Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Jan;47(1):7–9. doi: 10.1104/pp.47.1.7

Abscission: The Phytogerontological Effects of Ethylene

F B Abeles a,1, L E Craker a,2, G R Leather a
PMCID: PMC365802  PMID: 16657581

Abstract

The role of ethylene in the aging of bean (Phaseolus vulgaris L. cv. Red Kidney) petiole abscission zone explants was examined. The data indicate that ethylene does accelerate aging in addition to inducing changes in break strength. Application of ethylene during the aging stage (stage 1) promoted abscission when followed by a second ethylene treatment during the cell separating stage (stage 2). The half-maximal effective concentration of ethylene to induce aging was around 0.3 microliter per liter; 10 microliters per liter was a saturating dose. CO2 reversal of ethylene action during stage 1 was incomplete and gave ambiguous results. CO2 (10%) reversed the effect of 10 microliters per liter ethylene but not 1 microliter per liter ethylene. The possibility that ethylene not only accelerated aging but was also a requirement for it was tested, and experimental evidence in favor of this idea was obtained. It was concluded that ethylene plays a dual role in the abscission of bean petiole explants: a phytogerontological effect and a cellulase-inducing effect.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles F. B. Abscission: role of cellulase. Plant Physiol. 1969 Mar;44(3):447–452. doi: 10.1104/pp.44.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abeles F. B., Holm R. E. Enhancement of RNA synthesis, protein synthesis, and abscission by ethylene. Plant Physiol. 1966 Oct;41(8):1337–1342. doi: 10.1104/pp.41.8.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abeles F. B., Holm R. E., Gahagan H. E. Abscission: the role of aging. Plant Physiol. 1967 Oct;42(10):1351–1356. doi: 10.1104/pp.42.10.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abeles F. B., Lonski J. Stimulation of lettuce seed germination by ethylene. Plant Physiol. 1969 Feb;44(2):277–280. doi: 10.1104/pp.44.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Abeles F. B., Rubinstein B. Regulation of Ethylene Evolution and Leaf Abscission by Auxin. Plant Physiol. 1964 Nov;39(6):963–969. doi: 10.1104/pp.39.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burg S. P. Ethylene, plant senescence and abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1503–1511. [PMC free article] [PubMed] [Google Scholar]
  7. Cracker L. E., Abeles F. B. Abscission: role of abscisic Acid. Plant Physiol. 1969 Aug;44(8):1144–1149. doi: 10.1104/pp.44.8.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craker L. E., Abeles F. B. Abscission: quantitative measurement with a recording abscissor. Plant Physiol. 1969 Aug;44(8):1139–1143. doi: 10.1104/pp.44.8.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dela Fuente R. K., Leopold A. C. Senescence processes in leaf abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1496–1502. [PMC free article] [PubMed] [Google Scholar]
  10. Hallaway M., Osborne D. J. Ethylene: a factor in defoliation induced by auxins. Science. 1969 Mar 7;163(3871):1067–1068. doi: 10.1126/science.163.3871.1067. [DOI] [PubMed] [Google Scholar]
  11. Pratt H. K., Workman M., Martin F. W., Lyons J. M. Simple Method for Continuous Treatment of Plant Material with Metered Traces of Ethylene or Other Gases. Plant Physiol. 1960 Sep;35(5):609–611. doi: 10.1104/pp.35.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rubinstein B., Leopold A. C. Analysis of the Auxin Control of Bean Leaf Abscission. Plant Physiol. 1963 May;38(3):262–267. doi: 10.1104/pp.38.3.262. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES