Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 17;69(Pt 5):o748. doi: 10.1107/S1600536813009550

Ethyl (E)-2-cyano-3-(4-methyl­phen­yl)acrylate: a second monoclinic polymorph

Qi-Yu Chen a,b, Wen-Dong Ke a,b, Lin Kong a,b,*
PMCID: PMC3648277  PMID: 23723897

Abstract

The title compound, C13H13NO2, was previously described in space group P21/c by He et al. [Acta Cryst. (1993), C49, 2000–2002]. The ethyl group is disordered over two sets of sites in a 0.615 (10):0.385 (10) ratio. The C—O—C—C torsion angles containing the ethyl group are −111.6 (10) and 177.9 (7)°, while in the previously reported polymorph, the torsion angle is −167.3 (2)°. The molecules pack to form a three-dimensional structure in the ABAB style along the c-axis direction in the title compound, but parallel to the a-axis direction in the reported polymorph.

Related literature  

For the first polymorph, see: He et al. (1993). For background to intra­molecular charge-transfer mol­ecules and their use in the construction of one- to three-dimesional organic nanostructures, see: Zhang et al. (2007); Zhang et al. (2008).graphic file with name e-69-0o748-scheme1.jpg

Experimental  

Crystal data  

  • C13H13NO2

  • M r = 215.24

  • Monoclinic, Inline graphic

  • a = 4.7616 (4) Å

  • b = 17.7989 (15) Å

  • c = 14.2841 (12) Å

  • β = 93.8021 (10)°

  • V = 1207.93 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan phi and omega scans T min = 0.984, T max = 0.984

  • 8359 measured reflections

  • 2117 independent reflections

  • 1617 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.192

  • S = 1.11

  • 2117 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009550/aa2081sup1.cif

e-69-0o748-sup1.cif (17KB, cif)

Supplementary material file. DOI: 10.1107/S1600536813009550/aa2081Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009550/aa2081Isup3.hkl

e-69-0o748-Isup3.hkl (104.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009550/aa2081Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the NSFC(21101001), and the 211 Project of Anhui University for supporting this study.

supplementary crystallographic information

Comment

The title compound is a typical D–π–A (D = donor, A = acceptor) molecule. This type of compounds can be regarded as intramolecule charge transfer (ICT) molecules (Zhang et al., 2007) and can be used to construct 1-dimesional to 3-dimesional organic nanostructures (Zhang et al., 2008). In the title compound, the benzene cycle can be used as the electron donor unit, cyano group as the electron acceptor unit, the ester group as a flexible chain to increase the solubility of the compound. Thus, the cyano group and benzene cycle are linked by a vinyl bond to form organo-soluble D–π–A molecule.

In title compound (Fig. 1), the C═C group is almost coplanar with the attached phenyl ring, the torsion angle C9—C15—C5—C4 being 2.2 (4) °. The C═C group is also coplanar with ester group. The torsion angle C15—C9—Cl1—O2 is 177.5 (2) °. Excellent coplanarity of conjugated moieties enables the title compound to be a high delocalized electron system.

Experimental

p-Toluic aldehyde (0.50 g), ethyl cyanoacetate(0.51 g), and ammonium acetate (0.32 g) were dissolved in 30 ml of ethanol and refluxed for about 4 h to give crude product as a solid. The precipitation was filtered, purified by recrystallization from acetonitrile/water (1:4) and 0.85 g of the titled compound was obtained as a white solid. Yield: 94.9%. 1H NMR (400 MHz, d6-DMSO): 8.35 (s, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.32 (q, J = 7.2 Hz, 2H), 2,40 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz) 13.97, 21.33, 62.24, 101.14, 115.78, 128.68, 129.94, 130.96, 144.39, 154.94, 161.98.

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93—0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title molecule with 50% probability ellipsoids.

Crystal data

C13H13NO2 F(000) = 456
Mr = 215.24 Dx = 1.184 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3950 reflections
a = 4.7616 (4) Å θ = 2.3–25.5°
b = 17.7989 (15) Å µ = 0.08 mm1
c = 14.2841 (12) Å T = 298 K
β = 93.8021 (10)° Needle, white
V = 1207.93 (18) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2117 independent reflections
Radiation source: fine-focus sealed tube 1617 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan phi and omega scans h = −5→5
Tmin = 0.984, Tmax = 0.984 k = −21→19
8359 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1011P)2 + 0.1786P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
2117 reflections Δρmax = 0.19 e Å3
168 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.043 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2687 (8) −0.0915 (2) 0.4400 (2) 0.1201 (10)
H1A 0.1208 −0.1263 0.4219 0.180*
H1B 0.2004 −0.0549 0.4823 0.180*
H1C 0.4242 −0.1182 0.4705 0.180*
C2 0.3650 (6) −0.05220 (16) 0.35330 (19) 0.0954 (8)
C3 0.2589 (7) 0.01687 (16) 0.3251 (2) 0.1062 (9)
H3 0.1250 0.0398 0.3601 0.127*
C4 0.3451 (6) 0.05290 (14) 0.24691 (19) 0.0924 (8)
H4 0.2715 0.0999 0.2307 0.111*
C5 0.5404 (5) 0.02009 (12) 0.19193 (16) 0.0740 (6)
C6 0.6416 (6) −0.05037 (14) 0.21981 (19) 0.0953 (8)
H6 0.7713 −0.0744 0.1842 0.114*
C7 0.5541 (7) −0.08526 (15) 0.2988 (2) 0.1009 (9)
H7 0.6256 −0.1324 0.3153 0.121*
C9 0.6075 (5) 0.11983 (12) 0.06603 (15) 0.0713 (6)
C10 0.4199 (5) 0.17670 (12) 0.09614 (16) 0.0777 (7)
C11 0.7662 (5) 0.13621 (14) −0.01789 (17) 0.0829 (7)
C12 0.741 (3) 0.2242 (6) −0.1547 (6) 0.109 (3) 0.385 (10)
H12A 0.5727 0.2456 −0.1863 0.131* 0.385 (10)
H12B 0.8083 0.1828 −0.1912 0.131* 0.385 (10)
C13 0.965 (3) 0.2823 (9) −0.1321 (9) 0.136 (4) 0.385 (10)
H13A 0.8843 0.3244 −0.1017 0.204* 0.385 (10)
H13B 1.0425 0.2987 −0.1890 0.204* 0.385 (10)
H13C 1.1117 0.2608 −0.0911 0.204* 0.385 (10)
C15 0.6509 (5) 0.05304 (12) 0.10882 (16) 0.0755 (6)
H15 0.7755 0.0220 0.0796 0.091*
C12' 0.8890 (16) 0.2220 (4) −0.1310 (5) 0.0961 (19) 0.615 (10)
H12C 1.0818 0.2271 −0.1053 0.115* 0.615 (10)
H12D 0.8819 0.1840 −0.1797 0.115* 0.615 (10)
C13' 0.780 (2) 0.2953 (3) −0.1689 (5) 0.119 (2) 0.615 (10)
H13D 0.5833 0.2904 −0.1879 0.178* 0.615 (10)
H13E 0.8814 0.3094 −0.2220 0.178* 0.615 (10)
H13F 0.8040 0.3331 −0.1212 0.178* 0.615 (10)
N1 0.2704 (6) 0.22244 (13) 0.11968 (17) 0.1036 (8)
O1 0.9398 (5) 0.09507 (11) −0.04727 (14) 0.1101 (7)
O2 0.6971 (4) 0.20214 (10) −0.05566 (13) 0.1045 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.1351 (17) 0.1184 (17) 0.1087 (15) −0.0055 (14) 0.0237 (13) 0.0261 (13)
C2 0.1080 (15) 0.0895 (14) 0.0898 (13) −0.0069 (12) 0.0141 (12) 0.0126 (11)
C3 0.123 (2) 0.094 (2) 0.108 (2) 0.0117 (16) 0.0474 (17) 0.0159 (15)
C4 0.1092 (18) 0.0723 (15) 0.0990 (17) 0.0114 (13) 0.0320 (14) 0.0128 (13)
C5 0.0863 (14) 0.0615 (12) 0.0751 (13) −0.0038 (10) 0.0114 (11) 0.0015 (10)
C6 0.120 (2) 0.0713 (15) 0.0974 (18) 0.0148 (13) 0.0271 (15) 0.0122 (13)
C7 0.131 (2) 0.0749 (16) 0.0985 (18) 0.0101 (14) 0.0183 (16) 0.0203 (14)
C9 0.0841 (13) 0.0612 (12) 0.0695 (12) −0.0036 (10) 0.0120 (10) −0.0005 (9)
C10 0.0975 (15) 0.0600 (12) 0.0769 (14) −0.0010 (11) 0.0151 (11) 0.0059 (10)
C11 0.1033 (17) 0.0688 (14) 0.0783 (14) 0.0001 (12) 0.0191 (12) 0.0043 (11)
C12 0.134 (8) 0.096 (6) 0.099 (6) 0.016 (6) 0.017 (5) 0.014 (4)
C13 0.137 (8) 0.144 (10) 0.132 (8) −0.025 (8) 0.044 (7) −0.004 (7)
C15 0.0883 (14) 0.0631 (13) 0.0762 (13) 0.0012 (10) 0.0137 (11) −0.0020 (10)
C12' 0.104 (4) 0.097 (4) 0.090 (4) 0.011 (4) 0.031 (3) 0.026 (3)
C13' 0.151 (6) 0.101 (4) 0.109 (4) 0.011 (4) 0.042 (4) 0.037 (3)
N1 0.1314 (19) 0.0732 (14) 0.1099 (17) 0.0159 (12) 0.0344 (14) 0.0056 (12)
O1 0.1454 (17) 0.0902 (13) 0.1006 (13) 0.0211 (11) 0.0524 (12) 0.0065 (10)
O2 0.1456 (16) 0.0791 (12) 0.0937 (13) 0.0125 (10) 0.0435 (11) 0.0220 (9)

Geometric parameters (Å, º)

C1—C2 1.519 (4) C10—N1 1.147 (3)
C1—H1A 0.9600 C11—O1 1.201 (3)
C1—H1B 0.9600 C11—O2 1.324 (3)
C1—H1C 0.9600 C12—O2 1.496 (8)
C2—C7 1.363 (4) C12—C13 1.507 (6)
C2—C3 1.379 (4) C12—H12A 0.9700
C3—C4 1.374 (4) C12—H12B 0.9700
C3—H3 0.9300 C13—H13A 0.9600
C4—C5 1.385 (3) C13—H13B 0.9600
C4—H4 0.9300 C13—H13C 0.9600
C5—C6 1.392 (3) C15—H15 0.9300
C5—C15 1.453 (3) C12'—C13' 1.492 (5)
C6—C7 1.376 (4) C12'—O2 1.500 (5)
C6—H6 0.9300 C12'—H12C 0.9700
C7—H7 0.9300 C12'—H12D 0.9700
C9—C15 1.346 (3) C13'—H13D 0.9600
C9—C10 1.435 (3) C13'—H13E 0.9600
C9—C11 1.488 (3) C13'—H13F 0.9600
C2—C1—H1A 109.5 N1—C10—C9 179.5 (3)
C2—C1—H1B 109.5 O1—C11—O2 123.8 (2)
H1A—C1—H1B 109.5 O1—C11—C9 124.1 (2)
C2—C1—H1C 109.5 O2—C11—C9 112.1 (2)
H1A—C1—H1C 109.5 O2—C12—C13 96.8 (8)
H1B—C1—H1C 109.5 O2—C12—H12A 112.4
C7—C2—C3 117.4 (2) C13—C12—H12A 112.4
C7—C2—C1 120.9 (3) O2—C12—H12B 112.4
C3—C2—C1 121.6 (3) C13—C12—H12B 112.4
C4—C3—C2 122.0 (3) H12A—C12—H12B 110.0
C4—C3—H3 119.0 C9—C15—C5 132.4 (2)
C2—C3—H3 119.0 C9—C15—H15 113.8
C3—C4—C5 120.8 (2) C5—C15—H15 113.8
C3—C4—H4 119.6 C13'—C12'—O2 104.6 (4)
C5—C4—H4 119.6 C13'—C12'—H12C 110.8
C4—C5—C6 116.7 (2) O2—C12'—H12C 110.8
C4—C5—C15 125.9 (2) C13'—C12'—H12D 110.8
C6—C5—C15 117.4 (2) O2—C12'—H12D 110.8
C7—C6—C5 121.5 (2) H12C—C12'—H12D 108.9
C7—C6—H6 119.2 C12'—C13'—H13D 109.5
C5—C6—H6 119.2 C12'—C13'—H13E 109.5
C2—C7—C6 121.4 (3) H13D—C13'—H13E 109.5
C2—C7—H7 119.3 C12'—C13'—H13F 109.5
C6—C7—H7 119.3 H13D—C13'—H13F 109.5
C15—C9—C10 124.5 (2) H13E—C13'—H13F 109.5
C15—C9—C11 117.9 (2) C11—O2—C12 124.9 (6)
C10—C9—C11 117.57 (19) C11—O2—C12' 110.8 (3)
C7—C2—C3—C4 −2.1 (5) C10—C9—C11—O2 −2.9 (3)
C1—C2—C3—C4 179.9 (3) C10—C9—C15—C5 −1.5 (4)
C2—C3—C4—C5 1.2 (5) C11—C9—C15—C5 178.0 (2)
C3—C4—C5—C6 0.2 (4) C4—C5—C15—C9 2.2 (4)
C3—C4—C5—C15 −178.9 (3) C6—C5—C15—C9 −177.0 (2)
C4—C5—C6—C7 −0.7 (4) O1—C11—O2—C12 22.4 (7)
C15—C5—C6—C7 178.5 (2) C9—C11—O2—C12 −158.7 (6)
C3—C2—C7—C6 1.6 (5) O1—C11—O2—C12' −7.2 (5)
C1—C2—C7—C6 179.6 (3) C9—C11—O2—C12' 171.8 (4)
C5—C6—C7—C2 −0.2 (5) C13—C12—O2—C11 −111.6 (10)
C15—C9—C11—O1 −3.5 (4) C13—C12—O2—C12' −42.2 (9)
C10—C9—C11—O1 176.0 (2) C13'—C12'—O2—C11 177.9 (7)
C15—C9—C11—O2 177.5 (2) C13'—C12'—O2—C12 53.2 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2081).

References

  1. Bruker (2002). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. He, Y., Shi, J. & Su, G. (1993). Acta Cryst. C49, 2000–2002.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Zhang, X. J., Zhang, X. H., Wang, B., Zhang, C. Y., Chang, J. C., Lee, C. S. & Lee, S. T. (2008). J. Phys. Chem. C, pp. 16264–16268.
  5. Zhang, X. J., Zhang, X. H., Zou, K., Lee, C. S. & Lee, S. T. (2007). J. Am. Chem. Soc. 129, 3527–3532. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009550/aa2081sup1.cif

e-69-0o748-sup1.cif (17KB, cif)

Supplementary material file. DOI: 10.1107/S1600536813009550/aa2081Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009550/aa2081Isup3.hkl

e-69-0o748-Isup3.hkl (104.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009550/aa2081Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES