Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 20;69(Pt 5):o773. doi: 10.1107/S1600536813009975

2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one

Dong-mei Ren a,*
PMCID: PMC3648297  PMID: 23723917

Abstract

In the title compound, C14H19NO, the dihedral angle between the benzene ring and the plane of the amide group is 80.6 (1)°. In the crystal, mol­ecules are connected via weak C—H⋯O hydrogen bonds, forming chains along the c-axis direction. The conformation of the five-memebred ring is an envelope, with one of the ring C atoms adjacent to the ring N atom as the flap atom.

Related literature  

For background to the applications of the title compound as an intermediate in organic synthesis, an important organic synthesis inter­mediate, see: Richard et al. (2001). For the synthetic procedure, see: Richard et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-69-0o773-scheme1.jpg

Experimental  

Crystal data  

  • C14H19NO

  • M r = 217.30

  • Monoclinic, Inline graphic

  • a = 8.2330 (16) Å

  • b = 12.534 (3) Å

  • c = 12.192 (2) Å

  • β = 97.96 (3)°

  • V = 1246.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.979, T max = 0.993

  • 2283 measured reflections

  • 2283 independent reflections

  • 1316 reflections with I > 2σ(I)

  • R int = 0.000

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.152

  • S = 1.00

  • 2283 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009975/bq2384sup1.cif

e-69-0o773-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009975/bq2384Isup2.hkl

e-69-0o773-Isup2.hkl (112.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009975/bq2384Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.97 2.58 3.510 (4) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was financially supported by Scientific Research Project of Beijing Education Commission and the Scientific Research Level Project of Beijing Education Commission Foundation. The authors thank the Center of Testing and Analysis, Beijing University of Science and Technology.

supplementary crystallographic information

Comment

The title compound is an important intermediate in the synthesis of [(piperidinoalkanoyl)phenyl]propionates, which can be utilized to synthesize antihistaminics. And we report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. There is a intermolecular contact C—H···O in the title compound, forming molecular chains along c axis direction (Table 1, Fig. 2). The dihedral angles between the benzene ring and the plane of amide is 80.6 (1)°.

Experimental

The title compound, (I) was prepared by a method reported in literature (Richard et al., 1995). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H's, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I) showing C-H···O bonds with dashed lines.

Crystal data

C14H19NO F(000) = 472
Mr = 217.30 Dx = 1.158 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.2330 (16) Å θ = 10–13°
b = 12.534 (3) Å µ = 0.07 mm1
c = 12.192 (2) Å T = 293 K
β = 97.96 (3)° Block, colorless
V = 1246.0 (4) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1316 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.000
Graphite monochromator θmax = 25.4°, θmin = 2.3°
ω/2θ scans h = −9→9
Absorption correction: ψ scan (North et al., 1968) k = 0→15
Tmin = 0.979, Tmax = 0.993 l = 0→14
2283 measured reflections 3 standard reflections every 200 reflections
2283 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2 + 0.270P] where P = (Fo2 + 2Fc2)/3
2283 reflections (Δ/σ)max < 0.001
147 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1927 (2) 0.24083 (17) 0.16560 (15) 0.0730 (7)
N1 0.2387 (2) 0.34793 (18) 0.31203 (16) 0.0491 (6)
C1 0.2993 (4) 0.3817 (2) 0.4267 (2) 0.0633 (8)
H1A 0.2614 0.3334 0.4799 0.076*
H1B 0.4182 0.3838 0.4391 0.076*
C2 0.2319 (4) 0.4866 (3) 0.4358 (3) 0.0842 (10)
H2A 0.1506 0.4843 0.4863 0.101*
H2B 0.3185 0.5349 0.4665 0.101*
C3 0.1581 (4) 0.5259 (3) 0.3317 (3) 0.0819 (10)
H3A 0.2195 0.5864 0.3098 0.098*
H3B 0.0468 0.5490 0.3363 0.098*
C4 0.1570 (3) 0.4378 (2) 0.2480 (2) 0.0620 (8)
H4A 0.0457 0.4192 0.2170 0.074*
H4B 0.2171 0.4585 0.1883 0.074*
C5 0.2512 (3) 0.2526 (2) 0.2639 (2) 0.0457 (6)
C6 0.3330 (3) 0.1583 (2) 0.33080 (19) 0.0429 (6)
C7 0.2188 (3) 0.1215 (2) 0.4117 (2) 0.0551 (7)
H7A 0.2114 0.1762 0.4660 0.083*
H7B 0.2613 0.0574 0.4480 0.083*
H7C 0.1118 0.1078 0.3720 0.083*
C8 0.3515 (3) 0.0672 (2) 0.2504 (2) 0.0614 (8)
H8A 0.4202 0.0898 0.1972 0.092*
H8B 0.2455 0.0477 0.2127 0.092*
H8C 0.4004 0.0069 0.2907 0.092*
C9 0.5076 (3) 0.1884 (2) 0.38690 (19) 0.0414 (6)
C10 0.5641 (3) 0.1624 (2) 0.4966 (2) 0.0530 (7)
H10A 0.4940 0.1289 0.5394 0.064*
C11 0.7227 (3) 0.1857 (2) 0.5426 (2) 0.0624 (8)
H11A 0.7586 0.1675 0.6159 0.075*
C12 0.8267 (3) 0.2348 (3) 0.4818 (3) 0.0654 (9)
H12A 0.9334 0.2507 0.5132 0.078*
C13 0.7727 (3) 0.2613 (3) 0.3722 (2) 0.0658 (9)
H13A 0.8433 0.2947 0.3298 0.079*
C14 0.6134 (3) 0.2378 (2) 0.3264 (2) 0.0561 (8)
H14A 0.5778 0.2559 0.2530 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0851 (15) 0.0855 (15) 0.0406 (11) 0.0132 (12) −0.0194 (10) −0.0072 (11)
N1 0.0442 (13) 0.0590 (15) 0.0403 (12) 0.0075 (11) −0.0073 (9) 0.0037 (11)
C1 0.079 (2) 0.0611 (19) 0.0433 (16) 0.0133 (17) −0.0134 (14) −0.0069 (14)
C2 0.104 (3) 0.076 (2) 0.070 (2) 0.027 (2) 0.0001 (19) −0.0062 (18)
C3 0.095 (3) 0.062 (2) 0.082 (2) 0.0266 (19) −0.0103 (19) −0.0001 (19)
C4 0.0570 (18) 0.070 (2) 0.0553 (17) 0.0153 (15) −0.0052 (14) 0.0161 (16)
C5 0.0368 (14) 0.0610 (18) 0.0364 (14) 0.0011 (13) −0.0049 (11) −0.0054 (14)
C6 0.0370 (14) 0.0497 (16) 0.0403 (14) 0.0045 (12) −0.0009 (11) −0.0053 (12)
C7 0.0466 (15) 0.0592 (18) 0.0589 (17) −0.0028 (14) 0.0051 (13) −0.0004 (14)
C8 0.0596 (18) 0.0657 (19) 0.0565 (17) 0.0064 (15) −0.0005 (14) −0.0222 (15)
C9 0.0386 (14) 0.0446 (15) 0.0386 (13) 0.0083 (12) −0.0028 (11) −0.0041 (12)
C10 0.0465 (15) 0.0663 (19) 0.0438 (15) 0.0067 (14) −0.0016 (12) 0.0058 (14)
C11 0.0492 (17) 0.080 (2) 0.0519 (17) 0.0116 (16) −0.0151 (14) −0.0049 (16)
C12 0.0390 (16) 0.082 (2) 0.071 (2) 0.0110 (15) −0.0092 (15) −0.0231 (18)
C13 0.0397 (16) 0.087 (2) 0.071 (2) −0.0079 (15) 0.0058 (14) −0.0049 (18)
C14 0.0466 (16) 0.075 (2) 0.0453 (15) −0.0055 (14) 0.0011 (12) 0.0074 (15)

Geometric parameters (Å, º)

O1—C5 1.237 (3) C6—C9 1.550 (3)
N1—C5 1.342 (3) C7—H7A 0.9600
N1—C4 1.479 (3) C7—H7B 0.9600
N1—C1 1.480 (3) C7—H7C 0.9600
C1—C2 1.437 (4) C8—H8A 0.9600
C1—H1A 0.9700 C8—H8B 0.9600
C1—H1B 0.9700 C8—H8C 0.9600
C2—C3 1.418 (4) C9—C14 1.366 (3)
C2—H2A 0.9700 C9—C10 1.392 (3)
C2—H2B 0.9700 C10—C11 1.380 (4)
C3—C4 1.502 (4) C10—H10A 0.9300
C3—H3A 0.9700 C11—C12 1.356 (4)
C3—H3B 0.9700 C11—H11A 0.9300
C4—H4A 0.9700 C12—C13 1.388 (4)
C4—H4B 0.9700 C12—H12A 0.9300
C5—C6 1.537 (3) C13—C14 1.384 (3)
C6—C7 1.526 (3) C13—H13A 0.9300
C6—C8 1.526 (3) C14—H14A 0.9300
C5—N1—C4 120.3 (2) C7—C6—C9 113.9 (2)
C5—N1—C1 129.2 (2) C8—C6—C9 107.25 (19)
C4—N1—C1 110.5 (2) C5—C6—C9 111.0 (2)
C2—C1—N1 104.6 (2) C6—C7—H7A 109.5
C2—C1—H1A 110.8 C6—C7—H7B 109.5
N1—C1—H1A 110.8 H7A—C7—H7B 109.5
C2—C1—H1B 110.8 C6—C7—H7C 109.5
N1—C1—H1B 110.8 H7A—C7—H7C 109.5
H1A—C1—H1B 108.9 H7B—C7—H7C 109.5
C3—C2—C1 111.7 (3) C6—C8—H8A 109.5
C3—C2—H2A 109.3 C6—C8—H8B 109.5
C1—C2—H2A 109.3 H8A—C8—H8B 109.5
C3—C2—H2B 109.3 C6—C8—H8C 109.5
C1—C2—H2B 109.3 H8A—C8—H8C 109.5
H2A—C2—H2B 107.9 H8B—C8—H8C 109.5
C2—C3—C4 108.4 (3) C14—C9—C10 118.1 (2)
C2—C3—H3A 110.0 C14—C9—C6 119.6 (2)
C4—C3—H3A 110.0 C10—C9—C6 122.2 (2)
C2—C3—H3B 110.0 C11—C10—C9 120.9 (3)
C4—C3—H3B 110.0 C11—C10—H10A 119.6
H3A—C3—H3B 108.4 C9—C10—H10A 119.6
N1—C4—C3 104.0 (2) C12—C11—C10 120.5 (3)
N1—C4—H4A 111.0 C12—C11—H11A 119.8
C3—C4—H4A 111.0 C10—C11—H11A 119.8
N1—C4—H4B 111.0 C11—C12—C13 119.5 (3)
C3—C4—H4B 111.0 C11—C12—H12A 120.2
H4A—C4—H4B 109.0 C13—C12—H12A 120.2
O1—C5—N1 119.1 (2) C14—C13—C12 119.8 (3)
O1—C5—C6 120.4 (2) C14—C13—H13A 120.1
N1—C5—C6 120.4 (2) C12—C13—H13A 120.1
C7—C6—C8 108.3 (2) C9—C14—C13 121.2 (3)
C7—C6—C5 108.2 (2) C9—C14—H14A 119.4
C8—C6—C5 108.0 (2) C13—C14—H14A 119.4
C5—N1—C1—C2 −172.4 (3) N1—C5—C6—C9 −54.4 (3)
C4—N1—C1—C2 8.5 (3) C7—C6—C9—C14 −170.0 (2)
N1—C1—C2—C3 −9.5 (4) C8—C6—C9—C14 70.1 (3)
C1—C2—C3—C4 7.0 (4) C5—C6—C9—C14 −47.7 (3)
C5—N1—C4—C3 176.3 (2) C7—C6—C9—C10 13.0 (3)
C1—N1—C4—C3 −4.6 (3) C8—C6—C9—C10 −106.8 (3)
C2—C3—C4—N1 −1.3 (4) C5—C6—C9—C10 135.4 (2)
C4—N1—C5—O1 −0.5 (4) C14—C9—C10—C11 −0.2 (4)
C1—N1—C5—O1 −179.4 (3) C6—C9—C10—C11 176.8 (2)
C4—N1—C5—C6 −178.8 (2) C9—C10—C11—C12 0.3 (4)
C1—N1—C5—C6 2.2 (4) C10—C11—C12—C13 −0.3 (5)
O1—C5—C6—C7 −107.0 (3) C11—C12—C13—C14 0.3 (5)
N1—C5—C6—C7 71.3 (3) C10—C9—C14—C13 0.2 (4)
O1—C5—C6—C8 10.0 (3) C6—C9—C14—C13 −176.9 (3)
N1—C5—C6—C8 −171.7 (2) C12—C13—C14—C9 −0.2 (4)
O1—C5—C6—C9 127.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.97 2.58 3.510 (4) 160

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2384).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Krauss, R. C., Strom, R. M., Scortichini, C. L., Kruper, W. J. & Wolf, R. A. (1995). WO Patent No. 9500480.
  6. Krauss, R. C., Strom, R. M., Scortichini, C. L., Kruper, W. J. & Wolf, R. A. (2001). US Patent No. 6242606.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813009975/bq2384sup1.cif

e-69-0o773-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813009975/bq2384Isup2.hkl

e-69-0o773-Isup2.hkl (112.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813009975/bq2384Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES