Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 30;69(Pt 5):o815. doi: 10.1107/S160053681301129X

1,3-Bis[(3-chloro­pyrazin-2-yl)­oxy]benzene

Thothadri Srinivasan a, Venkatesan Kalpana b, Perumal Rajakumar b, Devadasan Velmurugan a,*
PMCID: PMC3648331  PMID: 23723951

Abstract

The asymmetric unit of the title compound, C14H8Cl2N4O2, contains one half-mol­ecule, the complete mol­ecule being generated by the operation of a twofold rotation axis. The Cl atom deviates significantly from the plane of the pyrazine ring [0.0215 (4) Å]. The central benzene ring makes a dihedral angle of 72.82 (7)° with the plane of the pyrazine ring.

Related literature  

For applications of the pyrazine ring system in drug development, see: Du et al. (2009); Dubinina et al. (2006); Ellsworth et al. (2007); Mukaiyama et al. (2007). For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001); Abdullah (2005). For a related structure, see: Nasir et al. (2010).graphic file with name e-69-0o815-scheme1.jpg

Experimental  

Crystal data  

  • C14H8Cl2N4O2

  • M r = 335.14

  • Monoclinic, Inline graphic

  • a = 9.9618 (3) Å

  • b = 10.2196 (4) Å

  • c = 14.6010 (6) Å

  • β = 106.231 (2)°

  • V = 1427.22 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.873, T max = 0.912

  • 6736 measured reflections

  • 1781 independent reflections

  • 1552 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.113

  • S = 1.00

  • 1781 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681301129X/kp2450sup1.cif

e-69-0o815-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301129X/kp2450Isup2.hkl

e-69-0o815-Isup2.hkl (86KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681301129X/kp2450Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS and DV thank the UGC (SAP–CAS) for the departmental facilties. TS also thanks the DST Inspire program for financial assistance.

supplementary crystallographic information

Comment

The pyrazine ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development which can be used as antiproliferative agent (Dubinina et al., 2006), potent CXCR3 antagonists (Du et al., 2009), CB1 antagonists (Ellsworth et al., 2007), and c-Src inhibitory (Mukaiyama et al., 2007). On-going structural studies of heterocyclic N-containing derivatives (Nasir et al., 2010) are motivated by an investigation of their fluorescence properties (Kawai et al., 2001; Abdullah, 2005). In view of different applications of this class of compounds, we have undertaken the single crystal structure determination of the title compound.

The title compound C14 H8 Cl2 N4 O2, contains a half of the molecule in an asymmetric unit; the complete molecule is generated by two the fold rotation axis along the direction [0 1 0] with the symmetry code: -x, y, -z+1/2. X-ray analysis confirms the molecular structure and atom connectivity of the compound (Fig. 1). The deviation of the atom Cl1 from the pyrazine ring (C1/N1/C2/C3/N2/C4) is -0.0215 (4) Å.

The central phenyl ring (C5/C6/C7/C8/C5i/C7i) forms the dihedral angle of 72.82 (7) ° with the pyrazine ring (C1/N1/C2/C3/N2/C4). The dihedral angle between the pyrazine rings (C1/N1/C2/C3/N2/C4) and (C1i/N1i/C2i/C3i/N2i/C4i) is 68.38 (3) ° (Macrae et al., 2008). The crystal packing is via van der Waals interactions, only.

Experimental

To a stirred solution of Cs2CO3/K2CO3 (22 mmol) in CH3CN (50 mL), resorcinol (10 mmol) was added and stirred for 5 min. 2,3-dichloropyrazine (20 mmol) in CH3CN (100 mL) was added dropwise to the above reaction mixture and allowed for stirring at refluxing condition for 12 h. After the reaction was complete, the reaction mixture was allowed to attain room temperature and then evaporated to dryness. The residue obtained was extracted with CH2Cl2 (3 x 100 mL), washed with water (3 x 100 mL), brine and then dried over Na2SO4. Evaporation of the organic layer gave a residue, which on purification using column chromatography with hexane/CHCl3 (1:1) as an eluent gave the corresponding compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexane at room temperature.

Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å, refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. The related atoms have the symmetry code: (a) -x, y, -z+1/2.

Crystal data

C14H8Cl2N4O2 F(000) = 680
Mr = 335.14 Dx = 1.560 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1781 reflections
a = 9.9618 (3) Å θ = 2.9–28.4°
b = 10.2196 (4) Å µ = 0.47 mm1
c = 14.6010 (6) Å T = 293 K
β = 106.231 (2)° Block, colourless
V = 1427.22 (9) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 1781 independent reflections
Radiation source: fine-focus sealed tube 1552 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω and φ scans θmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.873, Tmax = 0.912 k = −13→12
6736 measured reflections l = −19→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.5533P] where P = (Fo2 + 2Fc2)/3
1781 reflections (Δ/σ)max < 0.001
101 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.10770 (15) 0.37514 (13) −0.02670 (10) 0.0461 (3)
C2 −0.07466 (18) 0.3213 (2) −0.15100 (11) 0.0644 (4)
H2 −0.1203 0.3246 −0.2159 0.077*
C3 −0.13428 (17) 0.25363 (19) −0.09216 (11) 0.0618 (4)
H3 −0.2196 0.2121 −0.1178 0.074*
C4 0.04654 (14) 0.30517 (13) 0.03426 (9) 0.0417 (3)
C5 0.05477 (14) 0.23121 (15) 0.18814 (9) 0.0454 (3)
C6 0.0000 0.3013 (2) 0.2500 0.0436 (4)
H6 0.0000 0.3923 0.2500 0.052*
C7 0.05777 (19) 0.09686 (17) 0.18801 (10) 0.0597 (4)
H7 0.0979 0.0516 0.1470 0.072*
C8 0.0000 0.0305 (2) 0.2500 0.0694 (7)
H8 0.0000 −0.0605 0.2500 0.083*
N1 0.04795 (16) 0.38337 (13) −0.11809 (9) 0.0580 (3)
N2 −0.07257 (13) 0.24545 (13) 0.00221 (8) 0.0515 (3)
O1 0.11655 (11) 0.30189 (12) 0.12853 (7) 0.0537 (3)
Cl1 0.26460 (5) 0.45456 (4) 0.01959 (4) 0.06883 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0581 (7) 0.0383 (6) 0.0511 (8) 0.0030 (5) 0.0308 (6) −0.0006 (5)
C2 0.0681 (10) 0.0875 (12) 0.0390 (7) 0.0107 (9) 0.0175 (7) 0.0107 (7)
C3 0.0527 (8) 0.0885 (12) 0.0432 (8) −0.0002 (8) 0.0121 (6) 0.0067 (7)
C4 0.0491 (6) 0.0447 (7) 0.0363 (6) 0.0042 (5) 0.0201 (5) 0.0004 (5)
C5 0.0493 (7) 0.0565 (8) 0.0298 (6) −0.0035 (5) 0.0104 (5) 0.0000 (5)
C6 0.0461 (9) 0.0492 (10) 0.0340 (8) 0.000 0.0085 (7) 0.000
C7 0.0861 (11) 0.0587 (9) 0.0385 (7) 0.0055 (8) 0.0240 (7) −0.0053 (6)
C8 0.119 (2) 0.0472 (12) 0.0468 (12) 0.000 0.0308 (13) 0.000
N1 0.0756 (8) 0.0596 (8) 0.0484 (7) 0.0084 (6) 0.0332 (6) 0.0117 (6)
N2 0.0489 (6) 0.0689 (8) 0.0387 (6) −0.0036 (5) 0.0157 (5) 0.0063 (5)
O1 0.0553 (6) 0.0703 (7) 0.0374 (5) −0.0130 (5) 0.0162 (4) −0.0022 (4)
Cl1 0.0778 (3) 0.0608 (3) 0.0815 (4) −0.02286 (19) 0.0447 (2) −0.01437 (19)

Geometric parameters (Å, º)

C1—N1 1.303 (2) C5—C7 1.373 (2)
C1—C4 1.4064 (18) C5—C6 1.3789 (17)
C1—Cl1 1.7229 (15) C5—O1 1.3991 (17)
C2—N1 1.340 (2) C6—C5i 1.3789 (17)
C2—C3 1.362 (2) C6—H6 0.9300
C2—H2 0.9300 C7—C8 1.379 (2)
C3—N2 1.345 (2) C7—H7 0.9300
C3—H3 0.9300 C8—C7i 1.379 (2)
C4—N2 1.2996 (18) C8—H8 0.9300
C4—O1 1.3584 (16)
N1—C1—C4 121.76 (14) C6—C5—O1 117.57 (14)
N1—C1—Cl1 118.42 (11) C5—C6—C5i 117.45 (19)
C4—C1—Cl1 119.81 (11) C5—C6—H6 121.3
N1—C2—C3 121.90 (14) C5i—C6—H6 121.3
N1—C2—H2 119.0 C5—C7—C8 118.51 (15)
C3—C2—H2 119.0 C5—C7—H7 120.7
N2—C3—C2 121.51 (15) C8—C7—H7 120.7
N2—C3—H3 119.2 C7i—C8—C7 121.1 (2)
C2—C3—H3 119.2 C7i—C8—H8 119.4
N2—C4—O1 120.78 (11) C7—C8—H8 119.4
N2—C4—C1 121.62 (12) C1—N1—C2 116.50 (13)
O1—C4—C1 117.60 (12) C4—N2—C3 116.71 (13)
C7—C5—C6 122.18 (14) C4—O1—C5 116.90 (10)
C7—C5—O1 120.12 (13)
N1—C2—C3—N2 −0.1 (3) C4—C1—N1—C2 −0.2 (2)
N1—C1—C4—N2 0.0 (2) Cl1—C1—N1—C2 −179.30 (12)
Cl1—C1—C4—N2 179.08 (11) C3—C2—N1—C1 0.3 (3)
N1—C1—C4—O1 179.94 (13) O1—C4—N2—C3 −179.81 (14)
Cl1—C1—C4—O1 −0.95 (17) C1—C4—N2—C3 0.2 (2)
C7—C5—C6—C5i −1.04 (11) C2—C3—N2—C4 −0.1 (3)
O1—C5—C6—C5i −176.94 (13) N2—C4—O1—C5 0.4 (2)
C6—C5—C7—C8 2.0 (2) C1—C4—O1—C5 −179.61 (12)
O1—C5—C7—C8 177.84 (11) C7—C5—O1—C4 75.09 (18)
C5—C7—C8—C7i −0.99 (11) C6—C5—O1—C4 −108.92 (13)

Symmetry code: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2450).

References

  1. Abdullah, Z. (2005). Intl J. Chem. Sci. 3 , 9–15.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Du, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. & Medina, J. C. (2009). Bioorg. Med. Chem. Lett. 19, 5200–5204. [DOI] [PubMed]
  4. Dubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. & Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727–737. [DOI] [PubMed]
  5. Ellsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. & Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 3978–3982. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc 11, 23–32.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Mukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H. & Kusama, H. (2007). Bioorg. Med. Chem. Lett. 15, 868–885. [DOI] [PubMed]
  10. Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681301129X/kp2450sup1.cif

e-69-0o815-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301129X/kp2450Isup2.hkl

e-69-0o815-Isup2.hkl (86KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681301129X/kp2450Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES