Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 20;69(Pt 5):o762. doi: 10.1107/S1600536813008787

5-Bromo-2-hy­droxy­benzaldehyde 4-ethyl­thio­semicarbazone

Zhaoyang Li a, Osamu Sato a,*
PMCID: PMC3648288  PMID: 23723908

Abstract

In the title Schiff base compound, C10H12BrN3OS, the C—N—N—C torsion angle is 172.07 (11)°. An intra­molecular hydrogen bond exists between the hy­droxy H atom and the azomethine N atom. In the crystal, pairs of hydrogen bonds involving the imino H atom and the S atom give rise to supra­molecular dimers.

Related literature  

For the isostructural compound 5-chloro-2-hy­droxy­benz­alde­hyde 4-ethyl­thio­semicarbazone, see: Lo et al. (2011)graphic file with name e-69-0o762-scheme1.jpg

Experimental  

Crystal data  

  • C10H12BrN3OS

  • M r = 302.20

  • Monoclinic, Inline graphic

  • a = 22.040 (4) Å

  • b = 11.844 (2) Å

  • c = 9.5102 (19) Å

  • β = 101.69 (3)°

  • V = 2431.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 123 K

  • 0.20 × 0.10 × 0.05 mm

Data collection  

  • Rigaku Saturn70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) T min = 0.661, T max = 0.838

  • 4201 measured reflections

  • 2331 independent reflections

  • 1760 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.114

  • S = 0.95

  • 2331 reflections

  • 155 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −1.01 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813008787/ng5322sup1.cif

e-69-0o762-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813008787/ng5322Isup2.hkl

e-69-0o762-Isup2.hkl (114.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813008787/ng5322Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.84 (3) 2.00 (2) 2.674 (3) 137 (3)
N2—H2A⋯S1i 0.88 (3) 2.47 (3) 3.316 (3) 161 (2)
N3—H3A⋯S1ii 0.87 (3) 2.75 (3) 3.510 (3) 146 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank the China Scholarship Council (CSC).

supplementary crystallographic information

Comment

A Schiff ligand was synthesized through one-pot reaction with high yield using 5-bromo-2-hydroxybenzaldehyde and 4-ethyl-3-thiosemicarbazide (Fig. 1). The title compound can be used as tridentate chelating ligand to construct spin-crossover complexes. Isostructural 5-chloro-2-hydroxybenzaldehyde-4-ethylthiosemicarbazone was reported previously (Lo et al., 2011).

In the title compound, a strong intramolecular hydrogen bond O—H···N is observed. An intermolecular N—H···S hydrogen bond connects two molecules into a supramolecular dimer as shown in Figure 2.

Experimental

5-Bromo-2-hydroxybenzaldehyde (4.02 g, 20 mmol) in 50 ml ethanol and 4-ethyl-3-thiosemicarbazide (2.38 g, 20 mmol) were reacted for 6 h at 350 K. Slow evaporation of the yellow solution gave large colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95, 0.98 and 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. The hydroxy and amino H atoms were located in a difference Fourier map, and were refined with distance restraints of O—H 0.85±0.01 and N—H 0.88±0.01 Å; with Uiso(H) =1.2Ueq(N and O).

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot (50% probability level) of the title compound, with atom numbering of structurally unique non-H atoms and the H atoms.

Fig. 2.

Fig. 2.

The packing diagram of the title compound, with H atoms omitted for clarity. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H12BrN3OS F(000) = 1216
Mr = 302.20 Dx = 1.651 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.710747 Å
Hall symbol: -C 2yc Cell parameters from 3650 reflections
a = 22.040 (4) Å θ = 3.1–27.5°
b = 11.844 (2) Å µ = 3.54 mm1
c = 9.5102 (19) Å T = 123 K
β = 101.69 (3)° Block, colourless
V = 2431.1 (8) Å3 0.20 × 0.10 × 0.05 mm
Z = 8

Data collection

Rigaku Saturn70 diffractometer 2331 independent reflections
Radiation source: Rotating Anode 1760 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.032
Detector resolution: 28.5714 pixels mm-1 θmax = 26.0°, θmin = 3.1°
dtprofit.ref scans h = −27→20
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) k = −9→14
Tmin = 0.661, Tmax = 0.838 l = −11→10
4201 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0752P)2] where P = (Fo2 + 2Fc2)/3
2331 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.70 e Å3
3 restraints Δρmin = −1.01 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.484097 (17) 0.67444 (4) 1.01744 (4) 0.04059 (19)
C1 0.69767 (15) 0.6276 (2) 1.0597 (3) 0.0180 (7)
C2 0.67216 (16) 0.6364 (3) 1.1818 (3) 0.0197 (7)
H2 0.6985 0.6352 1.2742 0.024*
C3 0.60893 (17) 0.6470 (3) 1.1699 (4) 0.0227 (7)
H3 0.5919 0.6537 1.2536 0.027*
C4 0.57021 (16) 0.6476 (3) 1.0343 (4) 0.0222 (7)
C5 0.59471 (16) 0.6361 (3) 0.9125 (3) 0.0198 (7)
H5 0.5678 0.6343 0.8208 0.024*
C6 0.65841 (15) 0.6271 (3) 0.9228 (3) 0.0164 (7)
C7 0.68243 (15) 0.6269 (3) 0.7906 (3) 0.0179 (7)
H7 0.6542 0.6340 0.7012 0.021*
C8 0.81461 (14) 0.6124 (2) 0.6421 (3) 0.0150 (6)
C9 0.91521 (15) 0.5238 (3) 0.7381 (3) 0.0216 (7)
H9A 0.9408 0.5182 0.8363 0.026*
H9B 0.9339 0.5821 0.6855 0.026*
C10 0.91576 (17) 0.4111 (3) 0.6625 (4) 0.0270 (8)
H10A 0.9008 0.3519 0.7190 0.040*
H10B 0.9581 0.3935 0.6524 0.040*
H10C 0.8887 0.4152 0.5672 0.040*
H1A 0.7730 (17) 0.634 (3) 1.002 (2) 0.032*
H2A 0.7325 (16) 0.680 (2) 0.600 (3) 0.032*
H3A 0.8346 (17) 0.525 (3) 0.810 (3) 0.032*
N1 0.74029 (12) 0.6174 (2) 0.7914 (3) 0.0169 (6)
N2 0.75628 (13) 0.6333 (2) 0.6594 (3) 0.0177 (6)
N3 0.85244 (13) 0.5580 (2) 0.7468 (3) 0.0172 (6)
O1 0.75977 (11) 0.62315 (19) 1.0781 (2) 0.0207 (5)
S1 0.83506 (4) 0.65794 (7) 0.48834 (9) 0.0201 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0165 (2) 0.0815 (4) 0.0261 (2) 0.00156 (19) 0.00976 (16) 0.00158 (19)
C1 0.0186 (18) 0.0130 (14) 0.0228 (17) 0.0006 (13) 0.0052 (14) −0.0009 (13)
C2 0.0227 (19) 0.0187 (15) 0.0172 (16) 0.0008 (13) 0.0031 (14) 0.0002 (13)
C3 0.026 (2) 0.0234 (16) 0.0223 (16) −0.0019 (14) 0.0134 (15) 0.0023 (14)
C4 0.0145 (18) 0.0314 (18) 0.0221 (17) −0.0023 (14) 0.0066 (14) −0.0001 (14)
C5 0.0163 (17) 0.0239 (16) 0.0180 (16) −0.0019 (13) 0.0010 (13) 0.0013 (13)
C6 0.0173 (17) 0.0151 (14) 0.0180 (16) 0.0018 (13) 0.0065 (13) 0.0018 (13)
C7 0.0176 (17) 0.0187 (15) 0.0172 (15) 0.0003 (13) 0.0032 (13) 0.0011 (13)
C8 0.0166 (17) 0.0131 (14) 0.0162 (15) 0.0007 (12) 0.0056 (13) −0.0023 (13)
C9 0.0152 (17) 0.0291 (17) 0.0198 (16) 0.0029 (14) 0.0017 (13) 0.0026 (14)
C10 0.021 (2) 0.033 (2) 0.0274 (18) 0.0060 (15) 0.0064 (15) −0.0024 (15)
N1 0.0195 (15) 0.0169 (12) 0.0158 (13) −0.0005 (11) 0.0073 (11) 0.0006 (11)
N2 0.0166 (15) 0.0213 (13) 0.0164 (13) 0.0046 (11) 0.0060 (11) 0.0034 (11)
N3 0.0145 (14) 0.0227 (14) 0.0145 (13) 0.0024 (11) 0.0036 (11) 0.0030 (11)
O1 0.0153 (13) 0.0259 (12) 0.0205 (12) 0.0017 (10) 0.0031 (10) 0.0040 (10)
S1 0.0192 (5) 0.0253 (4) 0.0175 (4) 0.0038 (3) 0.0079 (3) 0.0032 (3)

Geometric parameters (Å, º)

Br1—C4 1.899 (4) C8—N3 1.329 (4)
C1—O1 1.345 (4) C8—N2 1.351 (4)
C1—C2 1.393 (5) C8—S1 1.703 (3)
C1—C6 1.410 (5) C9—N3 1.460 (4)
C2—C3 1.381 (5) C9—C10 1.517 (5)
C2—H2 0.9500 C9—H9A 0.9900
C3—C4 1.395 (5) C9—H9B 0.9900
C3—H3 0.9500 C10—H10A 0.9800
C4—C5 1.380 (5) C10—H10B 0.9800
C5—C6 1.391 (4) C10—H10C 0.9800
C5—H5 0.9500 N1—N2 1.384 (3)
C6—C7 1.460 (4) N2—H2A 0.879 (10)
C7—N1 1.278 (4) N3—H3A 0.876 (10)
C7—H7 0.9500 O1—H1A 0.846 (10)
O1—C1—C2 117.8 (3) N3—C8—S1 124.2 (2)
O1—C1—C6 122.5 (3) N2—C8—S1 118.0 (2)
C2—C1—C6 119.6 (3) N3—C9—C10 111.7 (3)
C3—C2—C1 120.6 (3) N3—C9—H9A 109.3
C3—C2—H2 119.7 C10—C9—H9A 109.3
C1—C2—H2 119.7 N3—C9—H9B 109.3
C2—C3—C4 119.7 (3) C10—C9—H9B 109.3
C2—C3—H3 120.2 H9A—C9—H9B 107.9
C4—C3—H3 120.2 C9—C10—H10A 109.5
C5—C4—C3 120.4 (3) C9—C10—H10B 109.5
C5—C4—Br1 120.0 (3) H10A—C10—H10B 109.5
C3—C4—Br1 119.5 (3) C9—C10—H10C 109.5
C4—C5—C6 120.6 (3) H10A—C10—H10C 109.5
C4—C5—H5 119.7 H10B—C10—H10C 109.5
C6—C5—H5 119.7 C7—N1—N2 114.8 (3)
C5—C6—C1 119.1 (3) C8—N2—N1 120.6 (3)
C5—C6—C7 118.4 (3) C8—N2—H2A 120 (3)
C1—C6—C7 122.2 (3) N1—N2—H2A 116 (3)
N1—C7—C6 122.0 (3) C8—N3—C9 123.4 (3)
N1—C7—H7 119.0 C8—N3—H3A 115 (3)
C6—C7—H7 119.0 C9—N3—H3A 119 (3)
N3—C8—N2 117.8 (3) C1—O1—H1A 114 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1 0.84 (3) 2.00 (2) 2.674 (3) 137 (3)
N2—H2A···S1i 0.88 (3) 2.47 (3) 3.316 (3) 161 (2)
N3—H3A···S1ii 0.87 (3) 2.75 (3) 3.510 (3) 146 (3)

Symmetry codes: (i) −x+3/2, −y+3/2, −z+1; (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5322).

References

  1. Lo, K. M. & Ng, S. W. (2011). Acta Cryst. E67, o1453. [DOI] [PMC free article] [PubMed]
  2. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813008787/ng5322sup1.cif

e-69-0o762-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813008787/ng5322Isup2.hkl

e-69-0o762-Isup2.hkl (114.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813008787/ng5322Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES