Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 13;69(Pt 5):o718–o719. doi: 10.1107/S1600536813009690

3-Methyl-4-{(E)-[4-(methyl­sulfan­yl)benzyl­idene]amino}-1H-1,2,4-triazole-5(4H)-thione

B K Sarojini a, P S Manjula a, Gurumurthy Hegde b, Dalbir Kour c, Vivek K Gupta c, Rajni Kant c,*
PMCID: PMC3648251  PMID: 23723871

Abstract

In the title mol­ecule, C11H12N4S2, the dihedral angle between the triazole and benzene rings is 21.31 (5)°. A weak intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. In the crystal, pairs of N—H⋯S hydrogen bonds form inversion dimers. In addition, π–π inter­actions are observed between the benzene rings, with a centroid–centroid separation of 3.7599 (11) Å.

Related literature  

For background to Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994); Galic et al. (2001). For biological applications of sulfur- and nitro­gen-containing compounds, see: Wei et al. (1981, 1982); Thieme et al. (1973a ,b ); Dornow et al. (1964); Barrera et al. (1985); Malik et al., (2011). For related structures, see: Devarajegowda et al. (2012); Fun et al. (2008); Wang et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond graph-set motifs, see: Bernstein et al.(1995).graphic file with name e-69-0o718-scheme1.jpg

Experimental  

Crystal data  

  • C11H12N4S2

  • M r = 264.37

  • Triclinic, Inline graphic

  • a = 7.7873 (2) Å

  • b = 9.5982 (2) Å

  • c = 9.6041 (2) Å

  • α = 76.608 (2)°

  • β = 70.602 (2)°

  • γ = 68.570 (2)°

  • V = 625.30 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.866, T max = 1.000

  • 30316 measured reflections

  • 2449 independent reflections

  • 2121 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.088

  • S = 1.03

  • 2449 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009690/lh5604sup1.cif

e-69-0o718-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009690/lh5604Isup2.hkl

e-69-0o718-Isup2.hkl (117.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009690/lh5604Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯S1 0.93 2.57 3.212 (2) 126
N2—H2⋯S1i 0.86 2.48 3.328 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the sanction of the single-crystal X-ray diffractometer as a National Facility under mega research project No. SR/S2/ CMP-47/2003.

supplementary crystallographic information

Comment

During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid, 1991; Yadav et al.,1994). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1981, 1982), analgesic (Thieme et al., 1973a,b), anti-inflammatory (Dornow et al., 1964), sedative (Barrera et al., 1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity.

In the title compound (Fig. 1), the bond lengths and angles have values in the normal ranges (Allen et al., 1987) and are comparable with closely related structures (Devarajegowda et al., 2012; Fun et al., 2008; Wang et al., 2008). The dihedral angle between the triazole ring (N1/N2/C3/N4/C5) and the benzene ring (C9—C14) is 21.31 (5)°. The molecule exists in the thione tautomeric form, with an S═C distance of 1.681 (3) Å, which indicates substantial double-bond character for this bond [1.671 (24) Å](Allen et al., 1987). The methylidene amino linkage (N7/C8) is slightly twisted from the mean plane of the 1,2,4 triazole ring as indicated by the torsion angle C3–N4–N7–C8 of -30.8 (2)°. A weak intramolecular C—H···S hydrogen bond generates an S(6) ring motif (Bernstein et al.,1995). The packing of molecules within the unit cell is shown in Fig. 2. In the crystal, pairs of N—H···S hydrogen bonds form inversion dimers. In addition, π–π interactions are observed between the benzene rings with Cg···Cg(-x,-y,1-z) = 3.7599 (11) Å, where Cg is the centroid of the C9—C14 ring.

Experimental

To a suspension of 4-(methylthio)benzaldehyde (1.52 g, 0.01 mol) in methanol (15 ml), 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01 mol, 1.65 g) was added and heated to form a clear solution. To this a few drops of conc.H2SO4 was added as a catalyst and refluxed for 5 h on a water bath. The precipitate formed was filtered and recrystallized from mixture of methanol and dioxane (2:1) to yield the titled compound. The single crystals were grown from a solution of the titlr compound of methanol (mp. 355–357 K).

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.96 Å and N—H distance of 0.86 Å; and with Uiso(H) = 1.2Ueq(C/N), except for the methyl groups where Uiso(H) = 1.5Ueq(C),.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H12N4S2 Z = 2
Mr = 264.37 F(000) = 276
Triclinic, P1 Dx = 1.404 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.7873 (2) Å Cell parameters from 15170 reflections
b = 9.5982 (2) Å θ = 3.4–29.1°
c = 9.6041 (2) Å µ = 0.41 mm1
α = 76.608 (2)° T = 293 K
β = 70.602 (2)° Block, white
γ = 68.570 (2)° 0.3 × 0.2 × 0.1 mm
V = 625.30 (2) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 2449 independent reflections
Radiation source: fine-focus sealed tube 2121 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.4°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −11→11
Tmin = 0.866, Tmax = 1.000 l = −11→11
30316 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.2502P] where P = (Fo2 + 2Fc2)/3
2449 reflections (Δ/σ)max = 0.001
156 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15017 (7) 0.32917 (5) 0.84285 (5) 0.04691 (16)
S2 0.40556 (6) −0.40134 (5) 0.33254 (5) 0.03932 (14)
N1 −0.3639 (2) 0.35160 (17) 1.09693 (16) 0.0409 (4)
N2 −0.2053 (2) 0.39804 (16) 1.03276 (16) 0.0389 (3)
H2 −0.1954 0.4764 1.0542 0.047*
N4 −0.14673 (19) 0.20528 (14) 0.93293 (14) 0.0308 (3)
N7 −0.0745 (2) 0.07943 (15) 0.85714 (15) 0.0356 (3)
C3 −0.0676 (2) 0.31151 (18) 0.93426 (18) 0.0322 (3)
C5 −0.3237 (2) 0.23338 (19) 1.03460 (18) 0.0351 (4)
C6 −0.4492 (3) 0.1392 (2) 1.0656 (2) 0.0530 (5)
H6A −0.5573 0.1702 1.1492 0.079*
H6B −0.3784 0.0353 1.0876 0.079*
H6C −0.4932 0.1511 0.9800 0.079*
C8 0.0461 (2) 0.08739 (18) 0.73055 (19) 0.0359 (4)
H8 0.0818 0.1743 0.6941 0.043*
C9 0.1295 (2) −0.03748 (18) 0.64155 (18) 0.0332 (3)
C10 0.2741 (3) −0.0280 (2) 0.5103 (2) 0.0411 (4)
H10 0.3162 0.0561 0.4831 0.049*
C11 0.3554 (3) −0.1409 (2) 0.4205 (2) 0.0413 (4)
H11 0.4527 −0.1331 0.3339 0.050*
C12 0.2930 (2) −0.26694 (18) 0.45838 (18) 0.0324 (3)
C13 0.1500 (2) −0.27788 (19) 0.58982 (18) 0.0367 (4)
H13 0.1084 −0.3622 0.6172 0.044*
C14 0.0695 (2) −0.16417 (19) 0.67990 (18) 0.0364 (4)
H14 −0.0262 −0.1727 0.7674 0.044*
C15 0.2776 (3) −0.5350 (2) 0.4030 (2) 0.0513 (5)
H15A 0.2824 −0.5749 0.5035 0.077*
H15B 0.3350 −0.6157 0.3423 0.077*
H15C 0.1464 −0.4864 0.4011 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0418 (3) 0.0503 (3) 0.0534 (3) −0.0245 (2) 0.0056 (2) −0.0266 (2)
S2 0.0395 (2) 0.0369 (2) 0.0370 (2) −0.00991 (18) 0.00102 (18) −0.01659 (18)
N1 0.0374 (8) 0.0447 (8) 0.0427 (8) −0.0163 (7) −0.0004 (6) −0.0192 (7)
N2 0.0401 (8) 0.0359 (7) 0.0437 (8) −0.0157 (6) −0.0011 (6) −0.0196 (6)
N4 0.0360 (7) 0.0278 (6) 0.0321 (7) −0.0115 (5) −0.0071 (6) −0.0110 (5)
N7 0.0419 (8) 0.0298 (7) 0.0387 (8) −0.0102 (6) −0.0094 (6) −0.0152 (6)
C3 0.0369 (8) 0.0293 (8) 0.0321 (8) −0.0110 (7) −0.0065 (7) −0.0102 (6)
C5 0.0363 (8) 0.0378 (9) 0.0333 (8) −0.0134 (7) −0.0062 (7) −0.0106 (7)
C6 0.0496 (11) 0.0582 (12) 0.0599 (12) −0.0311 (10) −0.0024 (9) −0.0191 (10)
C8 0.0431 (9) 0.0310 (8) 0.0377 (9) −0.0113 (7) −0.0117 (7) −0.0114 (7)
C9 0.0353 (8) 0.0314 (8) 0.0344 (8) −0.0057 (7) −0.0112 (7) −0.0121 (7)
C10 0.0419 (9) 0.0377 (9) 0.0456 (10) −0.0163 (8) −0.0056 (8) −0.0123 (8)
C11 0.0386 (9) 0.0414 (9) 0.0398 (9) −0.0139 (8) 0.0018 (7) −0.0135 (7)
C12 0.0310 (8) 0.0312 (8) 0.0331 (8) −0.0038 (6) −0.0087 (7) −0.0103 (6)
C13 0.0414 (9) 0.0304 (8) 0.0369 (9) −0.0112 (7) −0.0049 (7) −0.0104 (7)
C14 0.0389 (9) 0.0356 (9) 0.0316 (8) −0.0098 (7) −0.0034 (7) −0.0107 (7)
C15 0.0498 (11) 0.0516 (11) 0.0546 (12) −0.0224 (9) 0.0052 (9) −0.0285 (9)

Geometric parameters (Å, º)

S1—C3 1.6818 (17) C8—C9 1.458 (2)
S2—C12 1.7565 (16) C8—H8 0.9300
S2—C15 1.7837 (19) C9—C14 1.388 (2)
N1—C5 1.294 (2) C9—C10 1.395 (2)
N1—N2 1.3688 (19) C10—C11 1.374 (2)
N2—C3 1.332 (2) C10—H10 0.9300
N2—H2 0.8600 C11—C12 1.393 (2)
N4—C5 1.372 (2) C11—H11 0.9300
N4—C3 1.3744 (19) C12—C13 1.391 (2)
N4—N7 1.3944 (18) C13—C14 1.382 (2)
N7—C8 1.272 (2) C13—H13 0.9300
C5—C6 1.479 (2) C14—H14 0.9300
C6—H6A 0.9600 C15—H15A 0.9600
C6—H6B 0.9600 C15—H15B 0.9600
C6—H6C 0.9600 C15—H15C 0.9600
C12—S2—C15 104.35 (8) C14—C9—C10 118.42 (15)
C5—N1—N2 103.74 (13) C14—C9—C8 123.14 (15)
C3—N2—N1 114.29 (13) C10—C9—C8 118.44 (15)
C3—N2—H2 122.9 C11—C10—C9 121.01 (16)
N1—N2—H2 122.9 C11—C10—H10 119.5
C5—N4—C3 108.19 (13) C9—C10—H10 119.5
C5—N4—N7 119.83 (13) C10—C11—C12 120.40 (16)
C3—N4—N7 131.85 (13) C10—C11—H11 119.8
C8—N7—N4 116.65 (13) C12—C11—H11 119.8
N2—C3—N4 102.66 (14) C13—C12—C11 118.93 (15)
N2—C3—S1 126.93 (12) C13—C12—S2 125.20 (13)
N4—C3—S1 130.36 (12) C11—C12—S2 115.88 (13)
N1—C5—N4 111.08 (14) C14—C13—C12 120.34 (16)
N1—C5—C6 125.65 (16) C14—C13—H13 119.8
N4—C5—C6 123.27 (15) C12—C13—H13 119.8
C5—C6—H6A 109.5 C13—C14—C9 120.90 (16)
C5—C6—H6B 109.5 C13—C14—H14 119.6
H6A—C6—H6B 109.5 C9—C14—H14 119.6
C5—C6—H6C 109.5 S2—C15—H15A 109.5
H6A—C6—H6C 109.5 S2—C15—H15B 109.5
H6B—C6—H6C 109.5 H15A—C15—H15B 109.5
N7—C8—C9 121.10 (15) S2—C15—H15C 109.5
N7—C8—H8 119.4 H15A—C15—H15C 109.5
C9—C8—H8 119.5 H15B—C15—H15C 109.5
C5—N1—N2—C3 −0.8 (2) N4—N7—C8—C9 −179.55 (14)
C5—N4—N7—C8 153.95 (16) N7—C8—C9—C14 7.1 (3)
C3—N4—N7—C8 −30.8 (2) N7—C8—C9—C10 −174.05 (16)
N1—N2—C3—N4 1.71 (19) C14—C9—C10—C11 0.1 (3)
N1—N2—C3—S1 −176.03 (13) C8—C9—C10—C11 −178.77 (17)
C5—N4—C3—N2 −1.95 (17) C9—C10—C11—C12 0.7 (3)
N7—N4—C3—N2 −177.60 (15) C10—C11—C12—C13 −1.3 (3)
C5—N4—C3—S1 175.68 (14) C10—C11—C12—S2 178.86 (14)
N7—N4—C3—S1 0.0 (3) C15—S2—C12—C13 5.91 (18)
N2—N1—C5—N4 −0.59 (19) C15—S2—C12—C11 −174.23 (14)
N2—N1—C5—C6 179.81 (18) C11—C12—C13—C14 1.0 (3)
C3—N4—C5—N1 1.67 (19) S2—C12—C13—C14 −179.17 (13)
N7—N4—C5—N1 177.93 (14) C12—C13—C14—C9 −0.1 (3)
C3—N4—C5—C6 −178.72 (16) C10—C9—C14—C13 −0.4 (3)
N7—N4—C5—C6 −2.5 (2) C8—C9—C14—C13 178.42 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···S1 0.93 2.57 3.212 (2) 126
N2—H2···S1i 0.86 2.48 3.328 (2) 169

Symmetry code: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5604).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Barrera, H., Vinas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027–2030.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D’souza, A. S. & D’souza, A. (2012). Acta Cryst. E68, o1607. [DOI] [PMC free article] [PubMed]
  5. Dornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178.
  6. Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299–1311.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B., Muralidharan, A. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1509. [DOI] [PMC free article] [PubMed]
  9. Galic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–194.
  10. Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394.
  11. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Thieme, P., König, H. & Amann, A. (1973a). BASF, German Patent 2228259.
  15. Thieme, P., König, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.
  16. Wang, M., Cao, M., Hu, B., Cheng, C. X. & Song, X. G. (2008). Acta Cryst. E64, o374. [DOI] [PMC free article] [PubMed]
  17. Wei, P. H. L. & Bell, C. S. (1981). Chem. Abstr. 96, 104227.
  18. Wei, P. H. L. & Bell, C. S. (1982). American Home Products Corporation, US Patent No. 4302585.
  19. Yadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 925–939.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009690/lh5604sup1.cif

e-69-0o718-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009690/lh5604Isup2.hkl

e-69-0o718-Isup2.hkl (117.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009690/lh5604Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES