Abstract
The asymmetric unit of the title compound, C14H8Cl2N4O2, contains one half-molecule, the complete molecule being generated by the operation of a twofold rotation axis. The Cl atom deviates significantly from the plane of the pyrazine ring [0.0215 (4) Å]. The central benzene ring makes a dihedral angle of 72.82 (7)° with the plane of the pyrazine ring.
Related literature
For applications of the pyrazine ring system in drug development, see: Du et al. (2009 ▶); Dubinina et al. (2006 ▶); Ellsworth et al. (2007 ▶); Mukaiyama et al. (2007 ▶). For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001 ▶); Abdullah (2005 ▶). For a related structure, see: Nasir et al. (2010 ▶).
Experimental
Crystal data
C14H8Cl2N4O2
M r = 335.14
Monoclinic,
a = 9.9618 (3) Å
b = 10.2196 (4) Å
c = 14.6010 (6) Å
β = 106.231 (2)°
V = 1427.22 (9) Å3
Z = 4
Mo Kα radiation
μ = 0.47 mm−1
T = 293 K
0.30 × 0.25 × 0.20 mm
Data collection
Bruker SMART APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008 ▶) T min = 0.873, T max = 0.912
6736 measured reflections
1781 independent reflections
1552 reflections with I > 2σ(I)
R int = 0.026
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.113
S = 1.00
1781 reflections
101 parameters
H-atom parameters constrained
Δρmax = 0.25 e Å−3
Δρmin = −0.31 e Å−3
Data collection: APEX2 (Bruker, 2008 ▶); cell refinement: SAINT (Bruker, 2008 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▶) and Mercury (Macrae et al., 2008 ▶); software used to prepare material for publication: SHELXL97and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681301129X/kp2450sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301129X/kp2450Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681301129X/kp2450Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS and DV thank the UGC (SAP–CAS) for the departmental facilties. TS also thanks the DST Inspire program for financial assistance.
supplementary crystallographic information
Comment
The pyrazine ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development which can be used as antiproliferative agent (Dubinina et al., 2006), potent CXCR3 antagonists (Du et al., 2009), CB1 antagonists (Ellsworth et al., 2007), and c-Src inhibitory (Mukaiyama et al., 2007). On-going structural studies of heterocyclic N-containing derivatives (Nasir et al., 2010) are motivated by an investigation of their fluorescence properties (Kawai et al., 2001; Abdullah, 2005). In view of different applications of this class of compounds, we have undertaken the single crystal structure determination of the title compound.
The title compound C14 H8 Cl2 N4 O2, contains a half of the molecule in an asymmetric unit; the complete molecule is generated by two the fold rotation axis along the direction [0 1 0] with the symmetry code: -x, y, -z+1/2. X-ray analysis confirms the molecular structure and atom connectivity of the compound (Fig. 1). The deviation of the atom Cl1 from the pyrazine ring (C1/N1/C2/C3/N2/C4) is -0.0215 (4) Å.
The central phenyl ring (C5/C6/C7/C8/C5i/C7i) forms the dihedral angle of 72.82 (7) ° with the pyrazine ring (C1/N1/C2/C3/N2/C4). The dihedral angle between the pyrazine rings (C1/N1/C2/C3/N2/C4) and (C1i/N1i/C2i/C3i/N2i/C4i) is 68.38 (3) ° (Macrae et al., 2008). The crystal packing is via van der Waals interactions, only.
Experimental
To a stirred solution of Cs2CO3/K2CO3 (22 mmol) in CH3CN (50 mL), resorcinol (10 mmol) was added and stirred for 5 min. 2,3-dichloropyrazine (20 mmol) in CH3CN (100 mL) was added dropwise to the above reaction mixture and allowed for stirring at refluxing condition for 12 h. After the reaction was complete, the reaction mixture was allowed to attain room temperature and then evaporated to dryness. The residue obtained was extracted with CH2Cl2 (3 x 100 mL), washed with water (3 x 100 mL), brine and then dried over Na2SO4. Evaporation of the organic layer gave a residue, which on purification using column chromatography with hexane/CHCl3 (1:1) as an eluent gave the corresponding compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexane at room temperature.
Refinement
The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å, refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. The related atoms have the symmetry code: (a) -x, y, -z+1/2.
Crystal data
| C14H8Cl2N4O2 | F(000) = 680 |
| Mr = 335.14 | Dx = 1.560 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 1781 reflections |
| a = 9.9618 (3) Å | θ = 2.9–28.4° |
| b = 10.2196 (4) Å | µ = 0.47 mm−1 |
| c = 14.6010 (6) Å | T = 293 K |
| β = 106.231 (2)° | Block, colourless |
| V = 1427.22 (9) Å3 | 0.30 × 0.25 × 0.20 mm |
| Z = 4 |
Data collection
| Bruker SMART APEXII area-detector diffractometer | 1781 independent reflections |
| Radiation source: fine-focus sealed tube | 1552 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.026 |
| ω and φ scans | θmax = 28.4°, θmin = 2.9° |
| Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −13→13 |
| Tmin = 0.873, Tmax = 0.912 | k = −13→12 |
| 6736 measured reflections | l = −19→14 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.113 | H-atom parameters constrained |
| S = 1.00 | w = 1/[σ2(Fo2) + (0.0685P)2 + 0.5533P] where P = (Fo2 + 2Fc2)/3 |
| 1781 reflections | (Δ/σ)max < 0.001 |
| 101 parameters | Δρmax = 0.25 e Å−3 |
| 0 restraints | Δρmin = −0.31 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.10770 (15) | 0.37514 (13) | −0.02670 (10) | 0.0461 (3) | |
| C2 | −0.07466 (18) | 0.3213 (2) | −0.15100 (11) | 0.0644 (4) | |
| H2 | −0.1203 | 0.3246 | −0.2159 | 0.077* | |
| C3 | −0.13428 (17) | 0.25363 (19) | −0.09216 (11) | 0.0618 (4) | |
| H3 | −0.2196 | 0.2121 | −0.1178 | 0.074* | |
| C4 | 0.04654 (14) | 0.30517 (13) | 0.03426 (9) | 0.0417 (3) | |
| C5 | 0.05477 (14) | 0.23121 (15) | 0.18814 (9) | 0.0454 (3) | |
| C6 | 0.0000 | 0.3013 (2) | 0.2500 | 0.0436 (4) | |
| H6 | 0.0000 | 0.3923 | 0.2500 | 0.052* | |
| C7 | 0.05777 (19) | 0.09686 (17) | 0.18801 (10) | 0.0597 (4) | |
| H7 | 0.0979 | 0.0516 | 0.1470 | 0.072* | |
| C8 | 0.0000 | 0.0305 (2) | 0.2500 | 0.0694 (7) | |
| H8 | 0.0000 | −0.0605 | 0.2500 | 0.083* | |
| N1 | 0.04795 (16) | 0.38337 (13) | −0.11809 (9) | 0.0580 (3) | |
| N2 | −0.07257 (13) | 0.24545 (13) | 0.00221 (8) | 0.0515 (3) | |
| O1 | 0.11655 (11) | 0.30189 (12) | 0.12853 (7) | 0.0537 (3) | |
| Cl1 | 0.26460 (5) | 0.45456 (4) | 0.01959 (4) | 0.06883 (19) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0581 (7) | 0.0383 (6) | 0.0511 (8) | 0.0030 (5) | 0.0308 (6) | −0.0006 (5) |
| C2 | 0.0681 (10) | 0.0875 (12) | 0.0390 (7) | 0.0107 (9) | 0.0175 (7) | 0.0107 (7) |
| C3 | 0.0527 (8) | 0.0885 (12) | 0.0432 (8) | −0.0002 (8) | 0.0121 (6) | 0.0067 (7) |
| C4 | 0.0491 (6) | 0.0447 (7) | 0.0363 (6) | 0.0042 (5) | 0.0201 (5) | 0.0004 (5) |
| C5 | 0.0493 (7) | 0.0565 (8) | 0.0298 (6) | −0.0035 (5) | 0.0104 (5) | 0.0000 (5) |
| C6 | 0.0461 (9) | 0.0492 (10) | 0.0340 (8) | 0.000 | 0.0085 (7) | 0.000 |
| C7 | 0.0861 (11) | 0.0587 (9) | 0.0385 (7) | 0.0055 (8) | 0.0240 (7) | −0.0053 (6) |
| C8 | 0.119 (2) | 0.0472 (12) | 0.0468 (12) | 0.000 | 0.0308 (13) | 0.000 |
| N1 | 0.0756 (8) | 0.0596 (8) | 0.0484 (7) | 0.0084 (6) | 0.0332 (6) | 0.0117 (6) |
| N2 | 0.0489 (6) | 0.0689 (8) | 0.0387 (6) | −0.0036 (5) | 0.0157 (5) | 0.0063 (5) |
| O1 | 0.0553 (6) | 0.0703 (7) | 0.0374 (5) | −0.0130 (5) | 0.0162 (4) | −0.0022 (4) |
| Cl1 | 0.0778 (3) | 0.0608 (3) | 0.0815 (4) | −0.02286 (19) | 0.0447 (2) | −0.01437 (19) |
Geometric parameters (Å, º)
| C1—N1 | 1.303 (2) | C5—C7 | 1.373 (2) |
| C1—C4 | 1.4064 (18) | C5—C6 | 1.3789 (17) |
| C1—Cl1 | 1.7229 (15) | C5—O1 | 1.3991 (17) |
| C2—N1 | 1.340 (2) | C6—C5i | 1.3789 (17) |
| C2—C3 | 1.362 (2) | C6—H6 | 0.9300 |
| C2—H2 | 0.9300 | C7—C8 | 1.379 (2) |
| C3—N2 | 1.345 (2) | C7—H7 | 0.9300 |
| C3—H3 | 0.9300 | C8—C7i | 1.379 (2) |
| C4—N2 | 1.2996 (18) | C8—H8 | 0.9300 |
| C4—O1 | 1.3584 (16) | ||
| N1—C1—C4 | 121.76 (14) | C6—C5—O1 | 117.57 (14) |
| N1—C1—Cl1 | 118.42 (11) | C5—C6—C5i | 117.45 (19) |
| C4—C1—Cl1 | 119.81 (11) | C5—C6—H6 | 121.3 |
| N1—C2—C3 | 121.90 (14) | C5i—C6—H6 | 121.3 |
| N1—C2—H2 | 119.0 | C5—C7—C8 | 118.51 (15) |
| C3—C2—H2 | 119.0 | C5—C7—H7 | 120.7 |
| N2—C3—C2 | 121.51 (15) | C8—C7—H7 | 120.7 |
| N2—C3—H3 | 119.2 | C7i—C8—C7 | 121.1 (2) |
| C2—C3—H3 | 119.2 | C7i—C8—H8 | 119.4 |
| N2—C4—O1 | 120.78 (11) | C7—C8—H8 | 119.4 |
| N2—C4—C1 | 121.62 (12) | C1—N1—C2 | 116.50 (13) |
| O1—C4—C1 | 117.60 (12) | C4—N2—C3 | 116.71 (13) |
| C7—C5—C6 | 122.18 (14) | C4—O1—C5 | 116.90 (10) |
| C7—C5—O1 | 120.12 (13) | ||
| N1—C2—C3—N2 | −0.1 (3) | C4—C1—N1—C2 | −0.2 (2) |
| N1—C1—C4—N2 | 0.0 (2) | Cl1—C1—N1—C2 | −179.30 (12) |
| Cl1—C1—C4—N2 | 179.08 (11) | C3—C2—N1—C1 | 0.3 (3) |
| N1—C1—C4—O1 | 179.94 (13) | O1—C4—N2—C3 | −179.81 (14) |
| Cl1—C1—C4—O1 | −0.95 (17) | C1—C4—N2—C3 | 0.2 (2) |
| C7—C5—C6—C5i | −1.04 (11) | C2—C3—N2—C4 | −0.1 (3) |
| O1—C5—C6—C5i | −176.94 (13) | N2—C4—O1—C5 | 0.4 (2) |
| C6—C5—C7—C8 | 2.0 (2) | C1—C4—O1—C5 | −179.61 (12) |
| O1—C5—C7—C8 | 177.84 (11) | C7—C5—O1—C4 | 75.09 (18) |
| C5—C7—C8—C7i | −0.99 (11) | C6—C5—O1—C4 | −108.92 (13) |
Symmetry code: (i) −x, y, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2450).
References
- Abdullah, Z. (2005). Intl J. Chem. Sci. 3 , 9–15.
- Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Du, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. & Medina, J. C. (2009). Bioorg. Med. Chem. Lett. 19, 5200–5204. [DOI] [PubMed]
- Dubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. & Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727–737. [DOI] [PubMed]
- Ellsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. & Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 3978–3982. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc 11, 23–32.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H. & Kusama, H. (2007). Bioorg. Med. Chem. Lett. 15, 868–885. [DOI] [PubMed]
- Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681301129X/kp2450sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301129X/kp2450Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681301129X/kp2450Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
