Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 13;69(Pt 5):o733. doi: 10.1107/S1600536813009392

Isopropyl 3-phenyl­isoxazole-5-carboxyl­ate

Li Wang a,b, Xue-Ying Liu c, Zheng-Wei Li b, Sheng-Yong Zhang c,*
PMCID: PMC3648265  PMID: 23723885

Abstract

In the title compound, C13H13NO3, the isoxazole ring is approximately coplanar with the phenyl ring, the dihedral angle between their planes being 7.37 (19)°. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, generating a ring of graph-set motif R 2 2(10).

Related literature  

For the biological activity of isoxazole derivatives, see: Angibaud et al. (2003). For the structure of a related compound, see: Yao & Deng (2008). For the synthesis of 3-phenyl­isoxazole-5-carb­oxy­lic acid, see: Liu et al. (2006).graphic file with name e-69-0o733-scheme1.jpg

Experimental  

Crystal data  

  • C13H13NO3

  • M r = 231.24

  • Monoclinic, Inline graphic

  • a = 4.6311 (10) Å

  • b = 16.596 (4) Å

  • c = 15.897 (3) Å

  • β = 98.321 (4)°

  • V = 1208.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.36 × 0.28 × 0.17 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.968, T max = 0.984

  • 6039 measured reflections

  • 2169 independent reflections

  • 1511 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.126

  • S = 1.03

  • 2169 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009392/rz5055sup1.cif

e-69-0o733-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009392/rz5055Isup2.hkl

e-69-0o733-Isup2.hkl (106.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009392/rz5055Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.37 3.277 (2) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (21172262).

supplementary crystallographic information

Comment

Isoxazole derivatives, as useful intermediates in organic synthesis, show widespread biological activities, and are employed as antiviral drugs, antibacteria reagents, fungicide, anti-inflammatory agents, analgesics, antidepressants, anticonvulsants and pesticides (Angibaud et al., 2003). In the molecule of the title compound (Fig. 1), the dihedral angle between the phenyl and the isoxazole rings is 7.37 (19)°. The bond lengths within the isoxazole ring [C7—N1 = 1.306 (2) Å, N1—O1 = 1.402 (18) Å, O1—C9 = 1.345 (2) Å, C9—C8 = 1.327 (2) Å and C8—C7 = 1.409 (2) Å] are in agreement with those reported by Yao & Deng (2008) for 5-amino-3-(4-pyridyl)isoxazole [C7—N1 = 1.316 (18) Å, N1—O1 = 1.429 (14) Å, O1—C9 = 1.353 (17) Å, C9—C8 = 1.368 (19) Å and C8—C7 = 1.400 (19) Å]. In the crystal, centrosymmetrically related molecules are linked into dimers by C—H···O hydrogen bonds (Table 1), generating a ring of graph-set motif < i>R22(10).

Experimental

3-Phenylisoxazole-5-carboxylic acid (10 mmol, 1.95 g; Liu et al., 2006) was dissolved in 100 ml dichloromethane, then thionyl chloride(12 mmol, 1.43 g)was dropped into the solution and stirred for 20 minutes in ice bath. The solvent was removed under reduced pressure and the mixture was used for the next step without further purification. 2-Propanol (20 mmol, 1.5 ml) was added subsequently and the mixture stirred for 6 h at room temperature. The resulting residue was purified as a white solid (1.96 g, 85% yield). Recrystallization in ethyl acetate gave fine colourless crystals suitable for X-ray study. All chemicals were purchased by Sigma Aldrich Germany.

Refinement

All H atoms were placed in idealized positions and allowed to ride on the respective parent atom with C—H = 0.93–0.98 Å and with Uiso(H) = of 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

C13H13NO3 F(000) = 488
Mr = 231.24 Dx = 1.271 Mg m3Dm = 1.270 Mg m3Dm measured by not measured
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1178 reflections
a = 4.6311 (10) Å θ = 2.5–21.2°
b = 16.596 (4) Å µ = 0.09 mm1
c = 15.897 (3) Å T = 296 K
β = 98.321 (4)° Block, colourless
V = 1208.9 (5) Å3 0.36 × 0.28 × 0.17 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2169 independent reflections
Radiation source: fine-focus sealed tube 1511 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
φ and ω scans θmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −4→5
Tmin = 0.968, Tmax = 0.984 k = −19→19
6039 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.0883P] where P = (Fo2 + 2Fc2)/3
2169 reflections (Δ/σ)max < 0.001
156 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 1.1576 (4) 0.66232 (10) 0.15016 (9) 0.0630 (5)
O1 1.0131 (3) 0.60739 (8) 0.19660 (7) 0.0607 (4)
O2 0.4550 (3) 0.46825 (8) 0.12822 (8) 0.0746 (5)
O3 0.6627 (3) 0.50549 (7) 0.25802 (7) 0.0576 (4)
C1 0.9997 (5) 0.69977 (13) −0.07802 (12) 0.0712 (6)
H1 0.8549 0.6615 −0.0930 0.085*
C2 1.0757 (6) 0.75230 (15) −0.13884 (14) 0.0828 (7)
H2 0.9802 0.7496 −0.1944 0.099*
C3 1.2896 (6) 0.80792 (14) −0.11749 (17) 0.0844 (7)
H3 1.3391 0.8433 −0.1584 0.101*
C4 1.4315 (5) 0.81193 (13) −0.03635 (16) 0.0845 (7)
H4 1.5793 0.8496 −0.0222 0.101*
C5 1.3566 (5) 0.76046 (12) 0.02457 (14) 0.0681 (6)
H5 1.4541 0.7636 0.0799 0.082*
C6 1.1380 (4) 0.70408 (10) 0.00457 (11) 0.0521 (5)
C7 1.0454 (4) 0.65230 (10) 0.07063 (10) 0.0491 (4)
C8 0.8306 (4) 0.59153 (11) 0.06221 (10) 0.0530 (5)
H8 0.7213 0.5728 0.0124 0.064*
C9 0.8187 (4) 0.56698 (10) 0.14107 (10) 0.0492 (5)
C10 0.6272 (4) 0.50799 (11) 0.17418 (11) 0.0525 (5)
C11 0.4715 (5) 0.45151 (12) 0.29747 (12) 0.0629 (5)
H11 0.2788 0.4501 0.2627 0.075*
C12 0.4454 (7) 0.48786 (17) 0.38172 (15) 0.1041 (10)
H12A 0.6342 0.4896 0.4158 0.156*
H12B 0.3159 0.4558 0.4099 0.156*
H12C 0.3692 0.5416 0.3738 0.156*
C13 0.6001 (6) 0.36909 (14) 0.30211 (16) 0.0981 (8)
H13A 0.6165 0.3505 0.2458 0.147*
H13B 0.4765 0.3331 0.3280 0.147*
H13C 0.7901 0.3705 0.3355 0.147*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0788 (12) 0.0650 (10) 0.0460 (9) −0.0149 (9) 0.0112 (8) 0.0018 (7)
O1 0.0757 (9) 0.0651 (8) 0.0408 (7) −0.0141 (7) 0.0070 (6) 0.0003 (6)
O2 0.0940 (11) 0.0756 (9) 0.0512 (8) −0.0266 (8) 0.0007 (8) −0.0020 (7)
O3 0.0695 (9) 0.0626 (8) 0.0410 (7) −0.0099 (7) 0.0085 (6) 0.0042 (6)
C1 0.0870 (16) 0.0752 (14) 0.0524 (12) −0.0040 (12) 0.0136 (11) 0.0074 (11)
C2 0.1036 (19) 0.0902 (17) 0.0575 (13) 0.0099 (15) 0.0219 (13) 0.0172 (12)
C3 0.111 (2) 0.0674 (15) 0.0847 (18) 0.0077 (14) 0.0463 (16) 0.0227 (13)
C4 0.1026 (19) 0.0696 (15) 0.0871 (17) −0.0156 (13) 0.0332 (15) 0.0076 (13)
C5 0.0797 (15) 0.0618 (12) 0.0650 (13) −0.0042 (11) 0.0182 (11) 0.0010 (10)
C6 0.0606 (12) 0.0479 (10) 0.0505 (11) 0.0045 (9) 0.0171 (9) 0.0010 (8)
C7 0.0570 (11) 0.0483 (10) 0.0427 (10) 0.0027 (9) 0.0095 (8) −0.0019 (8)
C8 0.0630 (12) 0.0541 (11) 0.0409 (10) −0.0005 (9) 0.0043 (9) −0.0014 (8)
C9 0.0592 (11) 0.0474 (10) 0.0402 (10) 0.0009 (9) 0.0047 (8) −0.0036 (8)
C10 0.0662 (12) 0.0493 (10) 0.0417 (10) 0.0033 (9) 0.0068 (9) 0.0004 (8)
C11 0.0712 (13) 0.0637 (13) 0.0550 (11) −0.0105 (10) 0.0132 (10) 0.0104 (9)
C12 0.147 (3) 0.107 (2) 0.0693 (16) −0.0330 (18) 0.0530 (17) −0.0100 (14)
C13 0.122 (2) 0.0687 (15) 0.107 (2) 0.0054 (15) 0.0270 (17) 0.0262 (14)

Geometric parameters (Å, º)

N1—C7 1.306 (2) C5—H5 0.9300
N1—O1 1.4022 (18) C6—C7 1.468 (2)
O1—C9 1.345 (2) C7—C8 1.409 (2)
O2—C10 1.198 (2) C8—C9 1.327 (2)
O3—C10 1.3197 (19) C8—H8 0.9300
O3—C11 1.463 (2) C9—C10 1.469 (3)
C1—C6 1.377 (3) C11—C13 1.489 (3)
C1—C2 1.384 (3) C11—C12 1.490 (3)
C1—H1 0.9300 C11—H11 0.9800
C2—C3 1.361 (3) C12—H12A 0.9600
C2—H2 0.9300 C12—H12B 0.9600
C3—C4 1.362 (3) C12—H12C 0.9600
C3—H3 0.9300 C13—H13A 0.9600
C4—C5 1.373 (3) C13—H13B 0.9600
C4—H4 0.9300 C13—H13C 0.9600
C5—C6 1.381 (3)
C7—N1—O1 105.89 (14) C7—C8—H8 127.6
C9—O1—N1 107.68 (12) C8—C9—O1 110.58 (16)
C10—O3—C11 117.22 (15) C8—C9—C10 130.77 (17)
C6—C1—C2 120.2 (2) O1—C9—C10 118.60 (15)
C6—C1—H1 119.9 O2—C10—O3 124.97 (18)
C2—C1—H1 119.9 O2—C10—C9 122.10 (16)
C3—C2—C1 120.1 (2) O3—C10—C9 112.92 (16)
C3—C2—H2 119.9 O3—C11—C13 108.73 (18)
C1—C2—H2 119.9 O3—C11—C12 105.69 (16)
C2—C3—C4 120.2 (2) C13—C11—C12 114.28 (19)
C2—C3—H3 119.9 O3—C11—H11 109.3
C4—C3—H3 119.9 C13—C11—H11 109.3
C3—C4—C5 120.1 (2) C12—C11—H11 109.3
C3—C4—H4 120.0 C11—C12—H12A 109.5
C5—C4—H4 120.0 C11—C12—H12B 109.5
C4—C5—C6 120.7 (2) H12A—C12—H12B 109.5
C4—C5—H5 119.6 C11—C12—H12C 109.5
C6—C5—H5 119.6 H12A—C12—H12C 109.5
C1—C6—C5 118.61 (18) H12B—C12—H12C 109.5
C1—C6—C7 120.53 (18) C11—C13—H13A 109.5
C5—C6—C7 120.80 (17) C11—C13—H13B 109.5
N1—C7—C8 111.06 (15) H13A—C13—H13B 109.5
N1—C7—C6 120.10 (16) C11—C13—H13C 109.5
C8—C7—C6 128.77 (16) H13A—C13—H13C 109.5
C9—C8—C7 104.79 (16) H13B—C13—H13C 109.5
C9—C8—H8 127.6
C7—N1—O1—C9 −0.11 (18) N1—C7—C8—C9 0.9 (2)
C6—C1—C2—C3 0.7 (3) C6—C7—C8—C9 −176.01 (17)
C1—C2—C3—C4 0.4 (4) C7—C8—C9—O1 −0.9 (2)
C2—C3—C4—C5 −0.8 (4) C7—C8—C9—C10 176.46 (18)
C3—C4—C5—C6 0.1 (3) N1—O1—C9—C8 0.68 (19)
C2—C1—C6—C5 −1.4 (3) N1—O1—C9—C10 −177.06 (15)
C2—C1—C6—C7 175.88 (18) C11—O3—C10—O2 −1.7 (3)
C4—C5—C6—C1 0.9 (3) C11—O3—C10—C9 176.98 (15)
C4—C5—C6—C7 −176.28 (18) C8—C9—C10—O2 5.0 (3)
O1—N1—C7—C8 −0.5 (2) O1—C9—C10—O2 −177.82 (17)
O1—N1—C7—C6 176.73 (14) C8—C9—C10—O3 −173.73 (18)
C1—C6—C7—N1 −173.13 (18) O1—C9—C10—O3 3.5 (2)
C5—C6—C7—N1 4.0 (3) C10—O3—C11—C13 84.7 (2)
C1—C6—C7—C8 3.5 (3) C10—O3—C11—C12 −152.16 (19)
C5—C6—C7—C8 −179.33 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O2i 0.93 2.37 3.277 (2) 166

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5055).

References

  1. Angibaud, P., Bourdrez, X., Devine, A., End, D. W., Freyne, E., Ligny, Y., Muller, P., Mannens, G., Pilatte, I., Poncelet, V., Skrzat, S., Smets, G., Van Dun, J., Van Remoortere, P., Venet, M. & Wouters, W. (2003). Bioorg. Med. Chem. Lett. 13, 1543–1548. [DOI] [PubMed]
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Liu, L.-J., Yong, J.-P., Dai, X.-J., Jia, J., Wang, X.-Z. & Wang, J.-W. (2006). Chem. J. Chin. Univ. 27, 1669–1672.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  6. Yao, Z. & Deng, J.-C. (2008). Acta Cryst. E64, o131. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009392/rz5055sup1.cif

e-69-0o733-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009392/rz5055Isup2.hkl

e-69-0o733-Isup2.hkl (106.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009392/rz5055Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES