Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 13;69(Pt 5):o713. doi: 10.1107/S1600536813009513

5-(2-Cyano­benz­yl)-4,5,6,7-tetra­hydro­thieno[3,2-c]pyridin-2-yl acetate

Xiao-Shuai Xie a,b, Shuai Mu c, Ying Liu d,*, Deng-Ke Liu d
PMCID: PMC3648246  PMID: 23723866

Abstract

In the title mol­ecule, C17H16N2O2S, the tetra­hydro­pyridine ring exhibits a half-chair conformation. The mean planes of the ester chain and benzene ring are twisted by 5.5 (1) and 81.32 (5)°, respectively, from the plane of thio­phene ring. In the crystal, weak C—H⋯O inter­actions link mol­ecules related by translation along [100] into chains.

Related literature  

For the crystal structures of related compounds, see: Wang et al. (2010); Yang et al. (2012). For details of the synthesis, see: Zhou et al. (2011).graphic file with name e-69-0o713-scheme1.jpg

Experimental  

Crystal data  

  • C17H16N2O2S

  • M r = 312.38

  • Monoclinic, Inline graphic

  • a = 14.174 (3) Å

  • b = 5.9321 (12) Å

  • c = 18.796 (4) Å

  • β = 99.06 (3)°

  • V = 1560.7 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.91 mm−1

  • T = 113 K

  • 0.26 × 0.24 × 0.22 mm

Data collection  

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.636, T max = 0.678

  • 16000 measured reflections

  • 3034 independent reflections

  • 2819 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.098

  • S = 1.08

  • 3034 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813009513/cv5399sup1.cif

e-69-0o713-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009513/cv5399Isup2.hkl

e-69-0o713-Isup2.hkl (148.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009513/cv5399Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536813009513/cv5399Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 0.95 2.53 3.3346 (19) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was supported by the National Major Scientific and Technological Special Project for "Significant New Drugs Development" (No. 2013ZX09102014). The authors also thank Mr Hai-Bin Song of Nankai University for the X-ray crystallographic determination and helpful suggestions.

supplementary crystallographic information

Comment

As a continuation of our structural study of tetrahydrothienopyridine derivatives (Yang et al., 2012), herein we present the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds 5-[(2-cyclopropylcarbonyl)(2- fluorophenyl)methyl]-4,5,6,7-tetrahydrothieno[3,2-c]pyridin- 2-yl acetate (Prasugrel) (Wang et al., 2010) and 5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl acetate (Yang et al., 2012). The ester chain in (I) is almost planar with a mean deviation of 0.0021 Å. The tetrahydropyridine ring exhibits a half-chair conformation. The mean planes of the ester chain and benzene ring are twisted at 5.5 (1) and 81.32 (5)°, respectively, from the plane of thiophene ring. In the crystal, weak C—H···O interactions (Table 1) link the molecules related by translation in [100] into chains.

Experimental

The title compound was prepared according to the method of Zhou et al. (2011). 19.2 g of 5,6,7,7a-tetrahydrothieno[3,2-c]pyridin-2(4H)-one hydrochloride and 29 g of N-methyl morpholine were dissolved in 100 ml of CHCl3. 42.6 g of 2-(bromomethyl)benzonitrile was dropwised into the mixture and then refluxed for 4 h. After filtration, the resulting filtrate was evaporated under reduced pressure. The residue was dissolved in diethyl ether, adjust the pH=5 to get 2-{(2-oxo-7,7a-dihydrothieno [3,2-c]pyridin-5(2H,4H,6H)-yl)methyl} benzonitrile as an intermediate. The intermediate, together with 14.5 g of N-methyl morpholine and 10 g of acetic anhydride was dissolved in 150 ml of acetonitrile and stirred under 30°C for 2 h. The mixture was evaporated under reduced pressure and yellow oil was obtained. The oil was dissolved in CHCl3, washed with saturated brines for 3 times. The crude product was purified by silica gel chromatography to give white powder. Colorless single crystals were grown from a methanol solution.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 - 0.99 Å, and Uiso (H) = 1.5 or 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Crystal data

C17H16N2O2S F(000) = 656
Mr = 312.38 Dx = 1.329 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2yn Cell parameters from 2001 reflections
a = 14.174 (3) Å θ = 27.6–72.2°
b = 5.9321 (12) Å µ = 1.91 mm1
c = 18.796 (4) Å T = 113 K
β = 99.06 (3)° Prism, colourless
V = 1560.7 (5) Å3 0.26 × 0.24 × 0.22 mm
Z = 4

Data collection

Rigaku Saturn diffractometer 3034 independent reflections
Radiation source: fine-focus sealed tube 2819 reflections with I > 2σ(I)
Multilayer monochromator Rint = 0.045
Detector resolution: 14.63 pixels mm-1 θmax = 72.5°, θmin = 3.6°
ω scans h = −17→17
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −7→7
Tmin = 0.636, Tmax = 0.678 l = −17→23
16000 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.3535P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3034 reflections Δρmax = 0.30 e Å3
201 parameters Δρmin = −0.28 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0040 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.07455 (2) 0.16825 (5) 0.143145 (17) 0.02086 (13)
O1 0.02603 (6) −0.21422 (16) 0.06058 (5) 0.0237 (2)
O2 −0.09148 (7) −0.05922 (19) 0.11147 (6) 0.0356 (3)
N1 0.38740 (7) 0.30018 (18) 0.16585 (6) 0.0202 (3)
N2 0.64150 (12) 0.3514 (3) 0.02028 (9) 0.0527 (4)
C1 0.09324 (9) −0.0540 (2) 0.08710 (7) 0.0201 (3)
C2 0.18393 (9) −0.0624 (2) 0.07280 (7) 0.0201 (3)
H2 0.2064 −0.1715 0.0425 0.024*
C3 0.24163 (9) 0.1132 (2) 0.10896 (7) 0.0187 (3)
C4 0.19251 (9) 0.2503 (2) 0.14809 (7) 0.0196 (3)
C5 0.23440 (9) 0.4496 (2) 0.19049 (7) 0.0216 (3)
H5A 0.2447 0.4142 0.2426 0.026*
H5B 0.1904 0.5799 0.1820 0.026*
C6 0.32936 (9) 0.5055 (2) 0.16606 (7) 0.0217 (3)
H6A 0.3175 0.5712 0.1170 0.026*
H6B 0.3643 0.6183 0.1990 0.026*
C7 0.34597 (9) 0.1510 (2) 0.10650 (7) 0.0206 (3)
H7A 0.3800 0.0047 0.1106 0.025*
H7B 0.3537 0.2201 0.0598 0.025*
C8 0.48585 (9) 0.3588 (2) 0.15919 (8) 0.0245 (3)
H8A 0.5078 0.4827 0.1931 0.029*
H8B 0.4879 0.4140 0.1097 0.029*
C9 0.55298 (9) 0.1608 (2) 0.17475 (7) 0.0207 (3)
C10 0.62212 (9) 0.1119 (2) 0.13184 (8) 0.0255 (3)
C11 0.68601 (10) −0.0673 (3) 0.14838 (9) 0.0321 (3)
H11 0.7327 −0.0980 0.1185 0.038*
C12 0.68115 (10) −0.1995 (2) 0.20814 (9) 0.0311 (3)
H12 0.7242 −0.3218 0.2195 0.037*
C13 0.61310 (10) −0.1526 (2) 0.25154 (8) 0.0276 (3)
H13 0.6097 −0.2425 0.2929 0.033*
C14 0.54986 (9) 0.0252 (2) 0.23487 (8) 0.0250 (3)
H14 0.5035 0.0551 0.2651 0.030*
C15 0.63104 (11) 0.2481 (3) 0.06926 (9) 0.0351 (4)
C16 −0.06452 (9) −0.2078 (2) 0.07641 (8) 0.0233 (3)
C17 −0.12011 (10) −0.4073 (2) 0.04513 (8) 0.0270 (3)
H17A −0.1192 −0.4134 −0.0069 0.040*
H17B −0.1862 −0.3947 0.0539 0.040*
H17C −0.0914 −0.5451 0.0678 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01803 (19) 0.0246 (2) 0.0204 (2) 0.00246 (11) 0.00426 (13) −0.00427 (11)
O1 0.0176 (5) 0.0254 (5) 0.0282 (5) −0.0002 (4) 0.0038 (4) −0.0072 (4)
O2 0.0237 (5) 0.0417 (6) 0.0437 (7) −0.0034 (4) 0.0123 (5) −0.0190 (5)
N1 0.0178 (5) 0.0186 (5) 0.0246 (6) 0.0000 (4) 0.0041 (4) 0.0001 (4)
N2 0.0543 (10) 0.0658 (11) 0.0433 (9) 0.0074 (8) 0.0242 (8) 0.0159 (8)
C1 0.0199 (6) 0.0217 (6) 0.0185 (6) 0.0014 (5) 0.0017 (5) −0.0015 (5)
C2 0.0205 (6) 0.0205 (6) 0.0191 (6) 0.0041 (5) 0.0028 (5) −0.0012 (5)
C3 0.0197 (6) 0.0200 (6) 0.0163 (6) 0.0024 (5) 0.0025 (5) 0.0022 (5)
C4 0.0191 (6) 0.0221 (6) 0.0174 (6) 0.0026 (5) 0.0028 (5) 0.0005 (5)
C5 0.0225 (6) 0.0216 (6) 0.0209 (7) 0.0025 (5) 0.0046 (5) −0.0020 (5)
C6 0.0250 (6) 0.0179 (6) 0.0225 (7) 0.0009 (5) 0.0050 (5) −0.0001 (5)
C7 0.0202 (6) 0.0202 (6) 0.0219 (7) 0.0014 (5) 0.0051 (5) −0.0013 (5)
C8 0.0207 (6) 0.0224 (6) 0.0310 (8) −0.0028 (5) 0.0063 (5) 0.0020 (5)
C9 0.0167 (6) 0.0218 (6) 0.0234 (7) −0.0039 (5) 0.0020 (5) −0.0015 (5)
C10 0.0214 (6) 0.0303 (7) 0.0255 (7) −0.0028 (5) 0.0059 (5) −0.0009 (6)
C11 0.0236 (7) 0.0369 (8) 0.0376 (9) 0.0032 (6) 0.0103 (6) −0.0024 (7)
C12 0.0217 (7) 0.0268 (7) 0.0433 (9) 0.0026 (5) 0.0009 (6) 0.0013 (6)
C13 0.0242 (7) 0.0268 (7) 0.0303 (8) −0.0040 (5) 0.0003 (6) 0.0052 (6)
C14 0.0226 (6) 0.0275 (7) 0.0257 (7) −0.0023 (5) 0.0058 (5) 0.0011 (6)
C15 0.0322 (8) 0.0425 (9) 0.0337 (8) 0.0026 (7) 0.0152 (7) 0.0033 (7)
C16 0.0182 (6) 0.0285 (7) 0.0231 (7) 0.0011 (5) 0.0028 (5) −0.0003 (5)
C17 0.0229 (7) 0.0270 (7) 0.0306 (8) −0.0010 (5) 0.0029 (6) −0.0025 (6)

Geometric parameters (Å, º)

S1—C4 1.7297 (13) C7—H7A 0.9900
S1—C1 1.7338 (13) C7—H7B 0.9900
O1—C16 1.3629 (16) C8—C9 1.5109 (18)
O1—C1 1.3819 (16) C8—H8A 0.9900
O2—C16 1.1987 (17) C8—H8B 0.9900
N1—C8 1.4625 (16) C9—C14 1.393 (2)
N1—C6 1.4702 (16) C9—C10 1.394 (2)
N1—C7 1.4716 (17) C10—C11 1.399 (2)
N2—C15 1.135 (2) C10—C15 1.449 (2)
C1—C2 1.3549 (18) C11—C12 1.381 (2)
C2—C3 1.4284 (18) C11—H11 0.9500
C2—H2 0.9500 C12—C13 1.386 (2)
C3—C4 1.3594 (18) C12—H12 0.9500
C3—C7 1.5037 (17) C13—C14 1.388 (2)
C4—C5 1.4955 (18) C13—H13 0.9500
C5—C6 1.5256 (18) C14—H14 0.9500
C5—H5A 0.9900 C16—C17 1.4905 (19)
C5—H5B 0.9900 C17—H17A 0.9800
C6—H6A 0.9900 C17—H17B 0.9800
C6—H6B 0.9900 C17—H17C 0.9800
C4—S1—C1 90.43 (6) N1—C8—C9 112.25 (10)
C16—O1—C1 121.43 (10) N1—C8—H8A 109.2
C8—N1—C6 110.18 (10) C9—C8—H8A 109.2
C8—N1—C7 110.52 (10) N1—C8—H8B 109.2
C6—N1—C7 110.09 (10) C9—C8—H8B 109.2
C2—C1—O1 121.66 (11) H8A—C8—H8B 107.9
C2—C1—S1 112.89 (10) C14—C9—C10 117.63 (12)
O1—C1—S1 125.42 (9) C14—C9—C8 120.42 (12)
C1—C2—C3 111.65 (11) C10—C9—C8 121.90 (12)
C1—C2—H2 124.2 C9—C10—C11 121.26 (13)
C3—C2—H2 124.2 C9—C10—C15 120.83 (13)
C4—C3—C2 112.94 (11) C11—C10—C15 117.90 (13)
C4—C3—C7 121.15 (12) C12—C11—C10 119.92 (13)
C2—C3—C7 125.90 (11) C12—C11—H11 120.0
C3—C4—C5 124.54 (12) C10—C11—H11 120.0
C3—C4—S1 112.08 (10) C11—C12—C13 119.56 (14)
C5—C4—S1 123.38 (9) C11—C12—H12 120.2
C4—C5—C6 107.86 (10) C13—C12—H12 120.2
C4—C5—H5A 110.1 C12—C13—C14 120.29 (14)
C6—C5—H5A 110.1 C12—C13—H13 119.9
C4—C5—H5B 110.1 C14—C13—H13 119.9
C6—C5—H5B 110.1 C13—C14—C9 121.34 (13)
H5A—C5—H5B 108.4 C13—C14—H14 119.3
N1—C6—C5 109.95 (10) C9—C14—H14 119.3
N1—C6—H6A 109.7 N2—C15—C10 177.32 (17)
C5—C6—H6A 109.7 O2—C16—O1 122.22 (12)
N1—C6—H6B 109.7 O2—C16—C17 127.33 (12)
C5—C6—H6B 109.7 O1—C16—C17 110.45 (11)
H6A—C6—H6B 108.2 C16—C17—H17A 109.5
N1—C7—C3 110.09 (10) C16—C17—H17B 109.5
N1—C7—H7A 109.6 H17A—C17—H17B 109.5
C3—C7—H7A 109.6 C16—C17—H17C 109.5
N1—C7—H7B 109.6 H17A—C17—H17C 109.5
C3—C7—H7B 109.6 H17B—C17—H17C 109.5
H7A—C7—H7B 108.2
C16—O1—C1—C2 178.55 (12) C4—C3—C7—N1 16.65 (17)
C16—O1—C1—S1 0.90 (18) C2—C3—C7—N1 −163.09 (12)
C4—S1—C1—C2 −0.56 (11) C6—N1—C8—C9 167.62 (11)
C4—S1—C1—O1 177.27 (12) C7—N1—C8—C9 −70.50 (14)
O1—C1—C2—C3 −176.86 (11) N1—C8—C9—C14 −46.34 (17)
S1—C1—C2—C3 1.06 (14) N1—C8—C9—C10 136.16 (13)
C1—C2—C3—C4 −1.16 (16) C14—C9—C10—C11 0.2 (2)
C1—C2—C3—C7 178.60 (12) C8—C9—C10—C11 177.72 (13)
C2—C3—C4—C5 −179.07 (12) C14—C9—C10—C15 −178.76 (13)
C7—C3—C4—C5 1.2 (2) C8—C9—C10—C15 −1.2 (2)
C2—C3—C4—S1 0.74 (15) C9—C10—C11—C12 0.0 (2)
C7—C3—C4—S1 −179.03 (10) C15—C10—C11—C12 178.99 (14)
C1—S1—C4—C3 −0.12 (11) C10—C11—C12—C13 −0.3 (2)
C1—S1—C4—C5 179.69 (11) C11—C12—C13—C14 0.4 (2)
C3—C4—C5—C6 14.85 (18) C12—C13—C14—C9 −0.2 (2)
S1—C4—C5—C6 −164.94 (10) C10—C9—C14—C13 −0.1 (2)
C8—N1—C6—C5 −166.73 (11) C8—C9—C14—C13 −177.70 (12)
C7—N1—C6—C5 71.13 (13) C9—C10—C15—N2 162 (4)
C4—C5—C6—N1 −49.11 (14) C11—C10—C15—N2 −17 (4)
C8—N1—C7—C3 −173.55 (10) C1—O1—C16—O2 3.0 (2)
C6—N1—C7—C3 −51.61 (13) C1—O1—C16—C17 −176.31 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···O2i 0.95 2.53 3.3346 (19) 143

Symmetry code: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5399).

References

  1. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Wang, Z.-M., Zhao, J. & Xu, G. (2010). Acta Cryst. E66, o1354. [DOI] [PMC free article] [PubMed]
  4. Yang, J., Chen, N., Sun, H., Cao, X.-X. & Liu, D.-K. (2012). Acta Cryst. E68, o1053. [DOI] [PMC free article] [PubMed]
  5. Zhou, Y. S., Wang, P. B., Liu, Y., Chen, J. F., Yue, N. & Liu, D. K. (2011). Acta Pharm. Sin. 46, 70–74.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813009513/cv5399sup1.cif

e-69-0o713-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009513/cv5399Isup2.hkl

e-69-0o713-Isup2.hkl (148.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009513/cv5399Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536813009513/cv5399Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES