Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 24;69(Pt 5):o781. doi: 10.1107/S1600536813010404

12-Di­methyl­amino-2,2-di­fluoro-8-phenyl-1λ5,3-di­aza-2λ4-boratri­cyclo­[7.3.0.03,7]dodeca-1(12),4,6,8,10-pentaen-1-ylium

Zhao-Yun Wang a,*
PMCID: PMC3648305  PMID: 23723925

Abstract

In the title boron–dipyrromethene derivative, C17H16BF2N3, the benzene ring and the boron–dipyrromethene mean plane form a dihedral angle of 55.82 (8)°. In the crystal, pairs of C—H⋯F inter­actions link the mol­ecules, forming inversion dimers. Further C—H⋯F inter­actions link the dimers into a three-dimensional network.

Related literature  

For the synthesis and applications of related 4,4-di­fluoro-4-bora-3a,4a-di­aza-s-indacene derivatives, see: Trieflinger et al. (2005). For related structures, see: Jiao et al. (2011).graphic file with name e-69-0o781-scheme1.jpg

Experimental  

Crystal data  

  • C17H16BF2N3

  • M r = 311.14

  • Monoclinic, Inline graphic

  • a = 7.8033 (6) Å

  • b = 25.524 (2) Å

  • c = 9.9776 (5) Å

  • β = 128.671 (4)°

  • V = 1551.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.972, T max = 0.981

  • 11054 measured reflections

  • 2736 independent reflections

  • 2025 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.03

  • 2736 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010404/rk2400sup1.cif

e-69-0o781-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010404/rk2400Isup2.hkl

e-69-0o781-Isup2.hkl (134.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010404/rk2400Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F2i 0.93 2.51 3.291 (3) 142
C17—H17C⋯F2ii 0.96 2.49 3.282 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Research Culture Funds of Anhui Normal University (160–721137).

supplementary crystallographic information

Comment

Fluorescent dyes, especially 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY), have been led to the increased research interest in these molecules lately, BODIPYs have found wide applications in fluorescence labels and biomolecular sensors (Trieflinger et al., 2005), due to their remarkable properties, including large molar absorption coefficient, sharp fluorescence emissions, high fluorescence quantum yields, and high photophysical stability. As part of our ongoing studies (Jiao et al., 2011), we have obtained the title compound, and report its molecular structure here (Fig. 1). The bond lengths and angles are within normal ranges. By short contact C1—H1···F2i = 2.512Å, molecule forms 10-members centrosymmetrical dimers. Next short contact C17—H17···F2ii = 2.491Å form a three-dimensional network, which seem to be very effective in the stabilization of the crystal structure (Fig. 2). Symmetry codes: (i) -x, 2-y, 1-z; (ii) -x, 2-y, 2-z.

Experimental

To 4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-indacene (134 mg, 0.5 mmol) in 3 ml of DMF. was added Potassium tert-butoxide (561 mg, 5 mmol). After stirring at 323 k for 3 h, the reaction was monitored by TLC, then the mixture was poured into water (50 ml), adjusted pH value to 7 with hydrochloric acid and extracted with CH2Cl2 (3×30 ml). Organic layers were combined, dried over Mg2SO4, and evaporated to dryness under vacuum. Purification was performed by column chromatography on silica gel using hexane / CH2Cl2 (v/v, 2:1) as eluent, from which the desired product was obtained in 51% yield (80 mg).

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93Å with Uiso(H) = 1.2Ueq(C) for aromatic H and C—H = 0.96Å with Uiso(H) = 1.5Ueq(C) for methyl H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title molecule showing the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing diagram of the title compound. Short H···F contacts are showed by dashed lines.

Crystal data

C17H16BF2N3 F(000) = 648
Mr = 311.14 Dx = 1.332 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4251 reflections
a = 7.8033 (6) Å θ = 2.7–24.3°
b = 25.524 (2) Å µ = 0.10 mm1
c = 9.9776 (5) Å T = 295 K
β = 128.671 (4)° Block, colourless
V = 1551.5 (2) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2736 independent reflections
Radiation source: fine-focus sealed tube 2025 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→8
Tmin = 0.972, Tmax = 0.981 k = −30→30
11054 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.2638P] where P = (Fo2 + 2Fc2)/3
2736 reflections (Δ/σ)max = 0.005
210 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 −0.28223 (17) 0.91338 (5) 0.54009 (14) 0.0842 (4)
F2 −0.0433 (2) 0.98113 (4) 0.67169 (16) 0.0884 (4)
N1 0.0902 (2) 0.90034 (6) 0.65707 (18) 0.0593 (4)
N2 −0.0100 (2) 0.91017 (5) 0.84906 (17) 0.0543 (4)
N3 −0.2640 (3) 0.95619 (7) 0.8700 (2) 0.0779 (5)
C1 0.1083 (4) 0.91003 (9) 0.5324 (3) 0.0760 (6)
H1 0.0217 0.9335 0.4423 0.091*
C2 0.2720 (4) 0.88033 (10) 0.5591 (3) 0.0821 (6)
H2 0.3155 0.8798 0.4910 0.098*
C3 0.3621 (3) 0.85096 (8) 0.7062 (2) 0.0685 (5)
H3 0.4772 0.8272 0.7554 0.082*
C4 0.2477 (3) 0.86380 (7) 0.7662 (2) 0.0552 (4)
C5 0.2796 (3) 0.84981 (6) 0.9186 (2) 0.0510 (4)
C6 0.4562 (3) 0.81223 (7) 1.0379 (2) 0.0563 (4)
C7 0.4630 (4) 0.76322 (7) 0.9807 (3) 0.0757 (6)
H7 0.3519 0.7533 0.8678 0.091*
C8 0.6331 (5) 0.72935 (9) 1.0903 (4) 0.0968 (8)
H8 0.6366 0.6966 1.0513 0.116*
C9 0.7971 (5) 0.74379 (12) 1.2564 (4) 0.1039 (9)
H9 0.9126 0.7209 1.3295 0.125*
C10 0.7929 (4) 0.79204 (11) 1.3165 (3) 0.0923 (7)
H10 0.9040 0.8015 1.4300 0.111*
C11 0.6232 (3) 0.82612 (8) 1.2073 (2) 0.0696 (5)
H11 0.6203 0.8587 1.2474 0.084*
C12 0.1544 (3) 0.87210 (6) 0.9555 (2) 0.0512 (4)
C13 0.1508 (3) 0.86084 (7) 1.0927 (2) 0.0629 (5)
H13 0.2419 0.8372 1.1811 0.075*
C14 −0.0056 (3) 0.88989 (8) 1.0739 (3) 0.0705 (5)
H14 −0.0427 0.8897 1.1462 0.085*
C15 −0.1061 (3) 0.92141 (7) 0.9228 (2) 0.0621 (5)
C16 −0.3699 (4) 0.99063 (10) 0.7212 (4) 0.1032 (8)
H16A −0.2601 1.0099 0.7266 0.155*
H16B −0.4650 1.0146 0.7208 0.155*
H16C −0.4545 0.9700 0.6181 0.155*
C17 −0.3488 (4) 0.96200 (12) 0.9644 (3) 0.1063 (9)
H17A −0.3107 0.9317 1.0349 0.159*
H17B −0.5057 0.9655 0.8847 0.159*
H17C −0.2860 0.9926 1.0356 0.159*
B1 −0.0669 (3) 0.92741 (8) 0.6751 (3) 0.0601 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0555 (6) 0.1025 (9) 0.0600 (7) 0.0046 (6) 0.0193 (6) −0.0029 (6)
F2 0.1155 (10) 0.0568 (7) 0.0922 (9) 0.0042 (6) 0.0646 (8) 0.0128 (6)
N1 0.0582 (8) 0.0667 (9) 0.0467 (8) −0.0010 (7) 0.0297 (7) 0.0060 (7)
N2 0.0504 (8) 0.0549 (8) 0.0527 (8) 0.0015 (6) 0.0299 (7) −0.0012 (6)
N3 0.0586 (9) 0.0861 (12) 0.0789 (12) 0.0042 (9) 0.0379 (9) −0.0200 (9)
C1 0.0825 (14) 0.0895 (14) 0.0521 (11) −0.0032 (12) 0.0402 (11) 0.0119 (10)
C2 0.0860 (15) 0.1096 (17) 0.0647 (13) −0.0059 (13) 0.0539 (12) 0.0010 (12)
C3 0.0648 (11) 0.0866 (13) 0.0593 (11) 0.0004 (10) 0.0414 (10) −0.0020 (10)
C4 0.0523 (9) 0.0622 (10) 0.0466 (9) −0.0033 (8) 0.0287 (8) −0.0012 (8)
C5 0.0501 (9) 0.0512 (9) 0.0462 (9) −0.0036 (7) 0.0274 (8) −0.0015 (7)
C6 0.0579 (10) 0.0579 (10) 0.0564 (11) 0.0046 (8) 0.0373 (9) 0.0069 (8)
C7 0.0912 (15) 0.0622 (11) 0.0837 (14) 0.0110 (11) 0.0595 (13) 0.0051 (10)
C8 0.122 (2) 0.0736 (14) 0.128 (2) 0.0338 (15) 0.094 (2) 0.0272 (15)
C9 0.0907 (18) 0.109 (2) 0.126 (2) 0.0468 (16) 0.0742 (19) 0.0593 (18)
C10 0.0657 (13) 0.1115 (19) 0.0761 (15) 0.0170 (13) 0.0327 (12) 0.0309 (14)
C11 0.0610 (11) 0.0743 (12) 0.0601 (12) 0.0052 (10) 0.0312 (10) 0.0095 (10)
C12 0.0515 (9) 0.0515 (9) 0.0472 (9) −0.0021 (7) 0.0292 (8) −0.0016 (7)
C13 0.0655 (11) 0.0714 (11) 0.0520 (10) −0.0016 (9) 0.0368 (9) 0.0004 (9)
C14 0.0677 (12) 0.0925 (14) 0.0606 (12) −0.0045 (11) 0.0446 (10) −0.0108 (10)
C15 0.0522 (10) 0.0667 (11) 0.0604 (11) −0.0061 (9) 0.0317 (9) −0.0164 (9)
C16 0.0863 (16) 0.0873 (16) 0.119 (2) 0.0278 (14) 0.0557 (16) 0.0073 (15)
C17 0.0768 (15) 0.141 (2) 0.1026 (19) 0.0081 (15) 0.0569 (15) −0.0398 (16)
B1 0.0562 (12) 0.0545 (11) 0.0519 (12) −0.0006 (9) 0.0253 (10) 0.0022 (9)

Geometric parameters (Å, º)

F1—B1 1.392 (2) C6—C7 1.390 (3)
F2—B1 1.387 (2) C7—C8 1.375 (3)
N1—C1 1.359 (2) C7—H7 0.9300
N1—C4 1.376 (2) C8—C9 1.368 (4)
N1—B1 1.513 (3) C8—H8 0.9300
N2—C15 1.369 (2) C9—C10 1.379 (4)
N2—C12 1.420 (2) C9—H9 0.9300
N2—B1 1.562 (3) C10—C11 1.376 (3)
N3—C15 1.331 (2) C10—H10 0.9300
N3—C17 1.458 (3) C11—H11 0.9300
N3—C16 1.458 (3) C12—C13 1.416 (2)
C1—C2 1.361 (3) C13—C14 1.337 (3)
C1—H1 0.9300 C13—H13 0.9300
C2—C3 1.386 (3) C14—C15 1.435 (3)
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.388 (3) C16—H16A 0.9600
C3—H3 0.9300 C16—H16B 0.9600
C4—C5 1.425 (2) C16—H16C 0.9600
C5—C12 1.365 (2) C17—H17A 0.9600
C5—C6 1.479 (2) C17—H17B 0.9600
C6—C11 1.389 (3) C17—H17C 0.9600
C1—N1—C4 107.13 (16) C11—C10—C9 119.5 (2)
C1—N1—B1 125.53 (16) C11—C10—H10 120.2
C4—N1—B1 127.26 (14) C9—C10—H10 120.2
C15—N2—C12 106.50 (14) C10—C11—C6 120.6 (2)
C15—N2—B1 131.83 (15) C10—C11—H11 119.7
C12—N2—B1 121.37 (14) C6—C11—H11 119.7
C15—N3—C17 119.6 (2) C5—C12—C13 128.79 (16)
C15—N3—C16 126.89 (19) C5—C12—N2 123.22 (15)
C17—N3—C16 113.53 (19) C13—C12—N2 107.89 (15)
N1—C1—C2 109.95 (18) C14—C13—C12 108.66 (17)
N1—C1—H1 125.0 C14—C13—H13 125.7
C2—C1—H1 125.0 C12—C13—H13 125.7
C1—C2—C3 107.53 (18) C13—C14—C15 108.04 (17)
C1—C2—H2 126.2 C13—C14—H14 126.0
C3—C2—H2 126.2 C15—C14—H14 126.0
C2—C3—C4 106.95 (19) N3—C15—N2 127.54 (18)
C2—C3—H3 126.5 N3—C15—C14 123.55 (18)
C4—C3—H3 126.5 N2—C15—C14 108.89 (16)
N1—C4—C3 108.44 (16) N3—C16—H16A 109.5
N1—C4—C5 119.19 (15) N3—C16—H16B 109.5
C3—C4—C5 132.08 (17) H16A—C16—H16B 109.5
C12—C5—C4 120.46 (15) N3—C16—H16C 109.5
C12—C5—C6 121.14 (15) H16A—C16—H16C 109.5
C4—C5—C6 118.36 (15) H16B—C16—H16C 109.5
C11—C6—C7 118.84 (18) N3—C17—H17A 109.5
C11—C6—C5 120.53 (16) N3—C17—H17B 109.5
C7—C6—C5 120.58 (17) H17A—C17—H17B 109.5
C8—C7—C6 120.3 (2) N3—C17—H17C 109.5
C8—C7—H7 119.8 H17A—C17—H17C 109.5
C6—C7—H7 119.8 H17B—C17—H17C 109.5
C9—C8—C7 120.1 (2) F2—B1—F1 109.21 (15)
C9—C8—H8 119.9 F2—B1—N1 108.58 (16)
C7—C8—H8 119.9 F1—B1—N1 110.18 (16)
C8—C9—C10 120.6 (2) F2—B1—N2 110.87 (15)
C8—C9—H9 119.7 F1—B1—N2 109.63 (16)
C10—C9—H9 119.7 N1—B1—N2 108.35 (14)
C4—N1—C1—C2 0.4 (2) C15—N2—C12—C5 177.30 (15)
B1—N1—C1—C2 177.39 (18) B1—N2—C12—C5 2.9 (2)
N1—C1—C2—C3 −0.4 (3) C15—N2—C12—C13 0.65 (18)
C1—C2—C3—C4 0.2 (2) B1—N2—C12—C13 −173.74 (15)
C1—N1—C4—C3 −0.3 (2) C5—C12—C13—C14 −176.43 (17)
B1—N1—C4—C3 −177.21 (16) N2—C12—C13—C14 0.0 (2)
C1—N1—C4—C5 174.28 (16) C12—C13—C14—C15 −0.6 (2)
B1—N1—C4—C5 −2.6 (3) C17—N3—C15—N2 178.89 (18)
C2—C3—C4—N1 0.1 (2) C16—N3—C15—N2 −0.4 (3)
C2—C3—C4—C5 −173.55 (19) C17—N3—C15—C14 −2.5 (3)
N1—C4—C5—C12 0.4 (2) C16—N3—C15—C14 178.2 (2)
C3—C4—C5—C12 173.53 (18) C12—N2—C15—N3 177.73 (17)
N1—C4—C5—C6 −177.34 (15) B1—N2—C15—N3 −8.7 (3)
C3—C4—C5—C6 −4.2 (3) C12—N2—C15—C14 −1.01 (18)
C12—C5—C6—C11 −56.0 (2) B1—N2—C15—C14 172.56 (17)
C4—C5—C6—C11 121.79 (18) C13—C14—C15—N3 −177.78 (17)
C12—C5—C6—C7 126.68 (19) C13—C14—C15—N2 1.0 (2)
C4—C5—C6—C7 −55.6 (2) C1—N1—B1—F2 −51.6 (2)
C11—C6—C7—C8 −0.4 (3) C4—N1—B1—F2 124.74 (18)
C5—C6—C7—C8 177.02 (19) C1—N1—B1—F1 68.0 (2)
C6—C7—C8—C9 −0.1 (4) C4—N1—B1—F1 −115.69 (19)
C7—C8—C9—C10 0.7 (4) C1—N1—B1—N2 −172.08 (16)
C8—C9—C10—C11 −0.8 (4) C4—N1—B1—N2 4.2 (2)
C9—C10—C11—C6 0.3 (3) C15—N2—B1—F2 63.9 (2)
C7—C6—C11—C10 0.3 (3) C12—N2—B1—F2 −123.27 (17)
C5—C6—C11—C10 −177.12 (18) C15—N2—B1—F1 −56.7 (2)
C4—C5—C12—C13 175.20 (16) C12—N2—B1—F1 116.07 (17)
C6—C5—C12—C13 −7.1 (3) C15—N2—B1—N1 −176.99 (16)
C4—C5—C12—N2 −0.7 (2) C12—N2—B1—N1 −4.2 (2)
C6—C5—C12—N2 176.99 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···F2i 0.93 2.51 3.291 (3) 142
C17—H17C···F2ii 0.96 2.49 3.282 (3) 140

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2400).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jiao, L. J., Pang, W. D., Zhou, J. Y., Wei, Y., Mu, X. L., Bai, G. F. & Hao, E. H. (2011). J. Org. Chem. 76, 9988–9996. [DOI] [PubMed]
  3. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Trieflinger, C., Rurack, K. & Daub, J. (2005). Angew. Chem. Int. Ed. 44, 2288–2291. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010404/rk2400sup1.cif

e-69-0o781-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010404/rk2400Isup2.hkl

e-69-0o781-Isup2.hkl (134.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010404/rk2400Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES