Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 30;69(Pt 5):o810–o811. doi: 10.1107/S1600536813010969

3,4,5-Trimeth­oxy-4′-methyl­biphen­yl

Manu Lahtinen a, Kalle Nättinen b, Sami Nummelin c,*
PMCID: PMC3648328  PMID: 23723948

Abstract

In the title compound, C16H18O3, the dihedral angle between the benzene rings is 33.4 (2)°. In the crystal, mol­ecules are packed in a zigzag arrangement along the b-axis and are inter­connected via weak C—H⋯O hydrogen bonds, and C—H⋯π inter­actions involving the meth­oxy groups and the benzene rings of neighbouring molecules.

Related literature  

For related single-crystal structures based on AB2– and AB3-branched bi­phenyls, see: Lahtinen et al. (2013a ,b ,c ); Lahtinen & Nummelin (2013). For synthesis of the title compound, see: Percec et al. (2006, 2007). For crystal structures of dendrimers, see: Mekelburger et al. (1993); Nättinen & Rissanen (2003); Ropponen et al. (2004a ). For related Percec-type self-assembling supra­molecular dendrimers, see: Percec et al. (2006, 2007, 2008); Roche & Percec (2013). For dendrimersomes, see: Percec et al. (2010). For aliphatic and aromatic polyester building blocks for dendrimersomes, see: Ropponen et al. (2004b,c ); Nummelin et al. (2000).graphic file with name e-69-0o810-scheme1.jpg

Experimental  

Crystal data  

  • C16H18O3

  • M r = 258.30

  • Orthorhombic, Inline graphic

  • a = 8.4669 (2) Å

  • b = 15.0636 (3) Å

  • c = 21.4516 (4) Å

  • V = 2735.98 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.3 × 0.25 × 0.2 mm

Data collection  

  • Bruker–Nonius KappaCCD diffractometer equipped with an APEXII detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.975, T max = 0.983

  • 17856 measured reflections

  • 2589 independent reflections

  • 1984 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.117

  • S = 1.03

  • 2589 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010969/go2088sup1.cif

e-69-0o810-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010969/go2088Isup2.hkl

e-69-0o810-Isup2.hkl (127.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010969/go2088Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O11i 0.95 2.57 3.382 (2) 144
C12—H12B⋯O14i 0.98 2.56 3.465 (2) 154
C18—H18C⋯O17ii 0.98 2.63 3.488 (2) 146
C15—H15ACg1iii 0.98 2.84 3.692 (2) 139
C12—H12ACg2iv 0.98 3.19 4.061 (2) 132
C18—H18BCg1v 0.98 3.01 3.976 (2) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

SN acknowledges the Academy of Finland for financial support (No. 138850).

supplementary crystallographic information

Comment

3,4,5-Trimethoxy-4'-methyl biphenyl was synthesized in a gram quantities by employing a metal catalyzed coupling reaction between an aryl bromide and p-tolylboronic acid (Percec et al. 2006, 2007). The title compound (I) was used as a building block for the construction of amphiphilic AB2– and AB3-branched biphenyl dendrons (Percec et al. 2006) and hybrid (phenyl–biphenyl) dendrons (Percec et al. 2007). With few exceptions (e.g. Mekelburger et al. 1993; Nättinen & Rissanen 2003; Ropponen et al. 2004a) most dendrimers are liquid or amorphous. However, Percec-type dendrons and dendrimers have the ability to self-assemble in the solid state and in selected solvents into supramolecular architectures, such as hollow or non-hollow columns or spheres, which, in turn, self-organize into periodic lattices or quasi-periodic arrays in the solid state (Percec et al. 2006, 2007, 2008). In addition, biphenyls (Percec et al. 2006, 2007) are key building blocks on expanding the scope of libraries of amphiphilic Janus-dendrimers (Ropponen et al. 2004b; Percec et al. 2010) based on hydrophobic Percec-type building blocks and hydrophilic aliphatic and aromatic polyester building blocks. (Ropponen et al. 2004b,c; Nummelin et al. 2000). Amphiphilic Janus-dendrimers self-assemble into uniform liposome-like structures denoted as dendrimersomes (Percec et al. 2010) and other complex adaptable systems (Roche & Percec 2013) in water and selected biological buffers. Herein, we report the title compound 3,4,5-trimethoxy-4'-methyl biphenyl (I) as a contribution to a structural study of biphenyl derivatives (Lahtinen et al. 2013a,b,c; Lahtinen & Nummelin 2013).

Compound (I) has a dihedral angle between the aromatic rings of 33.4 (2)°, and is analogous to various biphenyl structures (Lahtinen et al. 2103a,b). The methoxy groups in 3- and 5-positions (Fig. 1) are co-planar with the [C(8)>C(19)] ring with the dihedral angles of 0.2 (2)° and 0.7 (2)°, respectively, whereas the methoxy group in the 4-position is tilted out from the plane with angle 113.32 (13)°. The molecules are packed in a zigzag formation along b -axis. This formation origates from antiparallel rows of molecules running through c -axis (Figures 2 and 3). Three weak CH···O hydrogen bonds occur with donor-acceptor d(D···A) bond distances of 3.382 (2), 3.465 (2), and 3.488 (2) Å, respectively (Fig. 4). Moreover, a network of weak CH···π interactions is observable between methoxy groups and nearby phenyl groups having ring-centroid to methyl(C) distances of 3.692 (2) - 4.061 (2)Å.

Experimental

A flame-dried Schlenk-tube was loaded with p-tolylboronic acid (3.3 g, 24.3 mmol), KF (2.8 g, 48.6 mmol), 3,4,5-trimethoxy bromobenzene (4.0 g, 16.2 mmol), Pd(OAc)2 (36 mg, 0.16 mmol, 1.0 mol%) and 2-(di-tert-butylphosphino)biphenyl (97 mg, 0.33 mmol, 2.0 mol%). The tube was sealed with a teflon screwcap and evacuated/backfilled with argon (5x). Then dry, degassed THF (30 ml) was added via syringe and the reaction mixture was stirred at RT until the aryl bromide had been completely consumed as judged by TLC analysis. The mixture was diluted with ether, filtered, and washed with 1M NaOH. The aqueous layer was extracted with ether, the combined organic layer was washed with brine and dried with MgSO4. After evaporation the pale yellow solid was chromatographed on silica gel using dichloromethane as eluent. Recrystallization from ethanol gave 3.9 g (93%) of the title compound (I) as a white crystalline solid. Crystals suitable for a single-crystal structure determination were obtained from a slow evaporation of the solvent.

Refinement

Hydrogen atoms were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure and atomic numbering of the title compound showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Antiparallel rows of molecules viewed along a-axis.

Fig. 3.

Fig. 3.

The zigzag arrangement of the molecules viewed along c-axis.

Fig. 4.

Fig. 4.

CH···O and CH···π interactions shown by blue and black contact lines, respectively.

Crystal data

C16H18O3 Dx = 1.254 Mg m3
Mr = 258.30 Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, Pbca Cell parameters from 9816 reflections
a = 8.4669 (2) Å θ = 2.9–25.7°
b = 15.0636 (3) Å µ = 0.09 mm1
c = 21.4516 (4) Å T = 173 K
V = 2735.98 (10) Å3 Plate, colourless
Z = 8 0.3 × 0.25 × 0.2 mm
F(000) = 1104

Data collection

Bruker–Nonius KappaCCD diffractometer equipped with an APEXII detector 2589 independent reflections
Radiation source: sealed tube 1984 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
Detector resolution: 8 pixels mm-1 θmax = 25.7°, θmin = 2.9°
ω and φ scans h = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −16→18
Tmin = 0.975, Tmax = 0.983 l = −25→26
17856 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0571P)2 + 1.2608P] where P = (Fo2 + 2Fc2)/3
2589 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.20 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.5594 (2) −0.00288 (14) 0.14685 (10) 0.0423 (5)
H1A −0.6400 0.0432 0.1521 0.063*
H1B −0.5619 −0.0432 0.1827 0.063*
H1C −0.5807 −0.0364 0.1086 0.063*
C2 −0.3984 (2) 0.03996 (12) 0.14242 (9) 0.0324 (4)
C3 −0.3444 (2) 0.07517 (12) 0.08647 (9) 0.0333 (4)
H3 −0.4095 0.0715 0.0505 0.040*
C4 −0.1974 (2) 0.11563 (11) 0.08190 (8) 0.0305 (4)
H4 −0.1630 0.1387 0.0430 0.037*
C5 −0.10199 (19) 0.12239 (10) 0.13322 (7) 0.0230 (4)
C6 −0.1534 (2) 0.08818 (12) 0.18971 (8) 0.0284 (4)
H6 −0.0881 0.0929 0.2256 0.034*
C7 −0.2995 (2) 0.04713 (11) 0.19405 (8) 0.0311 (4)
H7 −0.3327 0.0235 0.2329 0.037*
C8 0.0553 (2) 0.17020 (11) 0.12955 (8) 0.0245 (4)
C9 0.1441 (2) 0.16780 (11) 0.07478 (7) 0.0248 (4)
H9 0.1084 0.1337 0.0403 0.030*
C10 0.28466 (19) 0.21507 (11) 0.07052 (7) 0.0229 (4)
C12 0.3296 (2) 0.16804 (13) −0.03432 (8) 0.0356 (5)
H12A 0.4071 0.1748 −0.0679 0.053*
H12B 0.2268 0.1904 −0.0483 0.053*
H12C 0.3201 0.1052 −0.0232 0.053*
C13 0.33806 (19) 0.26545 (11) 0.12094 (7) 0.0233 (4)
C15 0.4574 (2) 0.40464 (12) 0.10715 (9) 0.0347 (4)
H15A 0.5609 0.4335 0.1040 0.052*
H15B 0.3993 0.4294 0.1426 0.052*
H15C 0.3977 0.4150 0.0687 0.052*
C16 0.2514 (2) 0.26602 (11) 0.17617 (7) 0.0244 (4)
C18 0.2258 (2) 0.31828 (12) 0.28086 (7) 0.0294 (4)
H18A 0.2816 0.3556 0.3112 0.044*
H18B 0.2148 0.2581 0.2976 0.044*
H18C 0.1209 0.3433 0.2728 0.044*
C19 0.1099 (2) 0.21951 (11) 0.18045 (8) 0.0251 (4)
H19 0.0502 0.2212 0.2179 0.030*
O11 0.38021 (14) 0.21736 (8) 0.01893 (5) 0.0286 (3)
O14 0.47847 (13) 0.31138 (8) 0.11607 (5) 0.0270 (3)
O17 0.31410 (14) 0.31530 (8) 0.22369 (5) 0.0309 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0279 (10) 0.0437 (12) 0.0554 (13) −0.0092 (9) 0.0020 (9) −0.0026 (10)
C2 0.0239 (9) 0.0260 (9) 0.0473 (11) −0.0003 (8) 0.0001 (8) −0.0004 (8)
C3 0.0298 (10) 0.0290 (10) 0.0413 (10) −0.0032 (8) −0.0080 (8) 0.0006 (8)
C4 0.0309 (10) 0.0260 (9) 0.0347 (9) −0.0022 (8) 0.0003 (8) 0.0020 (8)
C5 0.0222 (9) 0.0167 (8) 0.0302 (8) 0.0055 (7) 0.0031 (7) 0.0009 (6)
C6 0.0242 (9) 0.0265 (9) 0.0346 (9) −0.0002 (7) −0.0020 (7) −0.0013 (7)
C7 0.0294 (10) 0.0273 (10) 0.0366 (10) −0.0011 (8) 0.0050 (8) 0.0009 (8)
C8 0.0201 (9) 0.0225 (8) 0.0307 (9) 0.0008 (7) −0.0023 (7) 0.0020 (7)
C9 0.0251 (9) 0.0242 (9) 0.0252 (8) −0.0010 (7) −0.0038 (7) −0.0020 (7)
C10 0.0218 (9) 0.0241 (9) 0.0229 (8) 0.0025 (7) 0.0009 (6) 0.0027 (6)
C12 0.0410 (11) 0.0395 (11) 0.0262 (9) −0.0062 (9) 0.0034 (8) −0.0062 (8)
C13 0.0173 (8) 0.0243 (9) 0.0283 (9) 0.0003 (7) −0.0006 (6) 0.0013 (7)
C15 0.0336 (11) 0.0278 (10) 0.0426 (11) −0.0050 (8) 0.0047 (9) −0.0012 (8)
C16 0.0213 (8) 0.0259 (9) 0.0259 (8) 0.0011 (7) −0.0029 (7) −0.0034 (7)
C18 0.0287 (10) 0.0335 (10) 0.0259 (9) −0.0017 (8) 0.0027 (7) −0.0037 (7)
C19 0.0219 (9) 0.0272 (9) 0.0261 (9) 0.0001 (7) 0.0018 (7) 0.0002 (7)
O11 0.0276 (7) 0.0353 (7) 0.0229 (6) −0.0037 (5) 0.0021 (5) −0.0031 (5)
O14 0.0191 (6) 0.0283 (7) 0.0335 (7) −0.0037 (5) 0.0015 (5) −0.0025 (5)
O17 0.0247 (6) 0.0421 (8) 0.0259 (6) −0.0074 (6) 0.0028 (5) −0.0094 (5)

Geometric parameters (Å, º)

C1—H1A 0.9800 C10—C13 1.396 (2)
C1—H1B 0.9800 C10—O11 1.3713 (19)
C1—H1C 0.9800 C12—H12A 0.9800
C1—C2 1.511 (3) C12—H12B 0.9800
C2—C3 1.389 (3) C12—H12C 0.9800
C2—C7 1.393 (3) C12—O11 1.429 (2)
C3—H3 0.9500 C13—C16 1.394 (2)
C3—C4 1.389 (3) C13—O14 1.3795 (19)
C4—H4 0.9500 C15—H15A 0.9800
C4—C5 1.370 (2) C15—H15B 0.9800
C5—C6 1.387 (2) C15—H15C 0.9800
C5—C8 1.516 (2) C15—O14 1.429 (2)
C6—H6 0.9500 C16—C19 1.391 (2)
C6—C7 1.386 (3) C16—O17 1.3683 (19)
C7—H7 0.9500 C18—H18A 0.9800
C8—C9 1.396 (2) C18—H18B 0.9800
C8—C19 1.399 (2) C18—H18C 0.9800
C9—H9 0.9500 C18—O17 1.4370 (19)
C9—C10 1.389 (2) C19—H19 0.9500
H1A—C1—H1B 109.5 O11—C10—C13 114.86 (14)
H1A—C1—H1C 109.5 H12A—C12—H12B 109.5
H1B—C1—H1C 109.5 H12A—C12—H12C 109.5
C2—C1—H1A 109.5 H12B—C12—H12C 109.5
C2—C1—H1B 109.5 O11—C12—H12A 109.5
C2—C1—H1C 109.5 O11—C12—H12B 109.5
C3—C2—C1 120.94 (17) O11—C12—H12C 109.5
C3—C2—C7 117.35 (16) C16—C13—C10 119.42 (15)
C7—C2—C1 121.70 (17) O14—C13—C10 119.53 (14)
C2—C3—H3 119.2 O14—C13—C16 121.01 (14)
C4—C3—C2 121.55 (17) H15A—C15—H15B 109.5
C4—C3—H3 119.2 H15A—C15—H15C 109.5
C3—C4—H4 119.9 H15B—C15—H15C 109.5
C5—C4—C3 120.30 (17) O14—C15—H15A 109.5
C5—C4—H4 119.9 O14—C15—H15B 109.5
C4—C5—C6 119.32 (16) O14—C15—H15C 109.5
C4—C5—C8 120.80 (15) C19—C16—C13 120.44 (15)
C6—C5—C8 119.83 (15) O17—C16—C13 115.61 (15)
C5—C6—H6 119.9 O17—C16—C19 123.95 (15)
C7—C6—C5 120.29 (16) H18A—C18—H18B 109.5
C7—C6—H6 119.9 H18A—C18—H18C 109.5
C2—C7—H7 119.4 H18B—C18—H18C 109.5
C6—C7—C2 121.19 (17) O17—C18—H18A 109.5
C6—C7—H7 119.4 O17—C18—H18B 109.5
C9—C8—C5 120.31 (14) O17—C18—H18C 109.5
C9—C8—C19 119.55 (15) C8—C19—H19 120.0
C19—C8—C5 120.11 (15) C16—C19—C8 120.02 (15)
C8—C9—H9 119.9 C16—C19—H19 120.0
C10—C9—C8 120.22 (15) C10—O11—C12 117.08 (13)
C10—C9—H9 119.9 C13—O14—C15 113.32 (13)
C9—C10—C13 120.32 (15) C16—O17—C18 116.80 (13)
O11—C10—C9 124.82 (14)
C1—C2—C3—C4 179.25 (17) C9—C8—C19—C16 0.3 (2)
C1—C2—C7—C6 −178.67 (17) C9—C10—C13—C16 1.7 (2)
C2—C3—C4—C5 −0.5 (3) C9—C10—C13—O14 179.48 (14)
C3—C2—C7—C6 0.3 (3) C9—C10—O11—C12 0.7 (2)
C3—C4—C5—C6 0.2 (3) C10—C13—C16—C19 −2.3 (2)
C3—C4—C5—C8 −177.12 (16) C10—C13—C16—O17 178.43 (15)
C4—C5—C6—C7 0.4 (3) C10—C13—O14—C15 104.14 (17)
C4—C5—C8—C9 −33.4 (2) C13—C10—O11—C12 −179.01 (15)
C4—C5—C8—C19 144.48 (17) C13—C16—C19—C8 1.4 (3)
C5—C6—C7—C2 −0.6 (3) C13—C16—O17—C18 178.99 (15)
C5—C8—C9—C10 176.97 (15) C16—C13—O14—C15 −78.13 (19)
C5—C8—C19—C16 −177.60 (15) C19—C8—C9—C10 −0.9 (2)
C6—C5—C8—C9 149.32 (16) C19—C16—O17—C18 −0.2 (2)
C6—C5—C8—C19 −32.8 (2) O11—C10—C13—C16 −178.55 (14)
C7—C2—C3—C4 0.3 (3) O11—C10—C13—O14 −0.8 (2)
C8—C5—C6—C7 177.71 (15) O14—C13—C16—C19 179.92 (15)
C8—C9—C10—C13 −0.1 (2) O14—C13—C16—O17 0.7 (2)
C8—C9—C10—O11 −179.81 (15) O17—C16—C19—C8 −179.47 (15)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively.

D—H···A D—H H···A D···A D—H···A
C4—H4···O11i 0.95 2.57 3.382 (2) 144
C12—H12B···O14i 0.98 2.56 3.465 (2) 154
C18—H18C···O17ii 0.98 2.63 3.488 (2) 146
C15—H15A···Cg1iii 0.98 2.84 3.692 (2) 139
C12—H12A···Cg2iv 0.98 3.19 4.061 (2) 132
C18—H18B···Cg1v 0.98 3.01 3.976 (2) 149

Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) x−1/2, y, −z+1/2; (iii) x−1/2, −y+3/2, −z+1; (iv) x+1/2, −y+1/2, −z; (v) −x+3/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2088).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Lahtinen, M., Nättinen, K. & Nummelin, S. (2013a). Acta Cryst. E69, o383. [DOI] [PMC free article] [PubMed]
  3. Lahtinen, M., Nättinen, K. & Nummelin, S. (2013b). Acta Cryst. E69, o460. [DOI] [PMC free article] [PubMed]
  4. Lahtinen, M., Nättinen, K. & Nummelin, S. (2013c). Acta Cryst. E69, o510–o511. [DOI] [PMC free article] [PubMed]
  5. Lahtinen, M. & Nummelin, S. (2013). Acta Cryst. E69, o681. [DOI] [PMC free article] [PubMed]
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Mekelburger, H.-B., Rissanen, K. & Vögtle, F. (1993). Chem. Ber. 126, 1161–1169.
  8. Nättinen, K. & Rissanen, K. (2003). Cryst. Growth Des. 3, 339–353.
  9. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1–67.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216–6241. [DOI] [PubMed]
  13. Percec, V., Peterca, M., Dulcey, A. E., Imam, M. R., Hudson, S. D., Nummelin, S., Adelman, P. & Heiney, P. A. (2008). J. Am. Chem. Soc. 130, 13079–13094. [DOI] [PubMed]
  14. Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989–4007. [DOI] [PubMed]
  15. Percec, V., Wilson, D. A., Leowanawat, P., Wilson, C. J., Hughes, A. D., Kaucher, M. S., Hammer, D. A., Levine, D. H., Kim, A. J., Bates, F. S., Davis, K. P., Lodge, T. P., Klein, M. L., DeVane, R. H., Aqad, E., Rosen, B. R., Argintaru, A. O., Sienkowska, M. J., Rissanen, K., Nummelin, S. & Ropponen, J. (2010). Science, 328, 1009–1014. [DOI] [PubMed]
  16. Roche, C. & Percec, V. (2013). Isr. J. Chem. 53, 30–44.
  17. Ropponen, J., Nättinen, K., Lahtinen, M. & Rissanen, K. (2004a). CrystEngComm, 6, 559–566.
  18. Ropponen, J., Nummelin, S. & Rissanen, K. (2004b). Org. Lett. 6, 2495–2497. [DOI] [PubMed]
  19. Ropponen, J., Tuuttila, T., Lahtinen, M., Nummelin, S. & Rissanen, K. (2004c). J. Polym. Sci. Part A Polym. Chem. 42, 5574–5586.
  20. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010969/go2088sup1.cif

e-69-0o810-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010969/go2088Isup2.hkl

e-69-0o810-Isup2.hkl (127.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010969/go2088Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES