Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 27;69(Pt 5):o795–o796. doi: 10.1107/S1600536813011008

Lup-20(29)-en-28-ol-3-one (betulone)

Stanisław Boryczka a,*, Ewa Michalik b, Joachim Kusz c, Maria Nowak d, Elwira Chrobak a
PMCID: PMC3648317  PMID: 23723937

Abstract

The asymmetric unit of the title compound, C30H48O2, contains two independent mol­ecules, the main difference between them being that the isopropenyl group is rotated by approximately 180°. In each mol­ecule, the fused six-membered rings have chair–chair–chair–chair conformations and the cyclo­pentane ring adopts an envelope conformation with the C atom bearing the hy­droxy­methyl group as the flap. All ring junctions are trans-fused. With the exception of one of the methyl groups adjacent to the C=O group, all the methyl groups are in axial positions. The isopropenyl group is equatorial and the hy­droxy­methyl group is in an axial orientation. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into chains along [010]. Weak intra­molecular C—H⋯O hydrogen bonds are also observed but the hy­droxy groups are not involved in hydrogen bonds.

Related literature  

For the synthesis of betulone, see: Hase et al. (1981). For the isolation of betulone from plants, see: Cole et al. (1991); Reyes et al. (2006); Diouf et al. (2009); Liu et al. (2010); Kim et al. (2002); Garcez et al. (2003); Fuchino et al. (1996). For the biological activity of betulone, see: Alakurtti et al. (2010); Hata et al. (2002); Reyes et al. (2006). For related structures, see: Mohamed et al. (2006); Ding et al. (2009); Drebushchak et al. (2010); Boryczka et al. (2011, 2012a ,b ).graphic file with name e-69-0o795-scheme1.jpg

Experimental  

Crystal data  

  • C30H48O2

  • M r = 440.71

  • Orthorhombic, Inline graphic

  • a = 9.4447 (3) Å

  • b = 19.1818 (6) Å

  • c = 28.1141 (7) Å

  • V = 5093.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.60 × 0.56 × 0.20 mm

Data collection  

  • Oxford Diffraction diffractometer with a Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.960, T max = 0.986

  • 61473 measured reflections

  • 5036 independent reflections

  • 4401 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.141

  • S = 1.03

  • 5036 reflections

  • 609 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011008/lh5603sup1.cif

e-69-0o795-sup1.cif (48.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011008/lh5603Isup2.hkl

e-69-0o795-Isup2.hkl (241.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13A⋯O2A 1.04 (4) 2.52 (3) 3.186 (4) 122 (2)
C13B—H13B⋯O2B 1.02 (3) 2.47 (3) 3.165 (4) 125 (2)
C19A—H19A⋯O2A 0.95 (4) 2.45 (4) 3.006 (5) 118 (3)
C22B—H22C⋯O1B i 1.05 (4) 2.56 (4) 3.567 (4) 160 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Medical University of Silesia in Katowice, Poland (grant No. KNW-1–006/P/2/0).

supplementary crystallographic information

Comment

Betulone (lup-20 (29)-en-28-ol-3-one) also known as betulonic alcohol, is a pentacyclic triterpene of the lupane type which was first isolated as a natural product from Betula lenta in 1991 (Cole et al., 1991). Betulone can be also isolated from various plants for example Maytenus cuzcoina and Maytenus chiapensis (Reyes et al., 2006), Betula alleghaniens (Diouf et al., 2009), Excoecaria agallocha (Liu et al., 2010), Ilex macropoda (Kim et al., 2002) and Terminalia glabrescens (Garcez et al., 2003). The continually growing interest in betulone and its derivatives results from their wide spectrum of biological activities such as anti-inflammatory (Reyes et al., 2006), anti-leishmanial (Alakurtti et al., 2010) and anticancer (Hata et al., 2002).

The structure of betulone is based on the 30-carbon skeleton comprising of four 6-membered rings and one cyclopentane ring. It has three available sites for simple chemical modification, namely: keto group at C3, primary hydroxy group at C28 and isopropenyl side chain at C19. These groups and their positions, mutual distances and orientation with respect to the rings can influence hydrogen bonding and the interactions of betulone with other active sites of surrounding species.

Betulone is also known as a derivative of betulin, which is one of the most plentiful triterpenes comprising up to 30% dry weight of the outer bark of the white birch. In comparison to betulin, the content of betulone in the outer bark of different tree species is very low, e.g. about of 0.03% in Betula platyphylla (Fuchino et al., 1996) and for this reason the isolation from raw plant material is poorly profitable. A more effective method to obtain betulone with high yield is to carry out synthesis from betulin (Hase et al., 1981). The crystal structure of betulone has not been reported until now. However, the crystal structures of betulonic acid-DMSO and betulonic acid-DMF solvates (Boryczka et al., 2012b) were earlier described. In addition, the structure of betulinic acid-DMSO solvate (Boryczka et al., 2012a) has also been reported. In the present work, we describe the crystal structure of betulone in order to gain a better understanding of the structure-activity relationships of this important molecule. Betulonic alcohol was obtained by oxidation of naturally occurring betulin in a one-step reaction utilizing Jones-oxidation (CrO3/H2SO4 in acetone-water solution) as the side product.

The asymmetric unit contains two independent molecules (IA and IB). A schematic drawing of the ring and atom labeling is shown in Fig. 1 and the asymmetric unit is shown in Fig. 2. All bond lengths and the angles show normal values. The cyclopentane ring adopts an envelope conformation and the cyclohexane rings are all in chair conformations. All the ring junctions in the lupane nucleus are trans-fused. A similar ring conformation is also observed in 20 (29)-lupene-3β,28β-diacetate (Mohamed et al., 2006), 3,28-diacetoxy-29-bromo-betulin (Ding et al., 2009) and also in betulin-ethanol (Drebushchak et al., 2010), betulin-DMSO (Boryczka et al., 2011), betulinic acid-DMSO (Boryczka et al., 2012a) solvates. However, the conformation of ring A in betulone differs significantly from that observed earlier for betulonic acid-DMSO and DMF solvate, where ring A adopts a boat conformation. The molecules are packed along the a axis, in a zigzag fashion, parallel to the bc plane (Fig. 3). The cyclopentane ring is in an envelope conformation with the C17 atom being displaced from C18/C19/C21/C22 plane by 0.656 (4) Å (IA) and 0.674 (4) Å (IB). The C17—C18—C19—C21 and C19—C21—C22—C17 torsion angles are 27.0 (4)°, -25.4 (4)° (for IA) and 27.5 (3)°, -26.1 (3)° (for IB) respectively. The methyl groups C24, C25, C26, C27 occupy axial positions, but the methyl group C23 and isopropenyl group at C19 are equatorial. Fig. 4 shows the different orientations of the isopropenyl groups in the two independent molecules, (IA and IB). The value of the C21—C19—C20—C29 torsion angle describes the orientation of the isopropenyl group is equal to 92.3 (4)° (IA) and -98.8 (4)° (IB). The value of the C21—C19—C20—C29 torsion angle for betulin-DMSO and betulin-ethanol solvates are -96.8 (5)° and 88.6 (5)°, respectively. The hydroxymethyl group is attached to atom C17 of ring D in an axial orientation. No classical hydrogen bonding involving the hydroxy groups is observed. In the crystal, weak intermolecular C—H···O interactions link molecules into chains along [010]. Weak intramolecular C—H···O hydrogen bonds are also observed.

Experimental

Betulonic alcohol was obtained by oxidation of naturally occurring betulin in one-step reaction utilizing Jones-oxidation (CrO3/H2SO4 in acetone-water solution) as the side product. The crude material was subjected to column chromatography on silica gel and eluted with CH2Cl2/C2H5OH (40:1, v/v). Betulonic alcohol [m.p. 367-369K, lit. m.p. 367-369K, Hata et al., 2002), Rf=0.68 (silica gel, CH2Cl2/C2H5OH, 40:1, v/v)] was crystallized from methanol, yielding colorless single crystals suitable for the X-ray analysis. 1H NMR (500 MHz, CDCl3) and EI MS data were identical with reported data (Hata et al., 2002).

Refinement

The aromatic hydrogen atoms were treated as riding on their parent carbon atoms with d(C—H) = 0.95 Å and assigned isotropic atomic displacement parameters equal to 1.2 times the value of the equivalent atomic displacement parameters of the parent carbon atom [Uiso(H)= 1.2Ueq(C)]. The methylene H atoms were constrained to an ideal geometry with d(C—H) = 0.99 A° or d(C—H) = 0.95 Å (for terminal methylene group) and Uiso(H) = 1.2Ueq(C). Methyl H atoms were constrained as riding atoms, fixed to the parent atoms with distance of 0.98 A° and Uiso(H) = 1.5Ueq(C). hydroxy H atoms were constrained as riding atoms with d(O—H) = 0.84 Å and Uiso(H) = 1.5Ueq(O). Hydrogen atoms involved in weak hydrogen bonds were refined freely with Uiso(H) equal to 1.2Ueq of the parent atom. In the absence of significant anomalous dispersion effects the Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Atom and ring numbering scheme for the title compound.

Fig. 2.

Fig. 2.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% level.

Fig. 3.

Fig. 3.

View of the unit cell along the crystallographic a axis.

Fig. 4.

Fig. 4.

Different orientation of isopropenyl group virewd towards the C19/C20/C29/C30 plane in IA and IB.

Crystal data

C30H48O2 F(000) = 1952
Mr = 440.71 Dx = 1.149 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 24992 reflections
a = 9.4447 (3) Å θ = 2.5–34.6°
b = 19.1818 (6) Å µ = 0.07 mm1
c = 28.1141 (7) Å T = 100 K
V = 5093.3 (3) Å3 Plate, colourless
Z = 8 0.60 × 0.56 × 0.20 mm

Data collection

Oxford Diffraction diffractometer with a Sapphire3 detector 5036 independent reflections
Radiation source: fine-focus sealed tube 4401 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
Detector resolution: 16.0328 pixels mm-1 θmax = 25.1°, θmin = 2.5°
ω scan h = −8→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −22→22
Tmin = 0.960, Tmax = 0.986 l = −33→33
61473 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1099P)2] where P = (Fo2 + 2Fc2)/3
5036 reflections (Δ/σ)max < 0.001
609 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 1.1431 (3) 0.77637 (14) −0.03486 (10) 0.0509 (8)
O2A 0.6372 (4) 0.28035 (18) 0.08472 (12) 0.0727 (11)
H2A 0.7190 0.2945 0.0914 0.109*
C1A 1.0227 (4) 0.60249 (18) −0.04338 (11) 0.0299 (8)
H1AA 0.9311 0.6232 −0.0531 0.036*
H1AB 1.0404 0.5616 −0.0640 0.036*
C2A 1.1415 (4) 0.6566 (2) −0.05138 (13) 0.0385 (9)
H2AA 1.2343 0.6339 −0.0461 0.046*
H2AB 1.1383 0.6727 −0.0848 0.046*
C3A 1.1299 (4) 0.71811 (19) −0.01944 (13) 0.0320 (8)
C4A 1.1037 (4) 0.70497 (18) 0.03356 (12) 0.0309 (8)
C5A 0.9920 (3) 0.64490 (17) 0.03958 (11) 0.0255 (7)
H5A 0.9010 0.6656 0.0282 0.031*
C6A 0.9629 (4) 0.62503 (19) 0.09145 (11) 0.0329 (8)
H6AA 1.0405 0.5951 0.1035 0.039*
H6AB 0.9594 0.6677 0.1113 0.039*
C7A 0.8220 (4) 0.58598 (19) 0.09519 (11) 0.0332 (8)
H7AA 0.7447 0.6175 0.0850 0.040*
H7AB 0.8050 0.5737 0.1289 0.040*
C8A 0.8157 (4) 0.51877 (18) 0.06497 (10) 0.0267 (7)
C9A 0.8698 (3) 0.53544 (17) 0.01340 (10) 0.0218 (7)
H9A 0.7955 0.5666 −0.0005 0.026*
C10A 1.0118 (3) 0.57800 (17) 0.00863 (11) 0.0251 (7)
C11A 0.8664 (4) 0.46982 (17) −0.01759 (11) 0.0264 (7)
H11A 0.9318 0.4347 −0.0041 0.032*
H11B 0.8998 0.4816 −0.0500 0.032*
C12A 0.7174 (3) 0.43854 (17) −0.02076 (10) 0.0249 (7)
H12A 0.7214 0.3943 −0.0388 0.030*
H12B 0.6548 0.4710 −0.0382 0.030*
C13A 0.6552 (3) 0.42468 (17) 0.02894 (10) 0.0240 (7)
H13A 0.723 (4) 0.3924 (18) 0.0478 (12) 0.029*
C14A 0.6565 (3) 0.49143 (17) 0.06015 (10) 0.0244 (7)
C15A 0.5923 (4) 0.4738 (2) 0.10962 (11) 0.0359 (9)
H15A 0.6601 0.4439 0.1270 0.043*
H15B 0.5823 0.5177 0.1278 0.043*
C16A 0.4469 (4) 0.4367 (2) 0.10862 (12) 0.0374 (9)
H16A 0.4186 0.4238 0.1414 0.045*
H16B 0.3742 0.4686 0.0955 0.045*
C17A 0.4564 (4) 0.37156 (19) 0.07795 (12) 0.0341 (8)
C18A 0.5063 (4) 0.39119 (18) 0.02774 (11) 0.0268 (7)
H18A 0.4399 0.4280 0.0160 0.032*
C19A 0.4791 (4) 0.32596 (18) −0.00271 (13) 0.0341 (8)
H19A 0.558 (4) 0.296 (2) 0.0026 (13) 0.041*
C20A 0.4436 (4) 0.33884 (19) −0.05530 (13) 0.0352 (8)
C21A 0.3519 (5) 0.2879 (2) 0.02319 (15) 0.0510 (11)
H21A 0.2689 0.2846 0.0018 0.061*
H21B 0.3799 0.2403 0.0331 0.061*
C22A 0.3172 (5) 0.3332 (2) 0.06692 (15) 0.0489 (11)
H22A 0.2406 0.3667 0.0596 0.059*
H22B 0.2878 0.3039 0.0941 0.059*
C23A 1.0466 (4) 0.77220 (19) 0.05630 (14) 0.0409 (9)
H23A 1.1071 0.8115 0.0473 0.061*
H23B 1.0465 0.7673 0.0910 0.061*
H23C 0.9498 0.7807 0.0451 0.061*
C24A 1.2508 (4) 0.6891 (2) 0.05663 (15) 0.0453 (10)
H24A 1.2978 0.6518 0.0388 0.068*
H24B 1.2372 0.6745 0.0897 0.068*
H24C 1.3095 0.7312 0.0558 0.068*
C25A 1.1442 (4) 0.5352 (2) 0.02094 (14) 0.0364 (8)
H25A 1.1341 0.4879 0.0083 0.055*
H25B 1.1554 0.5331 0.0556 0.055*
H25C 1.2278 0.5574 0.0068 0.055*
C26A 0.9099 (4) 0.46436 (19) 0.09009 (12) 0.0342 (8)
H26A 1.0051 0.4836 0.0946 0.051*
H26B 0.9155 0.4221 0.0705 0.051*
H26C 0.8690 0.4528 0.1211 0.051*
C27A 0.5578 (4) 0.54781 (17) 0.03828 (12) 0.0291 (8)
H27A 0.4591 0.5325 0.0408 0.044*
H27B 0.5823 0.5547 0.0047 0.044*
H27C 0.5699 0.5918 0.0556 0.044*
C28A 0.5492 (5) 0.3188 (2) 0.10332 (14) 0.0447 (10)
H28A 0.6013 0.3454 0.1279 0.054*
H28B 0.4835 0.2877 0.1207 0.054*
C29A 0.3848 (4) 0.3965 (2) −0.07222 (14) 0.0407 (9)
H29A 0.3618 0.3998 −0.1050 0.049*
H29B 0.3656 0.4345 −0.0515 0.049*
C30A 0.4735 (6) 0.2800 (3) −0.08691 (16) 0.0631 (13)
H30A 0.4304 0.2886 −0.1181 0.095*
H30B 0.4341 0.2373 −0.0732 0.095*
H30C 0.5762 0.2749 −0.0906 0.095*
O1B −0.3496 (3) 0.80561 (15) 0.28884 (10) 0.0480 (7)
O2B 0.6246 (3) 1.01860 (12) 0.13685 (8) 0.0344 (6)
H2B 0.6040 1.0023 0.1637 0.052*
C1B 0.0161 (4) 0.84111 (17) 0.28726 (11) 0.0261 (7)
H1BA 0.1042 0.8236 0.3022 0.031*
H1BB −0.0123 0.8840 0.3044 0.031*
C2B −0.1003 (4) 0.78616 (18) 0.29336 (12) 0.0323 (8)
H2BA −0.0657 0.7410 0.2809 0.039*
H2BB −0.1203 0.7802 0.3277 0.039*
C3B −0.2362 (4) 0.80529 (17) 0.26795 (12) 0.0286 (7)
C4B −0.2235 (3) 0.82674 (16) 0.21577 (11) 0.0222 (7)
C5B −0.0983 (3) 0.88076 (15) 0.21148 (11) 0.0185 (6)
H5B −0.1308 0.9221 0.2302 0.022*
C6B −0.0769 (3) 0.90864 (16) 0.16122 (10) 0.0205 (6)
H6BA −0.1700 0.9196 0.1469 0.025*
H6BB −0.0307 0.8725 0.1414 0.025*
C7B 0.0147 (3) 0.97415 (15) 0.16204 (10) 0.0197 (6)
H7BA −0.0361 1.0111 0.1798 0.024*
H7BB 0.0278 0.9908 0.1290 0.024*
C8B 0.1626 (3) 0.96323 (15) 0.18508 (10) 0.0164 (6)
C9B 0.1422 (3) 0.92689 (14) 0.23454 (10) 0.0175 (6)
H9BA 0.0894 0.9616 0.2543 0.021*
C10B 0.0471 (3) 0.85976 (15) 0.23497 (10) 0.0191 (6)
C11B 0.2853 (3) 0.91725 (16) 0.26026 (10) 0.0211 (6)
H11C 0.2675 0.8986 0.2925 0.025*
H11D 0.3423 0.8824 0.2427 0.025*
C12B 0.3709 (3) 0.98473 (15) 0.26455 (10) 0.0214 (6)
H12C 0.3226 1.0167 0.2869 0.026*
H12D 0.4656 0.9739 0.2777 0.026*
C13B 0.3881 (3) 1.02087 (15) 0.21660 (10) 0.0173 (6)
H13B 0.435 (3) 0.9873 (17) 0.1934 (11) 0.021*
C14B 0.2394 (3) 1.03694 (15) 0.19426 (10) 0.0177 (6)
C15B 0.2574 (3) 1.07779 (16) 0.14691 (10) 0.0212 (6)
H15C 0.2956 1.0456 0.1226 0.025*
H15D 0.1627 1.0932 0.1360 0.025*
C16B 0.3544 (3) 1.14170 (16) 0.14973 (11) 0.0242 (7)
H16C 0.3116 1.1772 0.1708 0.029*
H16D 0.3656 1.1624 0.1177 0.029*
C17B 0.4999 (3) 1.11996 (15) 0.16926 (10) 0.0212 (7)
C18B 0.4813 (3) 1.08681 (15) 0.21843 (10) 0.0200 (6)
H18B 0.4304 1.1216 0.2387 0.024*
C19B 0.6342 (3) 1.08099 (16) 0.23816 (11) 0.0218 (6)
H19B 0.677 (4) 1.0405 (19) 0.2266 (12) 0.026*
C20B 0.6521 (4) 1.08491 (17) 0.29161 (12) 0.0287 (7)
C21B 0.7161 (4) 1.14185 (17) 0.21277 (12) 0.0276 (7)
H21C 0.7537 1.1751 0.2365 0.033*
H21D 0.7962 1.1232 0.1940 0.033*
C22B 0.6084 (4) 1.17815 (17) 0.18003 (12) 0.0262 (7)
H22C 0.551 (4) 1.2189 (18) 0.1957 (12) 0.031*
H22D 0.662 (4) 1.1975 (18) 0.1499 (13) 0.031*
C23B −0.3632 (3) 0.86105 (17) 0.20088 (13) 0.0296 (7)
H23D −0.4416 0.8286 0.2066 0.044*
H23E −0.3594 0.8729 0.1670 0.044*
H23F −0.3779 0.9036 0.2195 0.044*
C24B −0.2054 (4) 0.76017 (17) 0.18541 (13) 0.0297 (8)
H24D −0.1275 0.7322 0.1982 0.045*
H24E −0.1842 0.7732 0.1525 0.045*
H24F −0.2931 0.7329 0.1863 0.045*
C25B 0.1199 (3) 0.79668 (15) 0.21113 (12) 0.0237 (7)
H25D 0.2216 0.7979 0.2178 0.035*
H25E 0.1047 0.7987 0.1767 0.035*
H25F 0.0794 0.7534 0.2237 0.035*
C26B 0.2521 (3) 0.91803 (16) 0.15102 (10) 0.0218 (6)
H26D 0.1926 0.8813 0.1374 0.033*
H26E 0.3306 0.8968 0.1687 0.033*
H26F 0.2899 0.9473 0.1254 0.033*
C27B 0.1513 (3) 1.08464 (15) 0.22700 (11) 0.0237 (7)
H27D 0.2041 1.1276 0.2334 0.036*
H27E 0.1322 1.0605 0.2570 0.036*
H27F 0.0615 1.0961 0.2114 0.036*
C28B 0.5697 (3) 1.07459 (16) 0.13205 (11) 0.0231 (7)
H28C 0.4967 1.0677 0.1072 0.028*
H28D 0.6433 1.1044 0.1174 0.028*
C29B 0.7480 (5) 1.0447 (2) 0.31341 (14) 0.0483 (11)
H29C 0.7636 1.0495 0.3466 0.058*
H29D 0.8004 1.0114 0.2957 0.058*
C30B 0.5679 (5) 1.1375 (2) 0.31777 (13) 0.0491 (11)
H30D 0.6030 1.1412 0.3505 0.074*
H30E 0.4682 1.1233 0.3182 0.074*
H30F 0.5768 1.1828 0.3020 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0601 (19) 0.0390 (16) 0.0537 (18) −0.0081 (14) 0.0087 (15) −0.0007 (13)
O2A 0.082 (2) 0.081 (2) 0.055 (2) 0.034 (2) 0.027 (2) 0.0391 (18)
C1A 0.0320 (18) 0.0340 (18) 0.0237 (16) −0.0067 (16) 0.0070 (14) −0.0063 (14)
C2A 0.042 (2) 0.044 (2) 0.0295 (18) −0.0090 (19) 0.0083 (17) −0.0069 (16)
C3A 0.0208 (17) 0.034 (2) 0.041 (2) −0.0040 (15) −0.0020 (15) −0.0043 (16)
C4A 0.0280 (17) 0.0333 (19) 0.0314 (18) 0.0025 (15) −0.0057 (15) −0.0109 (15)
C5A 0.0208 (16) 0.0335 (17) 0.0223 (16) 0.0038 (14) −0.0046 (13) −0.0046 (13)
C6A 0.0369 (19) 0.042 (2) 0.0191 (16) 0.0074 (16) −0.0075 (14) −0.0092 (15)
C7A 0.0346 (18) 0.049 (2) 0.0157 (15) 0.0052 (17) 0.0010 (14) −0.0076 (15)
C8A 0.0298 (17) 0.0379 (19) 0.0125 (14) 0.0085 (15) 0.0004 (13) 0.0003 (13)
C9A 0.0215 (15) 0.0292 (17) 0.0145 (14) 0.0062 (14) −0.0005 (12) −0.0001 (12)
C10A 0.0228 (16) 0.0330 (18) 0.0195 (15) 0.0030 (14) −0.0002 (13) −0.0038 (13)
C11A 0.0289 (17) 0.0330 (18) 0.0173 (14) 0.0018 (15) 0.0046 (13) −0.0011 (13)
C12A 0.0299 (17) 0.0297 (17) 0.0152 (15) 0.0001 (14) 0.0053 (13) 0.0011 (13)
C13A 0.0254 (16) 0.0304 (17) 0.0163 (14) 0.0050 (15) 0.0035 (13) 0.0064 (13)
C14A 0.0249 (16) 0.0348 (18) 0.0135 (14) 0.0058 (15) 0.0039 (12) 0.0038 (13)
C15A 0.040 (2) 0.053 (2) 0.0140 (15) 0.0062 (18) 0.0062 (14) 0.0019 (15)
C16A 0.0355 (19) 0.053 (2) 0.0235 (17) 0.0058 (18) 0.0145 (15) 0.0084 (16)
C17A 0.0359 (19) 0.041 (2) 0.0254 (17) 0.0050 (17) 0.0120 (15) 0.0129 (15)
C18A 0.0303 (18) 0.0296 (17) 0.0205 (16) 0.0043 (14) 0.0067 (14) 0.0097 (13)
C19A 0.037 (2) 0.0275 (18) 0.038 (2) −0.0004 (16) 0.0083 (16) 0.0074 (15)
C20A 0.0259 (17) 0.041 (2) 0.038 (2) −0.0069 (16) 0.0049 (15) −0.0043 (16)
C21A 0.059 (3) 0.048 (2) 0.046 (2) −0.016 (2) 0.015 (2) 0.0079 (19)
C22A 0.046 (2) 0.052 (2) 0.049 (2) −0.007 (2) 0.022 (2) 0.016 (2)
C23A 0.040 (2) 0.037 (2) 0.046 (2) 0.0024 (18) −0.0033 (18) −0.0132 (17)
C24A 0.028 (2) 0.051 (2) 0.057 (3) 0.0003 (18) −0.0116 (18) −0.011 (2)
C25A 0.0232 (17) 0.038 (2) 0.048 (2) 0.0055 (16) 0.0005 (16) −0.0091 (17)
C26A 0.0326 (19) 0.045 (2) 0.0247 (17) 0.0053 (17) −0.0061 (14) 0.0085 (15)
C27A 0.0260 (17) 0.0286 (17) 0.0327 (18) 0.0050 (14) −0.0003 (15) 0.0025 (14)
C28A 0.051 (2) 0.048 (2) 0.035 (2) 0.005 (2) 0.0139 (19) 0.0185 (18)
C29A 0.041 (2) 0.044 (2) 0.037 (2) −0.0020 (18) −0.0088 (17) 0.0047 (17)
C30A 0.074 (3) 0.071 (3) 0.044 (3) 0.019 (3) 0.008 (2) −0.008 (2)
O1B 0.0398 (15) 0.0614 (18) 0.0428 (16) −0.0095 (14) 0.0111 (13) 0.0146 (13)
O2B 0.0411 (14) 0.0317 (13) 0.0302 (12) −0.0012 (12) 0.0049 (11) 0.0028 (10)
C1B 0.0302 (17) 0.0276 (16) 0.0206 (16) −0.0045 (14) 0.0005 (13) 0.0040 (13)
C2B 0.040 (2) 0.0317 (18) 0.0254 (17) −0.0080 (16) −0.0008 (15) 0.0100 (14)
C3B 0.0295 (18) 0.0253 (17) 0.0310 (18) −0.0106 (15) 0.0048 (15) 0.0057 (14)
C4B 0.0228 (16) 0.0197 (15) 0.0242 (16) −0.0009 (13) 0.0003 (13) 0.0021 (13)
C5B 0.0184 (15) 0.0148 (14) 0.0222 (15) −0.0008 (12) 0.0001 (12) 0.0008 (12)
C6B 0.0181 (15) 0.0229 (15) 0.0206 (15) 0.0020 (13) −0.0040 (12) 0.0019 (12)
C7B 0.0232 (16) 0.0181 (14) 0.0177 (14) 0.0000 (13) −0.0025 (12) 0.0055 (12)
C8B 0.0175 (14) 0.0178 (15) 0.0138 (13) −0.0010 (12) −0.0003 (11) 0.0023 (11)
C9B 0.0228 (15) 0.0154 (14) 0.0143 (13) −0.0011 (13) 0.0006 (12) 0.0022 (11)
C10B 0.0226 (15) 0.0164 (14) 0.0185 (15) −0.0007 (13) −0.0016 (12) 0.0051 (11)
C11B 0.0272 (16) 0.0199 (15) 0.0162 (14) −0.0015 (13) −0.0017 (12) 0.0053 (12)
C12B 0.0257 (16) 0.0220 (15) 0.0165 (14) −0.0007 (14) −0.0022 (13) 0.0019 (12)
C13B 0.0201 (15) 0.0178 (14) 0.0139 (13) −0.0010 (13) −0.0006 (12) −0.0019 (12)
C14B 0.0193 (15) 0.0156 (14) 0.0180 (14) −0.0005 (13) 0.0001 (12) 0.0028 (12)
C15B 0.0224 (15) 0.0207 (15) 0.0206 (15) −0.0008 (13) −0.0015 (12) 0.0083 (13)
C16B 0.0285 (17) 0.0216 (15) 0.0225 (15) −0.0010 (14) −0.0019 (14) 0.0072 (12)
C17B 0.0248 (17) 0.0176 (15) 0.0211 (15) −0.0007 (13) −0.0009 (13) 0.0029 (12)
C18B 0.0257 (16) 0.0164 (14) 0.0180 (14) −0.0009 (13) −0.0019 (12) 0.0009 (12)
C19B 0.0228 (16) 0.0175 (15) 0.0250 (15) −0.0039 (13) −0.0040 (13) −0.0005 (13)
C20B 0.0319 (18) 0.0265 (16) 0.0277 (17) −0.0101 (15) −0.0076 (14) 0.0008 (14)
C21B 0.0304 (17) 0.0230 (16) 0.0295 (17) −0.0081 (14) −0.0042 (14) 0.0010 (14)
C22B 0.0292 (17) 0.0193 (16) 0.0300 (17) −0.0044 (14) 0.0006 (14) 0.0037 (13)
C23B 0.0208 (16) 0.0268 (17) 0.041 (2) −0.0004 (14) 0.0019 (15) 0.0018 (14)
C24B 0.0271 (17) 0.0227 (17) 0.039 (2) −0.0002 (14) 0.0004 (15) −0.0040 (14)
C25B 0.0241 (16) 0.0159 (14) 0.0309 (17) 0.0001 (13) −0.0053 (14) 0.0021 (13)
C26B 0.0270 (16) 0.0217 (15) 0.0166 (14) −0.0026 (14) 0.0027 (13) −0.0002 (12)
C27B 0.0268 (16) 0.0161 (14) 0.0282 (16) 0.0013 (13) −0.0004 (13) 0.0017 (13)
C28B 0.0204 (15) 0.0269 (17) 0.0219 (16) −0.0097 (15) −0.0022 (13) 0.0015 (13)
C29B 0.065 (3) 0.047 (2) 0.033 (2) −0.011 (2) −0.022 (2) 0.0082 (17)
C30B 0.053 (3) 0.068 (3) 0.0266 (19) −0.005 (2) −0.0048 (18) −0.0162 (19)

Geometric parameters (Å, º)

O1A—C3A 1.205 (4) O1B—C3B 1.221 (4)
O2A—C28A 1.228 (5) O2B—C28B 1.200 (4)
O2A—H2A 0.8400 O2B—H2B 0.8400
C1A—C10A 1.539 (4) C1B—C2B 1.533 (5)
C1A—C2A 1.546 (5) C1B—C10B 1.541 (4)
C1A—H1AA 0.9900 C1B—H1BA 0.9900
C1A—H1AB 0.9900 C1B—H1BB 0.9900
C2A—C3A 1.486 (5) C2B—C3B 1.514 (5)
C2A—H2AA 0.9900 C2B—H2BA 0.9900
C2A—H2AB 0.9900 C2B—H2BB 0.9900
C3A—C4A 1.531 (5) C3B—C4B 1.528 (4)
C4A—C23A 1.537 (5) C4B—C23B 1.533 (5)
C4A—C24A 1.562 (5) C4B—C24B 1.546 (4)
C4A—C5A 1.572 (5) C4B—C5B 1.577 (4)
C5A—C6A 1.532 (5) C5B—C6B 1.524 (4)
C5A—C10A 1.562 (4) C5B—C10B 1.576 (4)
C5A—H5A 1.0000 C5B—H5B 1.0000
C6A—C7A 1.531 (5) C6B—C7B 1.526 (4)
C6A—H6AA 0.9900 C6B—H6BA 0.9900
C6A—H6AB 0.9900 C6B—H6BB 0.9900
C7A—C8A 1.545 (5) C7B—C8B 1.554 (4)
C7A—H7AA 0.9900 C7B—H7BA 0.9900
C7A—H7AB 0.9900 C7B—H7BB 0.9900
C8A—C26A 1.543 (5) C8B—C26B 1.543 (4)
C8A—C9A 1.570 (4) C8B—C9B 1.567 (4)
C8A—C14A 1.598 (5) C8B—C14B 1.610 (4)
C9A—C11A 1.531 (4) C9B—C11B 1.544 (4)
C9A—C10A 1.576 (4) C9B—C10B 1.570 (4)
C9A—H9A 1.0000 C9B—H9BA 1.0000
C10A—C25A 1.536 (5) C10B—C25B 1.545 (4)
C11A—C12A 1.532 (5) C11B—C12B 1.531 (4)
C11A—H11A 0.9900 C11B—H11C 0.9900
C11A—H11B 0.9900 C11B—H11D 0.9900
C12A—C13A 1.539 (4) C12B—C13B 1.525 (4)
C12A—H12A 0.9900 C12B—H12C 0.9900
C12A—H12B 0.9900 C12B—H12D 0.9900
C13A—C18A 1.546 (5) C13B—C18B 1.542 (4)
C13A—C14A 1.552 (4) C13B—C14B 1.569 (4)
C13A—H13A 1.04 (4) C13B—H13B 1.02 (3)
C14A—C27A 1.554 (4) C14B—C27B 1.542 (4)
C14A—C15A 1.554 (4) C14B—C15B 1.554 (4)
C15A—C16A 1.547 (5) C15B—C16B 1.532 (4)
C15A—H15A 0.9900 C15B—H15C 0.9900
C15A—H15B 0.9900 C15B—H15D 0.9900
C16A—C17A 1.521 (5) C16B—C17B 1.538 (4)
C16A—H16A 0.9900 C16B—H16C 0.9900
C16A—H16B 0.9900 C16B—H16D 0.9900
C17A—C28A 1.517 (5) C17B—C28B 1.512 (4)
C17A—C18A 1.535 (4) C17B—C18B 1.532 (4)
C17A—C22A 1.538 (6) C17B—C22B 1.546 (4)
C18A—C19A 1.538 (5) C18B—C19B 1.551 (4)
C18A—H18A 1.0000 C18B—H18B 1.0000
C19A—C20A 1.536 (5) C19B—C20B 1.514 (4)
C19A—C21A 1.582 (5) C19B—C21B 1.572 (4)
C19A—H19A 0.95 (4) C19B—H19B 0.93 (4)
C20A—C29A 1.326 (5) C20B—C29B 1.338 (5)
C20A—C30A 1.463 (6) C20B—C30B 1.480 (5)
C21A—C22A 1.541 (6) C21B—C22B 1.538 (5)
C21A—H21A 0.9900 C21B—H21C 0.9900
C21A—H21B 0.9900 C21B—H21D 0.9900
C22A—H22A 0.9900 C22B—H22C 1.05 (4)
C22A—H22B 0.9900 C22B—H22D 1.05 (4)
C23A—H23A 0.9800 C23B—H23D 0.9800
C23A—H23B 0.9800 C23B—H23E 0.9800
C23A—H23C 0.9800 C23B—H23F 0.9800
C24A—H24A 0.9800 C24B—H24D 0.9800
C24A—H24B 0.9800 C24B—H24E 0.9800
C24A—H24C 0.9800 C24B—H24F 0.9800
C25A—H25A 0.9800 C25B—H25D 0.9800
C25A—H25B 0.9800 C25B—H25E 0.9800
C25A—H25C 0.9800 C25B—H25F 0.9800
C26A—H26A 0.9800 C26B—H26D 0.9800
C26A—H26B 0.9800 C26B—H26E 0.9800
C26A—H26C 0.9800 C26B—H26F 0.9800
C27A—H27A 0.9800 C27B—H27D 0.9800
C27A—H27B 0.9800 C27B—H27E 0.9800
C27A—H27C 0.9800 C27B—H27F 0.9800
C28A—H28A 0.9900 C28B—H28C 0.9900
C28A—H28B 0.9900 C28B—H28D 0.9900
C29A—H29A 0.9500 C29B—H29C 0.9500
C29A—H29B 0.9500 C29B—H29D 0.9500
C30A—H30A 0.9800 C30B—H30D 0.9800
C30A—H30B 0.9800 C30B—H30E 0.9800
C30A—H30C 0.9800 C30B—H30F 0.9800
C28A—O2A—H2A 109.5 C28B—O2B—H2B 109.5
C10A—C1A—C2A 113.1 (3) C2B—C1B—C10B 113.7 (3)
C10A—C1A—H1AA 109.0 C2B—C1B—H1BA 108.8
C2A—C1A—H1AA 109.0 C10B—C1B—H1BA 108.8
C10A—C1A—H1AB 109.0 C2B—C1B—H1BB 108.8
C2A—C1A—H1AB 109.0 C10B—C1B—H1BB 108.8
H1AA—C1A—H1AB 107.8 H1BA—C1B—H1BB 107.7
C3A—C2A—C1A 113.1 (3) C3B—C2B—C1B 112.9 (3)
C3A—C2A—H2AA 109.0 C3B—C2B—H2BA 109.0
C1A—C2A—H2AA 109.0 C1B—C2B—H2BA 109.0
C3A—C2A—H2AB 109.0 C3B—C2B—H2BB 109.0
C1A—C2A—H2AB 109.0 C1B—C2B—H2BB 109.0
H2AA—C2A—H2AB 107.8 H2BA—C2B—H2BB 107.8
O1A—C3A—C2A 120.7 (3) O1B—C3B—C2B 121.2 (3)
O1A—C3A—C4A 121.3 (3) O1B—C3B—C4B 121.9 (3)
C2A—C3A—C4A 118.0 (3) C2B—C3B—C4B 116.8 (3)
C3A—C4A—C23A 108.9 (3) C3B—C4B—C23B 108.1 (3)
C3A—C4A—C24A 107.0 (3) C3B—C4B—C24B 108.4 (3)
C23A—C4A—C24A 107.6 (3) C23B—C4B—C24B 107.4 (3)
C3A—C4A—C5A 109.5 (3) C3B—C4B—C5B 108.0 (2)
C23A—C4A—C5A 109.5 (3) C23B—C4B—C5B 110.0 (2)
C24A—C4A—C5A 114.2 (3) C24B—C4B—C5B 114.7 (3)
C6A—C5A—C10A 110.3 (3) C6B—C5B—C10B 111.3 (2)
C6A—C5A—C4A 113.9 (3) C6B—C5B—C4B 113.6 (2)
C10A—C5A—C4A 117.5 (3) C10B—C5B—C4B 117.0 (2)
C6A—C5A—H5A 104.5 C6B—C5B—H5B 104.5
C10A—C5A—H5A 104.5 C10B—C5B—H5B 104.5
C4A—C5A—H5A 104.5 C4B—C5B—H5B 104.5
C7A—C6A—C5A 110.0 (3) C5B—C6B—C7B 110.5 (2)
C7A—C6A—H6AA 109.7 C5B—C6B—H6BA 109.6
C5A—C6A—H6AA 109.7 C7B—C6B—H6BA 109.6
C7A—C6A—H6AB 109.7 C5B—C6B—H6BB 109.6
C5A—C6A—H6AB 109.7 C7B—C6B—H6BB 109.6
H6AA—C6A—H6AB 108.2 H6BA—C6B—H6BB 108.1
C6A—C7A—C8A 113.8 (3) C6B—C7B—C8B 113.9 (2)
C6A—C7A—H7AA 108.8 C6B—C7B—H7BA 108.8
C8A—C7A—H7AA 108.8 C8B—C7B—H7BA 108.8
C6A—C7A—H7AB 108.8 C6B—C7B—H7BB 108.8
C8A—C7A—H7AB 108.8 C8B—C7B—H7BB 108.8
H7AA—C7A—H7AB 107.7 H7BA—C7B—H7BB 107.7
C26A—C8A—C7A 106.9 (3) C26B—C8B—C7B 108.0 (2)
C26A—C8A—C9A 111.9 (3) C26B—C8B—C9B 111.6 (2)
C7A—C8A—C9A 109.0 (3) C7B—C8B—C9B 108.6 (2)
C26A—C8A—C14A 111.1 (3) C26B—C8B—C14B 110.3 (2)
C7A—C8A—C14A 110.9 (3) C7B—C8B—C14B 110.7 (2)
C9A—C8A—C14A 107.1 (2) C9B—C8B—C14B 107.7 (2)
C11A—C9A—C8A 110.6 (3) C11B—C9B—C8B 111.2 (2)
C11A—C9A—C10A 113.3 (2) C11B—C9B—C10B 113.5 (2)
C8A—C9A—C10A 117.4 (2) C8B—C9B—C10B 116.2 (2)
C11A—C9A—H9A 104.7 C11B—C9B—H9BA 104.9
C8A—C9A—H9A 104.7 C8B—C9B—H9BA 104.9
C10A—C9A—H9A 104.7 C10B—C9B—H9BA 104.9
C25A—C10A—C1A 108.8 (3) C1B—C10B—C25B 108.5 (2)
C25A—C10A—C5A 114.3 (3) C1B—C10B—C9B 107.8 (2)
C1A—C10A—C5A 106.6 (3) C25B—C10B—C9B 112.6 (2)
C25A—C10A—C9A 113.4 (3) C1B—C10B—C5B 107.1 (2)
C1A—C10A—C9A 107.2 (2) C25B—C10B—C5B 113.9 (2)
C5A—C10A—C9A 106.0 (2) C9B—C10B—C5B 106.6 (2)
C9A—C11A—C12A 112.0 (3) C12B—C11B—C9B 113.5 (2)
C9A—C11A—H11A 109.2 C12B—C11B—H11C 108.9
C12A—C11A—H11A 109.2 C9B—C11B—H11C 108.9
C9A—C11A—H11B 109.2 C12B—C11B—H11D 108.9
C12A—C11A—H11B 109.2 C9B—C11B—H11D 108.9
H11A—C11A—H11B 107.9 H11C—C11B—H11D 107.7
C11A—C12A—C13A 111.4 (3) C13B—C12B—C11B 111.8 (2)
C11A—C12A—H12A 109.3 C13B—C12B—H12C 109.3
C13A—C12A—H12A 109.3 C11B—C12B—H12C 109.3
C11A—C12A—H12B 109.3 C13B—C12B—H12D 109.3
C13A—C12A—H12B 109.3 C11B—C12B—H12D 109.3
H12A—C12A—H12B 108.0 H12C—C12B—H12D 107.9
C12A—C13A—C18A 113.5 (3) C12B—C13B—C18B 113.9 (2)
C12A—C13A—C14A 111.6 (3) C12B—C13B—C14B 110.3 (2)
C18A—C13A—C14A 111.2 (3) C18B—C13B—C14B 111.3 (2)
C12A—C13A—H13A 109.4 (19) C12B—C13B—H13B 109.1 (17)
C18A—C13A—H13A 108.9 (19) C18B—C13B—H13B 106.8 (18)
C14A—C13A—H13A 101.5 (19) C14B—C13B—H13B 105.0 (18)
C13A—C14A—C27A 110.2 (3) C27B—C14B—C15B 105.7 (2)
C13A—C14A—C15A 108.9 (3) C27B—C14B—C13B 111.2 (2)
C27A—C14A—C15A 105.7 (3) C15B—C14B—C13B 110.1 (2)
C13A—C14A—C8A 109.0 (2) C27B—C14B—C8B 112.0 (2)
C27A—C14A—C8A 111.7 (3) C15B—C14B—C8B 110.8 (2)
C15A—C14A—C8A 111.2 (3) C13B—C14B—C8B 107.1 (2)
C16A—C15A—C14A 115.5 (3) C16B—C15B—C14B 115.1 (2)
C16A—C15A—H15A 108.4 C16B—C15B—H15C 108.5
C14A—C15A—H15A 108.4 C14B—C15B—H15C 108.5
C16A—C15A—H15B 108.4 C16B—C15B—H15D 108.5
C14A—C15A—H15B 108.4 C14B—C15B—H15D 108.5
H15A—C15A—H15B 107.5 H15C—C15B—H15D 107.5
C17A—C16A—C15A 109.6 (3) C15B—C16B—C17B 109.6 (2)
C17A—C16A—H16A 109.7 C15B—C16B—H16C 109.7
C15A—C16A—H16A 109.7 C17B—C16B—H16C 109.7
C17A—C16A—H16B 109.7 C15B—C16B—H16D 109.7
C15A—C16A—H16B 109.7 C17B—C16B—H16D 109.7
H16A—C16A—H16B 108.2 H16C—C16B—H16D 108.2
C28A—C17A—C16A 108.4 (3) C28B—C17B—C18B 115.8 (2)
C28A—C17A—C18A 114.7 (3) C28B—C17B—C16B 107.4 (3)
C16A—C17A—C18A 109.7 (3) C18B—C17B—C16B 109.4 (2)
C28A—C17A—C22A 105.6 (3) C28B—C17B—C22B 105.2 (3)
C16A—C17A—C22A 117.2 (3) C18B—C17B—C22B 101.5 (2)
C18A—C17A—C22A 101.2 (3) C16B—C17B—C22B 117.8 (2)
C17A—C18A—C19A 105.1 (3) C17B—C18B—C13B 112.1 (2)
C17A—C18A—C13A 111.2 (3) C17B—C18B—C19B 104.2 (2)
C19A—C18A—C13A 120.2 (3) C13B—C18B—C19B 119.0 (2)
C17A—C18A—H18A 106.5 C17B—C18B—H18B 107.0
C19A—C18A—H18A 106.5 C13B—C18B—H18B 107.0
C13A—C18A—H18A 106.5 C19B—C18B—H18B 107.0
C20A—C19A—C18A 116.2 (3) C20B—C19B—C18B 117.1 (3)
C20A—C19A—C21A 110.6 (3) C20B—C19B—C21B 111.0 (3)
C18A—C19A—C21A 104.2 (3) C18B—C19B—C21B 104.0 (2)
C20A—C19A—H19A 115 (2) C20B—C19B—H19B 110 (2)
C18A—C19A—H19A 105 (2) C18B—C19B—H19B 110 (2)
C21A—C19A—H19A 104 (2) C21B—C19B—H19B 104 (2)
C29A—C20A—C30A 120.4 (4) C29B—C20B—C30B 121.9 (3)
C29A—C20A—C19A 124.8 (3) C29B—C20B—C19B 120.1 (3)
C30A—C20A—C19A 114.7 (3) C30B—C20B—C19B 117.8 (3)
C22A—C21A—C19A 105.6 (3) C22B—C21B—C19B 106.4 (3)
C22A—C21A—H21A 110.6 C22B—C21B—H21C 110.4
C19A—C21A—H21A 110.6 C19B—C21B—H21C 110.4
C22A—C21A—H21B 110.6 C22B—C21B—H21D 110.4
C19A—C21A—H21B 110.6 C19B—C21B—H21D 110.4
H21A—C21A—H21B 108.8 H21C—C21B—H21D 108.6
C17A—C22A—C21A 104.4 (3) C21B—C22B—C17B 103.2 (2)
C17A—C22A—H22A 110.9 C21B—C22B—H22C 115.4 (19)
C21A—C22A—H22A 110.9 C17B—C22B—H22C 106 (2)
C17A—C22A—H22B 110.9 C21B—C22B—H22D 109 (2)
C21A—C22A—H22B 110.9 C17B—C22B—H22D 114.5 (19)
H22A—C22A—H22B 108.9 H22C—C22B—H22D 109 (3)
C4A—C23A—H23A 109.5 C4B—C23B—H23D 109.5
C4A—C23A—H23B 109.5 C4B—C23B—H23E 109.5
H23A—C23A—H23B 109.5 H23D—C23B—H23E 109.5
C4A—C23A—H23C 109.5 C4B—C23B—H23F 109.5
H23A—C23A—H23C 109.5 H23D—C23B—H23F 109.5
H23B—C23A—H23C 109.5 H23E—C23B—H23F 109.5
C4A—C24A—H24A 109.5 C4B—C24B—H24D 109.5
C4A—C24A—H24B 109.5 C4B—C24B—H24E 109.5
H24A—C24A—H24B 109.5 H24D—C24B—H24E 109.5
C4A—C24A—H24C 109.5 C4B—C24B—H24F 109.5
H24A—C24A—H24C 109.5 H24D—C24B—H24F 109.5
H24B—C24A—H24C 109.5 H24E—C24B—H24F 109.5
C10A—C25A—H25A 109.5 C10B—C25B—H25D 109.5
C10A—C25A—H25B 109.5 C10B—C25B—H25E 109.5
H25A—C25A—H25B 109.5 H25D—C25B—H25E 109.5
C10A—C25A—H25C 109.5 C10B—C25B—H25F 109.5
H25A—C25A—H25C 109.5 H25D—C25B—H25F 109.5
H25B—C25A—H25C 109.5 H25E—C25B—H25F 109.5
C8A—C26A—H26A 109.5 C8B—C26B—H26D 109.5
C8A—C26A—H26B 109.5 C8B—C26B—H26E 109.5
H26A—C26A—H26B 109.5 H26D—C26B—H26E 109.5
C8A—C26A—H26C 109.5 C8B—C26B—H26F 109.5
H26A—C26A—H26C 109.5 H26D—C26B—H26F 109.5
H26B—C26A—H26C 109.5 H26E—C26B—H26F 109.5
C14A—C27A—H27A 109.5 C14B—C27B—H27D 109.5
C14A—C27A—H27B 109.5 C14B—C27B—H27E 109.5
H27A—C27A—H27B 109.5 H27D—C27B—H27E 109.5
C14A—C27A—H27C 109.5 C14B—C27B—H27F 109.5
H27A—C27A—H27C 109.5 H27D—C27B—H27F 109.5
H27B—C27A—H27C 109.5 H27E—C27B—H27F 109.5
O2A—C28A—C17A 126.3 (4) O2B—C28B—C17B 128.7 (3)
O2A—C28A—H28A 105.8 O2B—C28B—H28C 105.1
C17A—C28A—H28A 105.8 C17B—C28B—H28C 105.1
O2A—C28A—H28B 105.8 O2B—C28B—H28D 105.1
C17A—C28A—H28B 105.8 C17B—C28B—H28D 105.1
H28A—C28A—H28B 106.2 H28C—C28B—H28D 105.9
C20A—C29A—H29A 120.0 C20B—C29B—H29C 120.0
C20A—C29A—H29B 120.0 C20B—C29B—H29D 120.0
H29A—C29A—H29B 120.0 H29C—C29B—H29D 120.0
C20A—C30A—H30A 109.5 C20B—C30B—H30D 109.5
C20A—C30A—H30B 109.5 C20B—C30B—H30E 109.5
H30A—C30A—H30B 109.5 H30D—C30B—H30E 109.5
C20A—C30A—H30C 109.5 C20B—C30B—H30F 109.5
H30A—C30A—H30C 109.5 H30D—C30B—H30F 109.5
H30B—C30A—H30C 109.5 H30E—C30B—H30F 109.5
C10A—C1A—C2A—C3A −54.6 (4) C10B—C1B—C2B—C3B −53.5 (4)
C1A—C2A—C3A—O1A −134.1 (4) C1B—C2B—C3B—O1B −127.3 (4)
C1A—C2A—C3A—C4A 47.1 (4) C1B—C2B—C3B—C4B 50.4 (4)
O1A—C3A—C4A—C23A 20.0 (5) O1B—C3B—C4B—C23B 11.8 (4)
C2A—C3A—C4A—C23A −161.2 (3) C2B—C3B—C4B—C23B −165.9 (3)
O1A—C3A—C4A—C24A −96.0 (4) O1B—C3B—C4B—C24B −104.3 (4)
C2A—C3A—C4A—C24A 82.8 (4) C2B—C3B—C4B—C24B 78.0 (3)
O1A—C3A—C4A—C5A 139.8 (3) O1B—C3B—C4B—C5B 130.8 (3)
C2A—C3A—C4A—C5A −41.5 (4) C2B—C3B—C4B—C5B −46.9 (4)
C3A—C4A—C5A—C6A 177.3 (3) C3B—C4B—C5B—C6B −178.0 (3)
C23A—C4A—C5A—C6A −63.4 (4) C23B—C4B—C5B—C6B −60.2 (3)
C24A—C4A—C5A—C6A 57.3 (4) C24B—C4B—C5B—C6B 61.0 (3)
C3A—C4A—C5A—C10A 46.0 (4) C3B—C4B—C5B—C10B 50.2 (3)
C23A—C4A—C5A—C10A 165.3 (3) C23B—C4B—C5B—C10B 167.9 (3)
C24A—C4A—C5A—C10A −73.9 (4) C24B—C4B—C5B—C10B −70.9 (3)
C10A—C5A—C6A—C7A −64.5 (3) C10B—C5B—C6B—C7B −61.5 (3)
C4A—C5A—C6A—C7A 160.8 (3) C4B—C5B—C6B—C7B 164.0 (2)
C5A—C6A—C7A—C8A 58.6 (4) C5B—C6B—C7B—C8B 57.8 (3)
C6A—C7A—C8A—C26A 72.9 (4) C6B—C7B—C8B—C26B 70.7 (3)
C6A—C7A—C8A—C9A −48.2 (4) C6B—C7B—C8B—C9B −50.5 (3)
C6A—C7A—C8A—C14A −165.8 (3) C6B—C7B—C8B—C14B −168.5 (2)
C26A—C8A—C9A—C11A 61.5 (4) C26B—C8B—C9B—C11B 63.4 (3)
C7A—C8A—C9A—C11A 179.5 (3) C7B—C8B—C9B—C11B −177.7 (2)
C14A—C8A—C9A—C11A −60.5 (3) C14B—C8B—C9B—C11B −57.8 (3)
C26A—C8A—C9A—C10A −70.6 (4) C26B—C8B—C9B—C10B −68.5 (3)
C7A—C8A—C9A—C10A 47.4 (4) C7B—C8B—C9B—C10B 50.4 (3)
C14A—C8A—C9A—C10A 167.4 (2) C14B—C8B—C9B—C10B 170.3 (2)
C2A—C1A—C10A—C25A −68.0 (4) C2B—C1B—C10B—C25B −69.9 (3)
C2A—C1A—C10A—C5A 55.7 (4) C2B—C1B—C10B—C9B 167.9 (3)
C2A—C1A—C10A—C9A 169.0 (3) C2B—C1B—C10B—C5B 53.5 (3)
C6A—C5A—C10A—C25A −66.3 (4) C11B—C9B—C10B—C1B 60.4 (3)
C4A—C5A—C10A—C25A 66.6 (4) C8B—C9B—C10B—C1B −168.8 (2)
C6A—C5A—C10A—C1A 173.5 (3) C11B—C9B—C10B—C25B −59.2 (3)
C4A—C5A—C10A—C1A −53.7 (3) C8B—C9B—C10B—C25B 71.6 (3)
C6A—C5A—C10A—C9A 59.4 (3) C11B—C9B—C10B—C5B 175.1 (2)
C4A—C5A—C10A—C9A −167.7 (3) C8B—C9B—C10B—C5B −54.1 (3)
C11A—C9A—C10A—C25A −57.7 (3) C6B—C5B—C10B—C1B 173.1 (2)
C8A—C9A—C10A—C25A 73.2 (3) C4B—C5B—C10B—C1B −54.0 (3)
C11A—C9A—C10A—C1A 62.5 (3) C6B—C5B—C10B—C25B −66.9 (3)
C8A—C9A—C10A—C1A −166.6 (3) C4B—C5B—C10B—C25B 66.0 (3)
C11A—C9A—C10A—C5A 176.1 (2) C6B—C5B—C10B—C9B 57.9 (3)
C8A—C9A—C10A—C5A −53.0 (3) C4B—C5B—C10B—C9B −169.2 (2)
C8A—C9A—C11A—C12A 58.3 (3) C8B—C9B—C11B—C12B 53.0 (3)
C10A—C9A—C11A—C12A −167.5 (3) C10B—C9B—C11B—C12B −173.7 (2)
C9A—C11A—C12A—C13A −54.3 (4) C9B—C11B—C12B—C13B −52.1 (3)
C11A—C12A—C13A—C18A −178.4 (3) C11B—C12B—C13B—C18B −176.5 (2)
C11A—C12A—C13A—C14A 54.9 (4) C11B—C12B—C13B—C14B 57.5 (3)
C12A—C13A—C14A—C27A 64.4 (3) C12B—C13B—C14B—C27B 59.7 (3)
C18A—C13A—C14A—C27A −63.5 (3) C18B—C13B—C14B—C27B −67.7 (3)
C12A—C13A—C14A—C15A 179.9 (3) C12B—C13B—C14B—C15B 176.5 (2)
C18A—C13A—C14A—C15A 52.0 (3) C18B—C13B—C14B—C15B 49.1 (3)
C12A—C13A—C14A—C8A −58.5 (3) C12B—C13B—C14B—C8B −62.9 (3)
C18A—C13A—C14A—C8A 173.6 (2) C18B—C13B—C14B—C8B 169.7 (2)
C26A—C8A—C14A—C13A −62.2 (3) C26B—C8B—C14B—C27B 178.3 (2)
C7A—C8A—C14A—C13A 179.1 (2) C7B—C8B—C14B—C27B 58.9 (3)
C9A—C8A—C14A—C13A 60.3 (3) C9B—C8B—C14B—C27B −59.7 (3)
C26A—C8A—C14A—C27A 175.8 (3) C26B—C8B—C14B—C15B 60.6 (3)
C7A—C8A—C14A—C27A 57.1 (3) C7B—C8B—C14B—C15B −58.9 (3)
C9A—C8A—C14A—C27A −61.7 (3) C9B—C8B—C14B—C15B −177.5 (2)
C26A—C8A—C14A—C15A 57.9 (3) C26B—C8B—C14B—C13B −59.6 (3)
C7A—C8A—C14A—C15A −60.8 (3) C7B—C8B—C14B—C13B −179.0 (2)
C9A—C8A—C14A—C15A −179.6 (3) C9B—C8B—C14B—C13B 62.4 (3)
C13A—C14A—C15A—C16A −51.1 (4) C27B—C14B—C15B—C16B 70.0 (3)
C27A—C14A—C15A—C16A 67.3 (4) C13B—C14B—C15B—C16B −50.2 (3)
C8A—C14A—C15A—C16A −171.3 (3) C8B—C14B—C15B—C16B −168.5 (2)
C14A—C15A—C16A—C17A 54.3 (4) C14B—C15B—C16B—C17B 55.1 (3)
C15A—C16A—C17A—C28A 69.0 (3) C15B—C16B—C17B—C28B 68.1 (3)
C15A—C16A—C17A—C18A −57.0 (4) C15B—C16B—C17B—C18B −58.4 (3)
C15A—C16A—C17A—C22A −171.7 (3) C15B—C16B—C17B—C22B −173.5 (3)
C28A—C17A—C18A—C19A 70.4 (4) C28B—C17B—C18B—C13B −60.6 (3)
C16A—C17A—C18A—C19A −167.2 (3) C16B—C17B—C18B—C13B 60.9 (3)
C22A—C17A—C18A—C19A −42.8 (3) C22B—C17B—C18B—C13B −173.8 (2)
C28A—C17A—C18A—C13A −61.1 (4) C28B—C17B—C18B—C19B 69.4 (3)
C16A—C17A—C18A—C13A 61.3 (4) C16B—C17B—C18B—C19B −169.1 (2)
C22A—C17A—C18A—C13A −174.3 (3) C22B—C17B—C18B—C19B −43.9 (3)
C12A—C13A—C18A—C17A 174.0 (3) C12B—C13B—C18B—C17B 178.0 (3)
C14A—C13A—C18A—C17A −59.1 (3) C14B—C13B—C18B—C17B −56.5 (3)
C12A—C13A—C18A—C19A 50.7 (4) C12B—C13B—C18B—C19B 56.2 (4)
C14A—C13A—C18A—C19A 177.6 (3) C14B—C13B—C18B—C19B −178.4 (2)
C17A—C18A—C19A—C20A 149.0 (3) C17B—C18B—C19B—C20B 150.4 (3)
C13A—C18A—C19A—C20A −84.9 (4) C13B—C18B—C19B—C20B −83.9 (3)
C17A—C18A—C19A—C21A 27.0 (4) C17B—C18B—C19B—C21B 27.5 (3)
C13A—C18A—C19A—C21A 153.2 (3) C13B—C18B—C19B—C21B 153.2 (3)
C18A—C19A—C20A—C29A −26.2 (5) C18B—C19B—C20B—C29B 142.0 (3)
C21A—C19A—C20A—C29A 92.3 (4) C21B—C19B—C20B—C29B −98.8 (4)
C18A—C19A—C20A—C30A 156.6 (4) C18B—C19B—C20B—C30B −42.1 (4)
C21A—C19A—C20A—C30A −84.8 (4) C21B—C19B—C20B—C30B 77.1 (4)
C20A—C19A—C21A—C22A −126.5 (4) C20B—C19B—C21B—C22B −127.4 (3)
C18A—C19A—C21A—C22A −0.9 (4) C18B—C19B—C21B—C22B −0.6 (3)
C28A—C17A—C22A—C21A −78.2 (4) C19B—C21B—C22B—C17B −26.1 (3)
C16A—C17A—C22A—C21A 161.0 (3) C28B—C17B—C22B—C21B −78.0 (3)
C18A—C17A—C22A—C21A 41.7 (4) C18B—C17B—C22B—C21B 43.0 (3)
C19A—C21A—C22A—C17A −25.4 (4) C16B—C17B—C22B—C21B 162.4 (3)
C16A—C17A—C28A—O2A −140.3 (5) C16B—C17B—C28B—O2B −130.4 (3)
C18A—C17A—C28A—O2A −17.2 (6) C18B—C17B—C28B—O2B −7.8 (5)
C22A—C17A—C28A—O2A 93.3 (5) C22B—C17B—C28B—O2B 103.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13A—H13A···O2A 1.04 (4) 2.52 (3) 3.186 (4) 122 (2)
C13B—H13B···O2B 1.02 (3) 2.47 (3) 3.165 (4) 125 (2)
C19A—H19A···O2A 0.95 (4) 2.45 (4) 3.006 (5) 118 (3)
C22B—H22C···O1Bi 1.05 (4) 2.56 (4) 3.567 (4) 160 (3)

Symmetry code: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5603).

References

  1. Alakurtti, S., Bergstrom, P., Sacerdoti-Sierra, N., Jaffe, C. L. & Yli-Kauhaluoma, J. (2010). J. Antibiot. 63, 123–126. [DOI] [PubMed]
  2. Boryczka, S., Bębenek, E., Jastrzębska, M., Kusz, J. & Zubko, M. (2012a). Z. Kristallogr. 227, 379–384.
  3. Boryczka, S., Jastrzębska, M., Bębenek, E., Kusz, J., Zubko, M., Kadela, M. & Michalik, E. (2012b). J. Pharm. Sci. 101, 4458–4471. [DOI] [PubMed]
  4. Boryczka, S., Michalik, E., Jastrzębska, M., Kusz, J., Zubko, M. & Bębenek, E. (2011). J. Chem. Crystallogr. 42, 345–351.
  5. Cole, B. J. W., Bentley, M. D. & Hua, Y. (1991). Hölzforschung, 45, 265–268.
  6. Ding, W.-M., Jing, L.-J., Yu, T., Wang, Y. & Yan, X.-F. (2009). Acta Cryst. E65, o1982. [DOI] [PMC free article] [PubMed]
  7. Diouf, P. N., Stevanovic, T. & Boutin, Y. (2009). Ind. Crops Prod. 30, 297–303.
  8. Drebushchak, T. N., Mikhailenko, M. A., Brezgunova, M. E., Shakhtshneider, T. P. & Kuznetsova, S. A. (2010). J. Struct. Chem. 51, 798–801.
  9. Fuchino, H., Konishi, S., Satoh, T., Yagi, A., Saitsu, K., Tatsumi, T. & Tanaka, N. (1996). Chem. Pharm. Bull. 44, 1033–1038.
  10. Garcez, F. R., Garcez, W. S., Miguel, D. L. S., Serea, A. A. T. & Prado, F. C. (2003). J. Braz. Chem. Soc. 14, 461–465.
  11. Hase, T. A., Suokas, E. & Weckman, A. (1981). Synth. Commun. 11, 489–492.
  12. Hata, K., Hori, K. & Takahashi, S. (2002). J. Nat. Prod. 65, 645–648. [DOI] [PubMed]
  13. Kim, D. K., Nam, I. Y., Kim, J. W., Shin, T. Y. & Lim, J. P. (2002). Arch. Pharm. Res. 25, 617–620. [PubMed]
  14. Liu, Z., Jiang, W., Deng, Z.-W. & Lin, W.-H. (2010). J. Chin. Pharm. Sci. 19, 387–392.
  15. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  16. Mohamed, I. E., Choudhary, M. I., Ali, S., Anjum, S. & Atta-ur-Rahman, (2006). Acta Cryst. E62, o1352–o1354.
  17. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abington, England.
  18. Reyes, C. P., Núnez, M. J., Jiménez, I. A., Busserolles, J., Alcaraz, M. J. & Bazzocchi, I. L. (2006). Bioorg. Med. Chem. 14, 1573–1579. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011008/lh5603sup1.cif

e-69-0o795-sup1.cif (48.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011008/lh5603Isup2.hkl

e-69-0o795-Isup2.hkl (241.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES