Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 13;69(Pt 5):o701–o702. doi: 10.1107/S1600536813009367

N-[4-Acetyl-5-(4-fluoro­phen­yl)-4,5-di­hydro-1,3,4-thia­diazol-2-yl]acetamide

H D Kavitha a, Sheetal B Marganakop b, Ravindra R Kamble b, K R Roopashree c, H C Devarajegowda c,*
PMCID: PMC3648237  PMID: 23723857

Abstract

The title mol­ecule, C12H12FN3O2S, shows a short intra­molecular S⋯O contact of 2.682 (18) Å. The dihedral angle between the thia­diazole ring and the benzene ring is 86.82 (11)°. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds generate an R 2 1(6) graph-set motif between adjacent mol­ecules. Pairs of futher C—H⋯O hydrogen bonds form inversion dimers with R 2 2(8) ring motifs. These combine to generate a three-dimensional network and stack the mol­ecules along the b axis.

Related literature  

For biological applications of 1,3,4-thia­diazole derivatives, see: Matysiak & Opolski (2006); Kumar et al. (2012); Oruç et al. (2004); Kadi et al. (2007); Noolvi et al. (2011); Matysiak et al. (2006); Marganakop et al. (2012). For a related structure, see: Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-69-0o701-scheme1.jpg

Experimental  

Crystal data  

  • C12H12FN3O2S

  • M r = 281.31

  • Monoclinic, Inline graphic

  • a = 9.5061 (6) Å

  • b = 11.2152 (7) Å

  • c = 12.7752 (7) Å

  • β = 101.823 (4)°

  • V = 1333.11 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 11372 measured reflections

  • 2352 independent reflections

  • 2035 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.121

  • S = 1.07

  • 2352 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009367/sj5314sup1.cif

e-69-0o701-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009367/sj5314Isup2.hkl

e-69-0o701-Isup2.hkl (113.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009367/sj5314Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O4i 0.86 1.96 2.815 (2) 171
C10—H10⋯O3ii 0.93 2.58 3.267 (3) 131
C17—H17A⋯O4i 0.96 2.46 3.316 (3) 148
C19—H19B⋯O4iii 0.96 2.55 3.335 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives are of great importance to chemists as well as biologists as they are found in a large variety of naturally occurring compounds and also pharmacologically potent molecules. These derivatives are known to exhibit a broad spectrum of activities including antiproliferative, antituberculosis, anti-inflammatory, anticancer and antimicrobial activities (Matysiak et al., 2006; Kumar et al., 2012; Oruç et al., 2004; Kadi et al., 2007; Noolvi et al., 2011; Matysiak & Opolski, 2006; Marganakop et al., 2012).

The asymmetric unit of the structure of N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl] -acetamide is shown in Fig. 1 and exhibits a short intramolecular S2···O3 contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring (S2/N6/N7/C14/C15) and the benzene ring (C8–C13) is 86.82 (11)°. In the structure, all bond lengths and angles are within normal ranges (Zhang, 2009).

In the crystal, the N5—H5···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules forming rings with an R12(6) graph-set motif (Bernstein et al., 1995). The crystal structure is further stabilized by other intermolecular C—H···O hydrogen bonds, (Table 1), that generate inversion dimers with R22(8) ring motifs. The overall crystal packing components generate a three-dimensional network, stacking molecules along the b axis, (Fig. 2).

Experimental

A mixture of p-fluorobenzaldehyde (0.005 mole), and thiosemicarbazide (0.005 mole) was refluxed in ethanol (10 ml) and acetic acid (2 drops), after completion of the reaction the resulting pale yellow powder was filtered, dried and crystallized in ethanol to obtain (E)-1-(4-fluoro benzylidene)thiosemicarbazide, which was further heated at 80–90°C for about 4 hrs and the reaction mixture was cooled to room temperature and poured into ice cold water. The precipitate obtained was filtered off, washed with water, dried and purified by crystallization in aqueous alcohol (80%, v/v) to yield pale yellow crystals of N– [4-acetyl-5-(4-fluorophenyl)-4,5-dihydro-[1,3,4]thiadiazol-2-yl]- acetamide. Yield: (70%), m. p: 490 K.

Refinement

All H atoms were positioned at calculated positions, N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, C—H = 0.98 Å for methine H and C—H = 0.96 Å for methyl H and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C, N) for aromatic, methine and amide H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Packing of the molecule in the unit cell.

Crystal data

C12H12FN3O2S F(000) = 584
Mr = 281.31 Dx = 1.402 Mg m3
Monoclinic, P21/c Melting point: 490 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 9.5061 (6) Å Cell parameters from 2352 reflections
b = 11.2152 (7) Å θ = 2.2–25.0°
c = 12.7752 (7) Å µ = 0.26 mm1
β = 101.823 (4)° T = 296 K
V = 1333.11 (14) Å3 Plate, colourless
Z = 4 0.24 × 0.20 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2352 independent reflections
Radiation source: fine-focus sealed tube 2035 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω and φ scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −11→11
Tmin = 0.770, Tmax = 1.000 k = −13→12
11372 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.7142P] where P = (Fo2 + 2Fc2)/3
2352 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Experimental. Spectroscopic data IR (KBr); 3233, 2799, 1646, 1626, 1H NMR (300 MHz, CDCl3, δ p.p.m.): 2.11 (s, 3H, CH3 of NHCOCH3), 2.24 (s, 3H, CH3 of –NCOCH3), 4.70 (s, 1H, C—H of C5—H), 6.85–7.10 (m, 4H, Ar—H), 11.77 (s, 1H, NHCO), MS (m/z, 70 eV); 282 (M+1, 20), 239 (26), 204 (100).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 −0.11204 (19) 0.1673 (2) 0.41894 (18) 0.1026 (7)
S2 0.32591 (7) 0.09255 (5) 0.09191 (4) 0.0449 (2)
O3 0.2686 (2) −0.01822 (15) −0.09810 (14) 0.0665 (5)
O4 0.56411 (17) 0.11842 (14) 0.42490 (13) 0.0472 (4)
N5 0.3591 (2) −0.14036 (15) 0.03899 (13) 0.0407 (4)
H5 0.3826 −0.2127 0.0571 0.049*
N6 0.45429 (18) −0.08120 (15) 0.21164 (13) 0.0367 (4)
N7 0.46451 (18) 0.01994 (15) 0.27693 (14) 0.0374 (4)
C8 0.0057 (3) 0.1564 (3) 0.3747 (2) 0.0626 (7)
C9 0.0942 (3) 0.2522 (2) 0.3768 (2) 0.0558 (6)
H9 0.0750 0.3239 0.4076 0.067*
C10 0.2141 (2) 0.2394 (2) 0.33124 (17) 0.0441 (5)
H10 0.2768 0.3032 0.3321 0.053*
C11 0.2413 (2) 0.13353 (19) 0.28503 (16) 0.0372 (5)
C12 0.1473 (3) 0.0389 (2) 0.2839 (2) 0.0551 (6)
H12 0.1645 −0.0327 0.2520 0.066*
C13 0.0287 (3) 0.0497 (3) 0.3296 (3) 0.0677 (8)
H13 −0.0340 −0.0140 0.3297 0.081*
C14 0.3719 (2) 0.12171 (18) 0.23621 (16) 0.0375 (5)
H14 0.4283 0.1953 0.2490 0.045*
C15 0.3864 (2) −0.05435 (18) 0.11717 (16) 0.0358 (5)
C16 0.2973 (3) −0.1186 (2) −0.06565 (17) 0.0453 (5)
C17 0.2681 (3) −0.2264 (2) −0.1344 (2) 0.0604 (7)
H17A 0.2994 −0.2961 −0.0925 0.091*
H17B 0.3192 −0.2206 −0.1917 0.091*
H17C 0.1669 −0.2321 −0.1635 0.091*
C18 0.5596 (2) 0.02706 (18) 0.37069 (16) 0.0363 (5)
C19 0.6546 (3) −0.0775 (2) 0.40480 (18) 0.0478 (6)
H19A 0.6340 −0.1389 0.3515 0.072*
H19B 0.6377 −0.1074 0.4716 0.072*
H19C 0.7533 −0.0536 0.4134 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0620 (10) 0.1312 (19) 0.1269 (17) 0.0023 (11) 0.0478 (11) −0.0189 (15)
S2 0.0679 (4) 0.0285 (3) 0.0365 (3) 0.0074 (2) 0.0066 (3) 0.0035 (2)
O3 0.1095 (15) 0.0395 (10) 0.0444 (9) 0.0104 (10) 0.0014 (9) 0.0058 (8)
O4 0.0573 (9) 0.0333 (8) 0.0485 (9) −0.0053 (7) 0.0049 (7) −0.0088 (7)
N5 0.0608 (11) 0.0261 (9) 0.0339 (9) 0.0035 (8) 0.0064 (8) 0.0009 (7)
N6 0.0464 (10) 0.0272 (9) 0.0352 (9) 0.0023 (7) 0.0055 (7) −0.0024 (7)
N7 0.0465 (10) 0.0263 (9) 0.0373 (9) 0.0032 (7) 0.0038 (7) −0.0032 (7)
C8 0.0439 (13) 0.082 (2) 0.0635 (16) 0.0081 (13) 0.0142 (12) −0.0031 (15)
C9 0.0545 (14) 0.0586 (16) 0.0519 (14) 0.0122 (12) 0.0057 (11) −0.0124 (12)
C10 0.0479 (12) 0.0374 (12) 0.0440 (12) 0.0021 (9) 0.0022 (9) −0.0049 (10)
C11 0.0425 (11) 0.0306 (11) 0.0355 (10) 0.0022 (9) 0.0007 (8) 0.0009 (8)
C12 0.0569 (14) 0.0389 (13) 0.0706 (17) −0.0043 (11) 0.0157 (12) −0.0055 (12)
C13 0.0537 (15) 0.0634 (18) 0.089 (2) −0.0146 (13) 0.0225 (14) −0.0058 (16)
C14 0.0481 (11) 0.0247 (10) 0.0381 (11) 0.0007 (9) 0.0051 (9) 0.0005 (8)
C15 0.0451 (11) 0.0272 (10) 0.0352 (11) 0.0004 (9) 0.0083 (9) 0.0008 (8)
C16 0.0603 (14) 0.0361 (12) 0.0377 (11) 0.0047 (10) 0.0060 (10) 0.0030 (10)
C17 0.0867 (18) 0.0469 (15) 0.0405 (13) 0.0070 (13) −0.0036 (12) −0.0061 (11)
C18 0.0389 (10) 0.0315 (11) 0.0387 (11) −0.0051 (8) 0.0082 (8) −0.0007 (9)
C19 0.0494 (13) 0.0440 (14) 0.0452 (13) 0.0053 (10) −0.0014 (10) −0.0028 (10)

Geometric parameters (Å, º)

F1—C8 1.359 (3) C10—C11 1.374 (3)
S2—C15 1.753 (2) C10—H10 0.9300
S2—C14 1.835 (2) C11—C12 1.386 (3)
O3—C16 1.211 (3) C11—C14 1.505 (3)
O4—C18 1.233 (3) C12—C13 1.376 (4)
N5—C16 1.368 (3) C12—H12 0.9300
N5—C15 1.374 (3) C13—H13 0.9300
N5—H5 0.8600 C14—H14 0.9800
N6—C15 1.283 (3) C16—C17 1.487 (3)
N6—N7 1.399 (2) C17—H17A 0.9600
N7—C18 1.347 (3) C17—H17B 0.9600
N7—C14 1.470 (3) C17—H17C 0.9600
C8—C9 1.361 (4) C18—C19 1.490 (3)
C8—C13 1.365 (4) C19—H19A 0.9600
C9—C10 1.389 (3) C19—H19B 0.9600
C9—H9 0.9300 C19—H19C 0.9600
C15—S2—C14 88.91 (9) N7—C14—S2 102.66 (13)
C16—N5—C15 124.35 (18) C11—C14—S2 112.67 (14)
C16—N5—H5 117.8 N7—C14—H14 109.1
C15—N5—H5 117.8 C11—C14—H14 109.1
C15—N6—N7 109.31 (17) S2—C14—H14 109.1
C18—N7—N6 122.01 (17) N6—C15—N5 120.17 (19)
C18—N7—C14 120.85 (17) N6—C15—S2 118.48 (16)
N6—N7—C14 117.06 (16) N5—C15—S2 121.34 (15)
F1—C8—C9 118.6 (3) O3—C16—N5 121.5 (2)
F1—C8—C13 118.1 (3) O3—C16—C17 123.5 (2)
C9—C8—C13 123.3 (2) N5—C16—C17 115.0 (2)
C8—C9—C10 117.8 (2) C16—C17—H17A 109.5
C8—C9—H9 121.1 C16—C17—H17B 109.5
C10—C9—H9 121.1 H17A—C17—H17B 109.5
C11—C10—C9 120.8 (2) C16—C17—H17C 109.5
C11—C10—H10 119.6 H17A—C17—H17C 109.5
C9—C10—H10 119.6 H17B—C17—H17C 109.5
C10—C11—C12 119.2 (2) O4—C18—N7 119.26 (19)
C10—C11—C14 119.87 (19) O4—C18—C19 122.74 (19)
C12—C11—C14 120.9 (2) N7—C18—C19 118.00 (18)
C13—C12—C11 120.7 (2) C18—C19—H19A 109.5
C13—C12—H12 119.6 C18—C19—H19B 109.5
C11—C12—H12 119.6 H19A—C19—H19B 109.5
C8—C13—C12 118.1 (3) C18—C19—H19C 109.5
C8—C13—H13 120.9 H19A—C19—H19C 109.5
C12—C13—H13 120.9 H19B—C19—H19C 109.5
N7—C14—C11 114.02 (17)
C15—N6—N7—C18 −162.76 (18) C12—C11—C14—N7 −53.9 (3)
C15—N6—N7—C14 14.0 (2) C10—C11—C14—S2 −117.30 (19)
F1—C8—C9—C10 179.9 (2) C12—C11—C14—S2 62.6 (2)
C13—C8—C9—C10 −0.5 (4) C15—S2—C14—N7 15.35 (14)
C8—C9—C10—C11 0.5 (4) C15—S2—C14—C11 −107.73 (16)
C9—C10—C11—C12 0.1 (3) N7—N6—C15—N5 −178.19 (17)
C9—C10—C11—C14 180.0 (2) N7—N6—C15—S2 0.2 (2)
C10—C11—C12—C13 −0.8 (4) C16—N5—C15—N6 −174.9 (2)
C14—C11—C12—C13 179.4 (2) C16—N5—C15—S2 6.8 (3)
F1—C8—C13—C12 179.5 (3) C14—S2—C15—N6 −10.22 (18)
C9—C8—C13—C12 −0.1 (5) C14—S2—C15—N5 168.13 (18)
C11—C12—C13—C8 0.7 (4) C15—N5—C16—O3 4.0 (4)
C18—N7—C14—C11 −81.0 (2) C15—N5—C16—C17 −175.6 (2)
N6—N7—C14—C11 102.1 (2) N6—N7—C18—O4 179.87 (18)
C18—N7—C14—S2 156.79 (16) C14—N7—C18—O4 3.2 (3)
N6—N7—C14—S2 −20.1 (2) N6—N7—C18—C19 −0.6 (3)
C10—C11—C14—N7 126.2 (2) C14—N7—C18—C19 −177.34 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5···O4i 0.86 1.96 2.815 (2) 171
C10—H10···O3ii 0.93 2.58 3.267 (3) 131
C17—H17A···O4i 0.96 2.46 3.316 (3) 148
C19—H19B···O4iii 0.96 2.55 3.335 (3) 139

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5314).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. [DOI] [PubMed]
  5. Kumar, D. N., Kumar, M., Noel, B. & Shah, K. (2012). Eur. J. Med. Chem. 55, 432–438. [DOI] [PubMed]
  6. Marganakop, S. B., Kamble, R. R., Taj, T. & Kariduraganvar, M. Y. (2012). Med. Chem. Res. 21, 185–191.
  7. Matysiak, J., Nasulewicz, A., Peiczyńska, M., Świtalska, M., Jarozewicz, I. & Opolski, A. (2006). Eur. J. Med. Chem. 41, 475–482. [DOI] [PubMed]
  8. Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483–4489. [DOI] [PubMed]
  9. Noolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411–4418. [DOI] [PubMed]
  10. Oruç, E. E., Rollas, S., Kkandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767. [DOI] [PubMed]
  11. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Zhang, G.-Y. (2009). Acta Cryst. E65, o2138. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009367/sj5314sup1.cif

e-69-0o701-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009367/sj5314Isup2.hkl

e-69-0o701-Isup2.hkl (113.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009367/sj5314Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES