.8 (3)
C8—C7—C4 125.7 (3) C18—C19—H19 119.1
C8—C7—H7 117.1 C20—C19—H19 119.1
C4—C7—H7 117.1 C19—C20—C15 120.8 (3)
C7—C8—C9 125.9 (3) C19—C20—H20 119.6
C7—C8—H8 117.1 C15—C20—H20 119.6
C9—C8—H8 117.1 C18—C21—H21A 109.5
C13—C9—C10 116.0 (3) C18—C21—H21B 109.5
C13—C9—C8 119.2 (2) H21A—C21—H21B 109.5
C10—C9—C8 124.9 (2) C18—C21—H21C 109.5
C11—C10—C9 121.1 (2) H21A—C21—H21C 109.5
C11—C10—H10 119.5 H21B—C21—H21C 109.5
C6—C1—C2—C3 0.2 (5) C11—N1—C12—C13 0.7 (4)
Br1—C1—C2—C3 −179.6 (3) C14—N1—C12—C13 178.3 (3)
Br1A—C1—C2—C3 −178.3 (3) N1—C12—C13—C9 −0.1 (5)
C1—C2—C3—C4 0.2 (5) C10—C9—C13—C12 −0.9 (4)
C2—C3—C4—C5 −0.5 (5) C8—C9—C13—C12 178.0 (3)
C2—C3—C4—C7 179.3 (3) O2—S1—C15—C20 −117.6 (2)
C3—C4—C5—C6 0.4 (5) O3—S1—C15—C20 2.8 (2)
C7—C4—C5—C6 −179.4 (3) O1—S1—C15—C20 123.3 (2)
C2—C1—C6—C5 −0.3 (5) O2—S1—C15—C16 62.9 (2)
Br1—C1—C6—C5 179.5 (3) O3—S1—C15—C16 −176.7 (2)
Br1A—C1—C6—C5 177.8 (4) O1—S1—C15—C16 −56.2 (2)
C4—C5—C6—C1 0.0 (6) C20—C15—C16—C17 0.2 (4)
C5—C4—C7—C8 −7.5 (5) S1—C15—C16—C17 179.7 (2)
C3—C4—C7—C8 172.8 (3) C15—C16—C17—C18 −0.5 (5)
C4—C7—C8—C9 178.1 (3) C16—C17—C18—C19 0.2 (5)
C7—C8—C9—C13 −178.3 (3) C16—C17—C18—C21 −178.7 (3)
C7—C8—C9—C10 0.5 (5) C17—C18—C19—C20 0.5 (5)
C13—C9—C10—C11 1.3 (4) C21—C18—C19—C20 179.3 (3)
C8—C9—C10—C11 −177.5 (3) C18—C19—C20—C15 −0.8 (5)
C12—N1—C11—C10 −0.3 (4) C16—C15—C20—C19 0.5 (4)
C14—N1—C11—C10 −177.9 (3) S1—C15—C20—C19 −179.1 (2)
C9—C10—C11—N1 −0.8 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···O1 0.93 2.57 3.415 (3) 151
C20—H20···O3 0.93 2.48 2.873 (4) 106
C12—H12···O2i 0.93 2.39 3.247 (3) 153
C14—H14B···O1ii 0.96 2.53 3.438 (4) 157

Symmetry codes: (i) x−1, y−1, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6900).

References

  1. Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Editors. Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268. [DOI] [PMC free article] [PubMed]
  4. Nalwa, H. S. & Miyata, S. (1997). Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.
  5. Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M. & Muramatsu, R. (1990). Jpn. J. Appl. Phys. 29, 1112–1115.
  6. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059. [DOI] [PMC free article] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813009227/bt6900sup1.cif

e-69-0o694-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009227/bt6900Isup2.hkl

e-69-0o694-Isup2.hkl (268.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009227/bt6900Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES