Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 17;69(Pt 5):o738. doi: 10.1107/S1600536813009781

4-Hy­droxy-N-methyl­benzamide

Jerry P Jasinski a,*, Joel P St John a, Ray J Butcher b, B Narayana c, H S Yathirajan d, B K Sarojini e
PMCID: PMC3648269  PMID: 23723889

Abstract

Three independent mol­ecules comprise the asymmetric unit of the title compound, C8H9NO2, in which the dihedral angles between the amide group and the benzene ring are 3.0 (2), 4.0 (3) and 3.3 (9)°. In the crystal, O—H⋯O hydrogen bonds and weak C—H⋯N inter­actions are observed, forming infinite chains along [101].

Related literature  

For background to the biological activity of aromatic amides, see: Saeed et al. (2008); Brunsveld et al. (2001); Prins et al. (2001). For the anti-emetic activity of N-substituted benzamides, see: Vega-Noverola et al. (1989). For related structures, see: Escalada et al. (2004); Pertlik (1992). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-69-0o738-scheme1.jpg

Experimental  

Crystal data  

  • C8H9NO2

  • M r = 151.16

  • Monoclinic, Inline graphic

  • a = 13.576 (3) Å

  • b = 16.964 (3) Å

  • c = 11.025 (2) Å

  • β = 120.11 (3)°

  • V = 2196.5 (10) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.42 × 0.28 × 0.22 mm

Data collection  

  • Agilent Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.634, T max = 1.000

  • 4810 measured reflections

  • 2802 independent reflections

  • 2545 reflections with I > 2σ(I)

  • R int = 0.015

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.192

  • S = 1.10

  • 2802 reflections

  • 305 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813009781/hg5306sup1.cif

e-69-0o738-sup1.cif (170KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009781/hg5306Isup2.hkl

e-69-0o738-Isup2.hkl (154KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009781/hg5306Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2C i 0.82 1.94 2.749 (5) 170
C2A—H2A⋯N1A ii 0.93 2.66 3.267 (5) 124
C4A—H4A⋯N1B i 0.93 2.60 3.371 (5) 141
O1B—H1B⋯O2B iii 0.82 1.98 2.784 (5) 166
C2B—H2B⋯N1C iii 0.93 2.63 3.404 (5) 142
O1C—H1C⋯O2A 0.82 1.96 2.750 (5) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

BN thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Aromatic amides have found extensive application in synthetic organic chemistry and have a wide range of biological activities (Saeed et al., 2008, Brunsveld et al., 2001; Prins et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The crystal structure of N-methylbenzamide, viz., 2,3-dihydroxy-N-methylbenzamide monohydrate has been reported (Escalada et al., 2004). Also the crystal structures of 2-hydroxy-N-methylbenzamide and 2-hydroxy-N-methylthiobenzamide have been published (Pertlik, 1992). In view of the importance of aromatic amides, we report the crystal structure of the title compound, C8H9NO2, (I).

In (I), three independent molecules (A, B. C) crystallize in the asymmetric unit (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the amide group and the benzene ring is 3.0 (2)°, 4.0 (3)° and 3.3 (9)°, respectively. In the crystal, O—H···O hydrogen bonds and weak C—H···N intermolecular interactions are observed (Table 1) forming infinite 1-D chains along (101) and contribute to packing stability (Fig. 2). The closest intercentroid distance between two π-ring systems is 5.214 (6) Å.

Experimental

4-Hydroxybenzoyl chloride (1.56 g, 0.01 mole) and methylamine (0.31 g, 0.01 mole) were dissolved in 20 ml methanol and stirred at room temperature for 3 h (Fig. 3). Then the reaction mass was poured into 50 ml ice cold water. The solid obtained was filtered and dried. Single crystals were grown from acetone by the slow evaporation method with a yield of 76%. (m.p. 395 K). Analytical data: Found (Calculated): C % : 63.54 (63.56); H% : 5.98 (6.00) ; N% : 9.21 (9.27).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3), 0.86Å (NH) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Aromatic/amide H refined with riding coordinates: N1A(H1AA), C1A(H1AB), C2A(H2A), C4A(H4A), C5A(H5A), N1B(H1BA), C1B(H1BB),C2B(H2B), C4B(H4B), C5B(H5B), N1C(H1CA), C1C(H1CB), C2C(H2C), C4C(H4C), C5C(H5C). Idealised Me refined as rotating group: C8A(H8AA,H8AB,H8AC), C8B(H8BA,H8BB,H8BC), C8C(H8CA,H8CB,H8CC). Idealised tetrahedral OH refined as rotating group: O1A(H1A), O1B(H1B), O1C(H1C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids of three independent molecules in the unit cell.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the c axis. Dashed lines indicate O—H···O hydrogen bonds and weak C—H···O intermolecular interactions forming 1-D chains along (101). H atoms not involved in the hydrogen bonding and weak intermolecular interactions have been deleted for clarity.

Fig. 3.

Fig. 3.

Reaction scheme for the synthesis of the title compound

Crystal data

C8H9NO2 F(000) = 960
Mr = 151.16 Dx = 1.371 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 13.576 (3) Å Cell parameters from 3483 reflections
b = 16.964 (3) Å θ = 4.6–77.5°
c = 11.025 (2) Å µ = 0.10 mm1
β = 120.11 (3)° T = 100 K
V = 2196.5 (10) Å3 Block, colourless
Z = 12 0.42 × 0.28 × 0.22 mm

Data collection

Agilent Xcalibur diffractometer with a Ruby (Gemini Cu) detector 2545 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1 Rint = 0.015
ω scans θmax = 26.8°, θmin = 2.1°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −17→12
Tmin = 0.634, Tmax = 1.000 k = −21→20
4810 measured reflections l = −13→13
2802 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.1461P)2 + 0.3673P], where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.192 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.58 e Å3
2802 reflections Δρmin = −0.56 e Å3
305 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.020 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A −0.1230 (3) 0.69501 (19) 0.1817 (4) 0.0616 (8)
H1A −0.1628 0.7033 0.0974 0.092*
O2A 0.2475 (3) 0.42236 (17) 0.4097 (3) 0.0612 (8)
N1A 0.1573 (2) 0.39940 (16) 0.1817 (3) 0.0404 (6)
H1AA 0.1024 0.4109 0.0992 0.048*
C1A 0.0968 (3) 0.5501 (2) 0.3666 (4) 0.0471 (8)
H1AB 0.1499 0.5376 0.4589 0.056*
C2A 0.0254 (4) 0.6130 (3) 0.3400 (4) 0.0504 (9)
H2A 0.0306 0.6425 0.4141 0.060*
C3A −0.0548 (3) 0.6331 (2) 0.2026 (4) 0.0452 (8)
C4A −0.0623 (3) 0.5876 (2) 0.0918 (4) 0.0468 (8)
H4A −0.1158 0.6002 −0.0004 0.056*
C5A 0.0102 (3) 0.5240 (2) 0.1201 (4) 0.0439 (8)
H5A 0.0048 0.4938 0.0467 0.053*
C6A 0.0917 (3) 0.5048 (2) 0.2590 (3) 0.0402 (7)
C7A 0.1730 (3) 0.4393 (2) 0.2940 (4) 0.0431 (8)
C8A 0.2365 (5) 0.3355 (3) 0.2037 (6) 0.0549 (9)
H8AA 0.2520 0.3063 0.2861 0.082*
H8AB 0.3062 0.3570 0.2156 0.082*
H8AC 0.2034 0.3010 0.1239 0.082*
O1B 1.1116 (3) 0.8638 (2) 0.7338 (3) 0.0617 (9)
H1B 1.1397 0.8800 0.8145 0.093*
O2B 0.7422 (3) 0.58944 (17) 0.5125 (3) 0.0576 (8)
N1B 0.8321 (3) 0.56916 (17) 0.7436 (3) 0.0406 (7)
H1BA 0.8845 0.5830 0.8261 0.049*
C1B 0.9770 (3) 0.6941 (2) 0.7987 (4) 0.0455 (8)
H1BB 0.9815 0.6651 0.8729 0.055*
C2B 1.0491 (3) 0.7578 (2) 0.8255 (4) 0.0464 (9)
H2B 1.1014 0.7717 0.9175 0.056*
C3B 1.0433 (3) 0.8006 (2) 0.7158 (4) 0.0466 (9)
C4B 0.9661 (4) 0.7791 (3) 0.5779 (5) 0.0540 (10)
H4B 0.9628 0.8074 0.5038 0.065*
C5B 0.8946 (3) 0.7156 (2) 0.5518 (4) 0.0486 (9)
H5B 0.8434 0.7010 0.4598 0.058*
C6B 0.8987 (3) 0.6735 (2) 0.6626 (4) 0.0422 (8)
C7B 0.8164 (3) 0.6074 (2) 0.6300 (4) 0.0437 (9)
C8B 0.7582 (4) 0.5039 (2) 0.7230 (5) 0.0562 (11)
H8BA 0.7827 0.4587 0.6927 0.084*
H8BB 0.6817 0.5173 0.6530 0.084*
H8BC 0.7606 0.4919 0.8096 0.084*
O1C 0.3742 (3) 0.4691 (2) 0.6850 (4) 0.0665 (9)
H1C 0.3295 0.4643 0.6007 0.100*
O2C 0.7454 (3) 0.74129 (17) 0.9069 (3) 0.0630 (8)
N1C 0.6574 (3) 0.76016 (17) 0.6775 (3) 0.0433 (7)
H1CA 0.6057 0.7459 0.5949 0.052*
C1C 0.5934 (4) 0.6151 (3) 0.8683 (4) 0.0532 (9)
H1CB 0.6448 0.6298 0.9601 0.064*
C2C 0.5220 (4) 0.5522 (3) 0.8445 (4) 0.0558 (10)
H2C 0.5255 0.5244 0.9193 0.067*
C3C 0.4443 (3) 0.5305 (2) 0.7068 (4) 0.0484 (9)
C4C 0.4387 (4) 0.5731 (2) 0.5946 (4) 0.0522 (9)
H4C 0.3865 0.5590 0.5027 0.063*
C5C 0.5114 (4) 0.6359 (2) 0.6212 (4) 0.0491 (9)
H5C 0.5075 0.6644 0.5469 0.059*
C6C 0.5906 (3) 0.6570 (2) 0.7589 (4) 0.0434 (8)
C7C 0.6724 (3) 0.7228 (2) 0.7924 (4) 0.0463 (8)
C8C 0.7327 (5) 0.8257 (2) 0.6993 (6) 0.0567 (10)
H8CA 0.7403 0.8575 0.7756 0.085*
H8CB 0.7016 0.8571 0.6156 0.085*
H8CC 0.8061 0.8061 0.7211 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.068 (2) 0.0641 (17) 0.0477 (17) 0.0157 (15) 0.0253 (16) −0.0002 (14)
O2A 0.0643 (19) 0.0652 (17) 0.0364 (15) 0.0055 (14) 0.0122 (13) −0.0009 (13)
N1A 0.0413 (15) 0.0462 (13) 0.0254 (13) 0.0085 (12) 0.0107 (11) 0.0014 (11)
C1A 0.050 (2) 0.057 (2) 0.0305 (16) −0.0027 (16) 0.0168 (16) 0.0005 (14)
C2A 0.051 (2) 0.062 (2) 0.0323 (19) −0.0003 (18) 0.0161 (17) −0.0064 (17)
C3A 0.047 (2) 0.0462 (18) 0.039 (2) −0.0024 (14) 0.0196 (17) 0.0009 (14)
C4A 0.048 (2) 0.055 (2) 0.0309 (17) 0.0003 (17) 0.0146 (15) 0.0058 (15)
C5A 0.050 (2) 0.0504 (18) 0.0297 (18) −0.0048 (15) 0.0187 (16) −0.0044 (14)
C6A 0.0413 (17) 0.0466 (16) 0.0304 (17) −0.0068 (14) 0.0161 (14) −0.0005 (13)
C7A 0.0399 (17) 0.0477 (18) 0.0364 (18) −0.0064 (13) 0.0152 (15) 0.0020 (14)
C8A 0.055 (2) 0.0538 (18) 0.050 (2) 0.0078 (16) 0.0221 (17) 0.0012 (16)
O1B 0.061 (2) 0.0612 (18) 0.053 (2) −0.0118 (15) 0.0207 (17) 0.0036 (14)
O2B 0.0545 (17) 0.0564 (16) 0.0410 (17) −0.0079 (13) 0.0084 (13) −0.0068 (13)
N1B 0.0472 (17) 0.0416 (14) 0.0294 (14) −0.0108 (13) 0.0165 (12) −0.0029 (12)
C1B 0.046 (2) 0.0509 (19) 0.038 (2) 0.0015 (16) 0.0199 (17) 0.0043 (15)
C2B 0.0418 (19) 0.055 (2) 0.037 (2) −0.0008 (16) 0.0159 (17) −0.0020 (16)
C3B 0.044 (2) 0.0481 (19) 0.046 (2) 0.0016 (16) 0.0217 (18) 0.0039 (16)
C4B 0.060 (3) 0.058 (2) 0.039 (2) 0.0001 (19) 0.021 (2) 0.0109 (17)
C5B 0.048 (2) 0.055 (2) 0.0306 (18) 0.0001 (17) 0.0108 (17) 0.0027 (15)
C6B 0.0440 (19) 0.0419 (16) 0.038 (2) 0.0047 (14) 0.0188 (17) 0.0015 (14)
C7B 0.048 (2) 0.0435 (18) 0.036 (2) 0.0085 (15) 0.0189 (17) 0.0025 (14)
C8B 0.057 (2) 0.049 (2) 0.065 (3) −0.0082 (19) 0.032 (2) −0.009 (2)
O1C 0.069 (2) 0.0711 (19) 0.0519 (19) −0.0204 (17) 0.0249 (16) 0.0013 (15)
O2C 0.070 (2) 0.0558 (15) 0.0412 (17) −0.0042 (14) 0.0114 (14) 0.0022 (13)
N1C 0.0464 (16) 0.0442 (13) 0.0334 (14) −0.0093 (12) 0.0156 (12) −0.0013 (12)
C1C 0.053 (2) 0.059 (2) 0.0360 (19) 0.0029 (17) 0.0141 (17) 0.0029 (16)
C2C 0.055 (3) 0.066 (2) 0.037 (2) −0.0010 (19) 0.0153 (19) 0.0130 (18)
C3C 0.044 (2) 0.0509 (19) 0.045 (2) 0.0008 (15) 0.0184 (17) 0.0005 (16)
C4C 0.053 (2) 0.059 (2) 0.037 (2) 0.0008 (18) 0.0176 (18) −0.0027 (16)
C5C 0.055 (2) 0.053 (2) 0.034 (2) 0.0017 (17) 0.0187 (18) 0.0030 (15)
C6C 0.0439 (18) 0.0445 (16) 0.039 (2) 0.0077 (15) 0.0185 (16) 0.0020 (14)
C7C 0.046 (2) 0.0417 (17) 0.047 (2) 0.0048 (14) 0.0198 (17) −0.0018 (14)
C8C 0.063 (3) 0.0435 (18) 0.066 (3) −0.0039 (17) 0.034 (2) 0.0017 (18)

Geometric parameters (Å, º)

O1A—H1A 0.8200 C2B—C3B 1.379 (5)
O1A—C3A 1.341 (5) C3B—C4B 1.395 (6)
O2A—C7A 1.199 (5) C4B—H4B 0.9300
N1A—H1AA 0.8600 C4B—C5B 1.379 (6)
N1A—C7A 1.331 (5) C5B—H5B 0.9300
N1A—C8A 1.460 (5) C5B—C6B 1.393 (5)
C1A—H1AB 0.9300 C6B—C7B 1.493 (5)
C1A—C2A 1.371 (6) C8B—H8BA 0.9600
C1A—C6A 1.386 (5) C8B—H8BB 0.9600
C2A—H2A 0.9300 C8B—H8BC 0.9600
C2A—C3A 1.394 (6) O1C—H1C 0.8200
C3A—C4A 1.405 (5) O1C—C3C 1.349 (5)
C4A—H4A 0.9300 O2C—C7C 1.191 (5)
C4A—C5A 1.386 (5) N1C—H1CA 0.8600
C5A—H5A 0.9300 N1C—C7C 1.338 (5)
C5A—C6A 1.405 (5) N1C—C8C 1.446 (5)
C6A—C7A 1.474 (5) C1C—H1CB 0.9300
C8A—H8AA 0.9600 C1C—C2C 1.376 (6)
C8A—H8AB 0.9600 C1C—C6C 1.385 (5)
C8A—H8AC 0.9600 C2C—H2C 0.9300
O1B—H1B 0.8200 C2C—C3C 1.395 (6)
O1B—C3B 1.364 (5) C3C—C4C 1.402 (6)
O2B—C7B 1.215 (5) C4C—H4C 0.9300
N1B—H1BA 0.8600 C4C—C5C 1.380 (6)
N1B—C7B 1.330 (5) C5C—H5C 0.9300
N1B—C8B 1.434 (5) C5C—C6C 1.397 (5)
C1B—H1BB 0.9300 C6C—C7C 1.484 (5)
C1B—C2B 1.387 (6) C8C—H8CA 0.9600
C1B—C6B 1.380 (6) C8C—H8CB 0.9600
C2B—H2B 0.9300 C8C—H8CC 0.9600
C3A—O1A—H1A 109.5 C4B—C5B—H5B 119.9
C7A—N1A—H1AA 121.2 C4B—C5B—C6B 120.2 (4)
C7A—N1A—C8A 117.5 (4) C6B—C5B—H5B 119.9
C8A—N1A—H1AA 121.2 C1B—C6B—C5B 119.6 (4)
C2A—C1A—H1AB 119.2 C1B—C6B—C7B 121.8 (3)
C2A—C1A—C6A 121.5 (4) C5B—C6B—C7B 118.6 (4)
C6A—C1A—H1AB 119.2 O2B—C7B—N1B 122.5 (4)
C1A—C2A—H2A 119.8 O2B—C7B—C6B 124.4 (4)
C1A—C2A—C3A 120.4 (3) N1B—C7B—C6B 113.1 (3)
C3A—C2A—H2A 119.8 N1B—C8B—H8BA 109.5
O1A—C3A—C2A 118.2 (3) N1B—C8B—H8BB 109.5
O1A—C3A—C4A 122.6 (4) N1B—C8B—H8BC 109.5
C2A—C3A—C4A 119.2 (3) H8BA—C8B—H8BB 109.5
C3A—C4A—H4A 120.1 H8BA—C8B—H8BC 109.5
C5A—C4A—C3A 119.8 (4) H8BB—C8B—H8BC 109.5
C5A—C4A—H4A 120.1 C3C—O1C—H1C 109.5
C4A—C5A—H5A 119.7 C7C—N1C—H1CA 121.7
C4A—C5A—C6A 120.6 (3) C7C—N1C—C8C 116.6 (4)
C6A—C5A—H5A 119.7 C8C—N1C—H1CA 121.7
C1A—C6A—C5A 118.5 (3) C2C—C1C—H1CB 119.2
C1A—C6A—C7A 119.0 (3) C2C—C1C—C6C 121.6 (4)
C5A—C6A—C7A 122.5 (3) C6C—C1C—H1CB 119.2
O2A—C7A—N1A 121.6 (4) C1C—C2C—H2C 120.4
O2A—C7A—C6A 125.4 (4) C1C—C2C—C3C 119.2 (4)
N1A—C7A—C6A 113.0 (3) C3C—C2C—H2C 120.4
N1A—C8A—H8AA 109.5 O1C—C3C—C2C 118.6 (4)
N1A—C8A—H8AB 109.5 O1C—C3C—C4C 121.3 (4)
N1A—C8A—H8AC 109.5 C2C—C3C—C4C 120.1 (4)
H8AA—C8A—H8AB 109.5 C3C—C4C—H4C 120.2
H8AA—C8A—H8AC 109.5 C5C—C4C—C3C 119.6 (4)
H8AB—C8A—H8AC 109.5 C5C—C4C—H4C 120.2
C3B—O1B—H1B 109.5 C4C—C5C—H5C 119.7
C7B—N1B—H1BA 121.3 C4C—C5C—C6C 120.6 (3)
C7B—N1B—C8B 117.3 (3) C6C—C5C—H5C 119.7
C8B—N1B—H1BA 121.3 C1C—C6C—C5C 119.0 (4)
C2B—C1B—H1BB 119.8 C1C—C6C—C7C 118.6 (4)
C6B—C1B—H1BB 119.8 C5C—C6C—C7C 122.4 (3)
C6B—C1B—C2B 120.4 (4) O2C—C7C—N1C 122.0 (4)
C1B—C2B—H2B 120.0 O2C—C7C—C6C 125.6 (4)
C3B—C2B—C1B 120.0 (4) N1C—C7C—C6C 112.4 (3)
C3B—C2B—H2B 120.0 N1C—C8C—H8CA 109.5
O1B—C3B—C2B 123.4 (4) N1C—C8C—H8CB 109.5
O1B—C3B—C4B 116.7 (4) N1C—C8C—H8CC 109.5
C2B—C3B—C4B 119.9 (4) H8CA—C8C—H8CB 109.5
C3B—C4B—H4B 120.1 H8CA—C8C—H8CC 109.5
C5B—C4B—C3B 119.9 (4) H8CB—C8C—H8CC 109.5
C5B—C4B—H4B 120.1
O1A—C3A—C4A—C5A −179.7 (3) C3B—C4B—C5B—C6B 0.5 (6)
C1A—C2A—C3A—O1A 179.9 (4) C4B—C5B—C6B—C1B −1.8 (6)
C1A—C2A—C3A—C4A 0.6 (6) C4B—C5B—C6B—C7B 177.3 (3)
C1A—C6A—C7A—O2A −2.4 (5) C5B—C6B—C7B—O2B −3.0 (6)
C1A—C6A—C7A—N1A 178.5 (3) C5B—C6B—C7B—N1B 176.9 (4)
C2A—C1A—C6A—C5A −0.7 (5) C6B—C1B—C2B—C3B −0.5 (6)
C2A—C1A—C6A—C7A 178.3 (3) C8B—N1B—C7B—O2B 0.8 (6)
C2A—C3A—C4A—C5A −0.3 (5) C8B—N1B—C7B—C6B −179.1 (3)
C3A—C4A—C5A—C6A −0.4 (5) O1C—C3C—C4C—C5C 179.6 (4)
C4A—C5A—C6A—C1A 0.9 (5) C1C—C2C—C3C—O1C −179.6 (4)
C4A—C5A—C6A—C7A −178.0 (3) C1C—C2C—C3C—C4C −0.6 (6)
C5A—C6A—C7A—O2A 176.5 (4) C1C—C6C—C7C—O2C 3.7 (6)
C5A—C6A—C7A—N1A −2.6 (4) C1C—C6C—C7C—N1C −177.5 (3)
C6A—C1A—C2A—C3A 0.0 (6) C2C—C1C—C6C—C5C 1.6 (6)
C8A—N1A—C7A—O2A −1.9 (6) C2C—C1C—C6C—C7C −178.3 (4)
C8A—N1A—C7A—C6A 177.2 (3) C2C—C3C—C4C—C5C 0.6 (6)
O1B—C3B—C4B—C5B 179.8 (4) C3C—C4C—C5C—C6C 0.4 (6)
C1B—C2B—C3B—O1B −179.7 (4) C4C—C5C—C6C—C1C −1.5 (6)
C1B—C2B—C3B—C4B −0.9 (6) C4C—C5C—C6C—C7C 178.4 (3)
C1B—C6B—C7B—O2B 176.1 (4) C5C—C6C—C7C—O2C −176.2 (4)
C1B—C6B—C7B—N1B −3.9 (5) C5C—C6C—C7C—N1C 2.7 (5)
C2B—C1B—C6B—C5B 1.8 (6) C6C—C1C—C2C—C3C −0.5 (7)
C2B—C1B—C6B—C7B −177.3 (3) C8C—N1C—C7C—O2C −1.5 (6)
C2B—C3B—C4B—C5B 0.9 (6) C8C—N1C—C7C—C6C 179.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O2Ci 0.82 1.94 2.749 (5) 170
C2A—H2A···N1Aii 0.93 2.66 3.267 (5) 124
C4A—H4A···N1Bi 0.93 2.60 3.371 (5) 141
O1B—H1B···O2Biii 0.82 1.98 2.784 (5) 166
C2B—H2B···N1Ciii 0.93 2.63 3.404 (5) 142
O1C—H1C···O2A 0.82 1.96 2.750 (5) 163

Symmetry codes: (i) x−1, y, z−1; (ii) x, −y+1, z+1/2; (iii) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5306).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071–4097. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Escalada, J., Freedman, D. & Werner, E. J. (2004). Acta Cryst. E60, o1296–o1298.
  6. Pertlik, F. (1992). Z. Kristallogr. 202, 17–23.
  7. Prins, L. J., Peinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2383–2426.
  8. Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4877780.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813009781/hg5306sup1.cif

e-69-0o738-sup1.cif (170KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009781/hg5306Isup2.hkl

e-69-0o738-Isup2.hkl (154KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009781/hg5306Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES