Abstract
The sulfate-dependent pyrophosphate exchange reaction has been re-examined and confirmed. Standard assay conditions for measuring ATP sulfurylase by sulfate-dependent pyrophosphate exchange are described and some properties of the enzyme (measured in crude dialyzed extracts) are reported. This method has many advantages over the well established molybdate method.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams C. A., Johnson R. E. ATP Sulfurylase Activity in the Soybean [Glycine max (L.) Merr.]. Plant Physiol. 1968 Dec;43(12):2041–2044. doi: 10.1104/pp.43.12.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams C. A., Rinne R. W. Influence of age and sulfur metabolism on ATP sulfurylase activity in the soybean and a survey of selected species. Plant Physiol. 1969 Sep;44(9):1241–1246. doi: 10.1104/pp.44.9.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIE E. W., KONINGSBERGER V. V., LIPMANN F. The isolation of a tryptophan-activating enzyme from pancreas. Arch Biochem Biophys. 1956 Nov;65(1):21–38. doi: 10.1016/0003-9861(56)90173-4. [DOI] [PubMed] [Google Scholar]
- MARCUS A. Amino acid dependent exchange between pyrophosphate and adenosine triphosphate in spinach preparations. J Biol Chem. 1959 May;234(5):1238–1240. [PubMed] [Google Scholar]
- WILSON L. G., BANDURSKI R. S. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem. 1958 Oct;233(4):975–981. [PubMed] [Google Scholar]